Skip to main content

Application of Phycoremediation Techniques Toward Nutrients Removal from Wastewaters: Evaluation of Adsorption and Absorption Methods

  • Chapter
  • First Online:
Organic Pollutants
  • 1270 Accesses

Abstract

The industrial effluents are being discharged into the adjacent water bodies without proper treatment. Such effluents contain excessive nutrients, heavy metals, toxic compounds, and non-biodegradable materials which could harm the aquatic environments and their associated flora and fauna. In this chapter, the recent technologies that have been applied to eliminate and/or used to remove excessive nutrients in water ecosystems are discussed with special reference to microalgae. The survey of literature indicates that the microalgae have been used via a wide range of absorption and adsorption methods toward removing the excessive nutrients from the effluents. The use of living cells or dry biomass of microalgae as compared to other currently employed ones toward nutrient removal has been an advantageous one. This chapter discusses the process and enforcement necessities to bring the excess nutrients elimination more possible at a commercial level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam, S., Suresh Kumar, P., Santhanam, P., Dinesh Kumar, S., & Prabhavathi, P. (2015). Bioremediation of tannery wastewater using immobilized marine microalga Tetraselmis sp.: Experimental studies and pseudo-second order kinetics. Journal of Marine Biology and Oceanography, 4, 1. https://doi.org/10.4172/2324-8661.1000141

    Article  Google Scholar 

  • Admiraal, W., Blanck, H., Buckert-de Jong, M., Guasch, H., Ivorra, N., Lehmann, V., Nystrom, B. A. H., Paulsson, M., & Sabater, S. (1999). Short term toxicity of zinc to microbenthic algae and bacteria in a metal-polluted stream. Water Research, 33(9), 1989–1996.

    Article  CAS  Google Scholar 

  • Aguilar-May, B., Sanchez-Saavedra, M. P., Lizardi, J., & Voltolina, D. (2007). Growth of Synechococcus sp. immobilized in chitosan with different times of contact with NaOH. Journal of Applied Phycology, 19, 181–183.

    Article  CAS  Google Scholar 

  • Ahmad, S. A., Shamaan, N. A., Noorliza, M. A., Koon, G. B., Shuko, M. Y. A., & Syed, M. A. (2012). Enhanced phenol degradation by immobilized Acinetobacter sp. strain AQ5NOL1. World Journal of Microbiology and Biotechnology, 28, 347–352.

    Article  CAS  Google Scholar 

  • Ahmadi, M., Vahabzadeh, F., Bonakdarpour, B., & Mehranian, M. (2006). Empirical modeling of oil mill wastewater treatment using loota-immobilized Phanerochaete chrysosporium. Process Biochemistry, 41, 1148–1154.

    Article  CAS  Google Scholar 

  • Akhtar, N., Iqbal, J., & Iqbal, M. (2004). Removal and recovery of nickel (II) from aqueous solution by loofa sponge immobilized biomass of Chlorella sorokiniana: Characterization studies. Journal of Hazardous Materials, 108, 85–94.

    Article  CAS  Google Scholar 

  • Aksu, Z., Egrtli, G., & Kutsal, T. (1998). A comparative study of copper (II) biosorption on Ca-alginate, agarose and immobilized C. vulgaris in a packed-bed column. Process Biochemistry, 3, 393–400.

    Article  Google Scholar 

  • Araujo, A. A., & Andrade S. M. H. (1996). Aerobic immobilized cells in alginate gel particles of variable density. Applied Biochemistry and Biotechnology, (57/58), 543–550.

    Google Scholar 

  • Baba, M., & Shiraiwa, Y. (2012). High-CO2 response mechanisms in microalgae. In M. Najafpour (Ed.), Advances in photosynthesis: Fundamental aspects (pp. 299–320). Rijeka: In Tech.

    Google Scholar 

  • Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 361–377.

    Article  CAS  Google Scholar 

  • Barsanti, L., & Gualtieri, P. (2016). Algae: Anatomy, biochemistry and biotechnology. Boca Raton: CRC Press, Taylor and Francis Group.

    Google Scholar 

  • Bashan, Y. (1998). Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnology Advances, 16, 729–770.

    Article  CAS  Google Scholar 

  • Bashan, Y., Hernandez, J. P., & Leyva LA Bacilio, M. (2002). Alginate microbeads as inoculant carrier for plant growth-promoting bacteria. Biology and Fertility of Soils, 35, 359–368.

    Article  Google Scholar 

  • Burdin, K. S., & Bird, K. T. (1994). Heavy metal accumulation by carrageenan and agar producing algae. Botanica Marina, 37, 467–470.

    Article  CAS  Google Scholar 

  • Cai, T., Chen, L., Ren, Q., Cai, S., & Zhang, J. (2011). The biodegradation pathway of triethylamine and its biodegradation by immobilized Arthrobacter protophormiae cells. Journal of Hazardous Materials, 186, 59–66.

    Article  CAS  Google Scholar 

  • Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369.

    Article  CAS  Google Scholar 

  • Cerón-García, M. C., Fernández-Sevilla, J. M., Sánchez-Mirón, A., García-Camacho, F., Contreras-Gómez, A., & Molina-Grima, E. (2013). Mixotrophic growth of Phaeodactylum tricornutum on fructose and glycerol in fed-batch and semi-continuous modes. Bioresource Technology, 147, 569–576.

    Article  Google Scholar 

  • Chamy, R., Nunez, M. J., & Lema, J. M. (1990). Optimization of the hardening treatment of S. cerevisiae bioparticles. Enzyme and Microbial Technology, 12, 749–754.

    Article  CAS  Google Scholar 

  • Chan, Y. J., Chong, M. F., Law, C. L., & Hassell, D. G. (2009). A review on anaerobic–Aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal, 155(1–2), 1–18.

    Article  CAS  Google Scholar 

  • Chen, G. Q., & Chen, F. (2006). Growing phototrophic cells without light. Biotechnology Letters, 28, 607–616.

    Article  CAS  Google Scholar 

  • Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102, 71–81. https://doi.org/10.1016/j.biortech.2010.06.159

    Article  CAS  Google Scholar 

  • Chen, S., Yu, J., Wang, H., Yu, H., & Quan, X. (2015). A pilot-scale coupling catalytic ozonation- membrane filtration system for recirculating aquaculture wastewater treatment. Desalination, 363, 37–43.

    Article  CAS  Google Scholar 

  • Chernicharo, C. D. (2005). Post-treatment options for the anaerobic treatment of domestic wastewater. Reviews in Environmental Science and Bio/Technology, 5(1), 73–92.

    Article  Google Scholar 

  • Codd, G. A. (1987). Immobilized micro-algae and cyanobacteria. British Mycological Society Newsletters, 24, 1–5.

    Google Scholar 

  • Cohen, Y. (2001). Biofiltration-the treatment of fluids by microorganisms immobilized into the filter bedding material: A review. Bioresource Technology, 77, 257–274.

    Article  CAS  Google Scholar 

  • Costa, J. A., & de Morais, M. G. (2013). 16 Microalgae for food production. Boca Raton: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Crawford, N. M., Kahn, M. L., Leustek, T., & Long, S. R. (2000). Nitrogen and sulfur. In B. Buchanan, W. Gruissem, & R. Jones (Eds.), Biochemistry and molecular biology of plants (pp. 786–849). Rockville: Am Soc Plant Physiol.

    Google Scholar 

  • Danilov, R., & Ekelund, N. G. A. (2001). Comparison of usefulness of three types of artificial substrata (glass, wood and plastic) when studying settlement patterns of periphyton in lakes of different trophic status. Journal of Microbiological Methods, 45, 167–170.

    Article  CAS  Google Scholar 

  • De Philippis, R., Paperi, R., & Sili, C. (2007). Heavy metal sorption by released polysaccharides and whole cultures of two exo-polysaccharide-producing cyanobacteria. Biodegradation, 18(2), 181–187.

    Article  CAS  Google Scholar 

  • Devi, S., & Sridhar, P. (2000). Production of cephamycin C in repeated batch operations from immobilized Streptomyces clavuligerus. Process Biochemistry, 36, 225–231.

    Article  CAS  Google Scholar 

  • Dinesh Kumar, S., Santhanam, P., Jayalakshmi, T., Nandakumar, R., Ananth, S., Shenbaga Devi, A., & Balaji Prasath, B. (2013). Optimization of pH and retention time on the removal of nutrients and heavy metal (zinc) using immobilized marine microalga Chlorella marina. Journal of Biological Sciences, 13, 400–405.

    Article  Google Scholar 

  • Dinesh Kumar, S., Santhanam, P., Jayalakshmi, T., Nandakumar, R., Ananth, S., Shenbaga Devi, A., & Balaji Prasath, B. (2015a). Ex-Situ studies on excessive nutrients and heavy metals removal efficacy of marine microalga Chlorella marina (Butcher) for wastewater treatment. Indian Journal of Geo-Marine Sciences, 44, 97–103.

    Google Scholar 

  • Dinesh Kumar, S., Santhanam, P., Lewis-Oscar, F., & Thajuddin, N. (2015b). A dual role of marine microalga Chlorella sp. (PSDK01) in aquaculture effluent with emphasis on initial population density. Arabian Journal for Science and Engineering, 40, 29–35.

    Article  Google Scholar 

  • Dinesh Kumar, S., Santhanam, P., Min, S. P., & Mi-Kyung, K. (2016a). Development and application of a novel immobilized marine microalgae biofilter system for the treatment of shrimp culture effluent. Journal of Water Process Engineering, 13, 137–142.

    Article  Google Scholar 

  • Dinesh Kumar, S., Santhanam, P., Nandakumar, R., Ananth, S., Nithya, P., Dhanalakshmi, B., & Kim, M. K. (2016b). Bioremediation of shrimp (Litopenaeus vannamei) cultured effluent using copepod (Oithona rigida) and microalgae (Picochlorum maculatam & Amphora sp.) – An integrated approach. Desalination and Water Treatment, 57, 26257–26266.

    Article  CAS  Google Scholar 

  • Dinesh Kumar, S., Santhanam, P., Ananth, S., Kaviyarasan, M., Nithya, P., Dhanalakshmi, B., Park, M. S., & Kim, M. K. (2017). Evaluation of suitability of wastewater-grown microalgae (Picochlorum maculatum) and copepod (Oithona rigida) as live feed for white leg shrimp Litopenaeus vannamei post-larvae. Aquaculture International, 25, 393–411.

    Article  Google Scholar 

  • Dinesh Kumar, S., Santhanam, P., Prabhavathi, P., Kanimozhi, B., Abiram, M., Min, S. P., & Mi-Kyung, K. (2018). Optimal conditions for the treatment of shrimp culture effluent using immobilized marine microalga Picochlorum maculatum (PSDK01). Proceedings of the National Academy of Sciences India Section B: Biological Sciences, 88(3), 1177–1185.

    Article  CAS  Google Scholar 

  • Dinesh Kumar, S., Ananth, S., Santhanam, P., Parveez Ahamed, A., & Thajuddin, N. (2019a). Effect of photoperiod (PP) and photosynthetic photon flux intensity (PPFI) on nutrients consumption, growth and lipid profile of unusual microalga Picochlorum maculatum (PSDK01) in shrimp culture effluent. Indian Journal of Experimental Biology, 57, 105–115.

    Google Scholar 

  • Dinesh Kumar, S., Santhanam, P., & Leena Grace Nancy, F. (2019b). The techniques in microalgae bioremediation and algal co-product development. In P. Santhanam, A. Begum, & P. Perumal (Eds.), Basic and applied phytoplankton biology (pp. 191–209). Springer. ISBN 978-981-10-7937-5.

    Chapter  Google Scholar 

  • Dinesh Kumar, S., Santhanam, P., Krishnaveni, N., Raju, P., Begum, A., Ahmed, S. U., Perumal, P., Pragnya, M., Dhanalakshmi, B., & Mi-Kyung, K. (2020). Baseline assessment of water quality and ecological indicators in Penaeus vannamei farm wastewater along the Southeast coast of India. Marine Pollution Bulletin, 160, 111579.

    Article  CAS  Google Scholar 

  • Ertesvag, H., & Valla, S. (1998). Biosynthesis and applications of alginates. Polymer Degradation and Stability, 59, 85–91.

    Article  CAS  Google Scholar 

  • Fernandez, E., & Galvan, A. (2007). Inorganic nitrogen assimilation in Chlamydomonas. The Journal of Experimental Biology, 58, 2279–2287.

    CAS  Google Scholar 

  • Fierro, S., Sanchez-Saavedra, M. D. P., & Copalcua, C. (2008). Nitrate and phosphate removal by chitosan immobilized Scenedesmus sp. Bioresource Technology, 99, 1274–1279.

    Article  CAS  Google Scholar 

  • Franke, R., & Franke, C. (1999). Model reactor for photocatalytic degradation of persistent chemicals in ponds and waste water. Chemosphere, 39(15), 2651–2659.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (2009). Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 84(1), 13–28.

    Article  CAS  Google Scholar 

  • Giordano, M., Beardall, J., & Raven, J. A. (2005). CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. Annual Review of Plant Biology, 56, 99–131.

    Article  CAS  Google Scholar 

  • Gosh, M., & Gaur, J. P. (1998). Current velocity and the establishment of stream algal periphyton communities. Aquatic Botany, 60, 1–10.

    Article  Google Scholar 

  • Grizeau, D., & Navarro, J. M. (1986). Glycerol production by Dunaliellatertiolecta immobilized within Ca-alginate beads. Biotechnology Letters, 8, 261–264.

    Article  CAS  Google Scholar 

  • Gualtieri, P., Barsanti, L., & Passarelli, V. (1988). Chitosan as flocculant for concentrating Euglena gracilis cultures. Microbiology, 139, 717–726.

    CAS  Google Scholar 

  • Hadiyanto, H., Elmore, S., Van Gerven, T., & Stankiewicz, A. (2013). Hydrodynamic evaluations in high rate algae pond (HRAP) design. Chemical Engineering Journal, 217, 231–239.

    Article  CAS  Google Scholar 

  • Hertzberg, S., & Jensen, A. (1989). Studies of alginate-immobilized marine microalgae. Botanica Marina, 32, 267–273.

    Article  CAS  Google Scholar 

  • Horan, N. J. (1990). Biological wastewater treatment systems. Theory and operation. Chichester: John Wiley & Sons Ltd.

    Google Scholar 

  • Ignacio, M. G. (2008). Review: Microalgae immobilization: Current techniques and uses. Bioresource Technology, 99, 3949–3964.

    Article  Google Scholar 

  • Iqbal, M., & Edyvean, R. G. J. (2004). Biosorption of lead, copper and zinc ions on loofa sponge immobilized biomass of Phanaerochaete chrysosporium. Minerals Engineering, 17, 217–223.

    Article  CAS  Google Scholar 

  • Jen, A. C., Wake, M. C., & Mikos, A. G. (1996). Review: Hydrogels for cell immobilization. Biotechnology and Bioengineering, 50, 357–364.

    Article  CAS  Google Scholar 

  • Jeon, C., Park, J. Y., & Yoo, Y. J. (2002). Novel immobilization of alginic acid for heavy metal removal. Biochemical Engineering Journal, 11, 159–166.

    Article  CAS  Google Scholar 

  • Kaplan, D. (2013). Absorption and adsorption of heavy metals by microalgae. In Handbook of microalgal culture: Applied phycology and biotechnology (Vol. 2, pp. 602–611). Wiley-Blackwell.

    Chapter  Google Scholar 

  • Kaplan, D., Richmond, A. E., Dubinsky, Z., & Aaronson, S. (1986). Algal nutrition. In A. Richmond (Ed.), Handbook for microalgal mass culture (pp. 147–198). Boca Raton: CRC Press.

    Google Scholar 

  • Lau, P. S., Tam, N. F. Y., & Wong, Y. S. (1997). Wastewater nutrients (N and P) removal by carrageenan and alginate immobilized Chlorella vulgaris. Environmental Technology, 18(9), 945–951.

    Article  CAS  Google Scholar 

  • Laurinavichene, T. V., Fedorov, A. S., Ghirardi, M. L., Seibert, M., & Tsygankov, A. A. (2006). Demonstration of sustained photo production by immobilized, sulphur deprived Chlamydomonas reindhartii cells. International Journal of Hydrogen Energy, 31, 569–667.

    Article  Google Scholar 

  • Lebeau, T., & Robert, J. M. (2006). Biotechnology of immobilized micro-algae: A culture technique for the future? In S. Rao (Ed.), Algal cultures, analogues of blooms and applications (pp. 801–837). Enfield: Science Publishers.

    Google Scholar 

  • Leena Grace Nancy, F., Vijayalakshmi, D., Dinesh Kumar, S., Santhanam, P., Jasmin Nivetha, B., Divya, M., Krishnaveni, N., & Kim, M. K. (2019). Treatment of sugar cane industry effluent using immobilized microalga Scenedesmus pecsensis: Responses from different pH, retention time, beads density and algal cell concentration in beads. Environment and Ecology, 37, 1161–1170.

    Google Scholar 

  • Leena Grace Nancy, F., Santhanam, P., Dinesh Kumar, S., Krishnaveni, N., & Divya, M. (2020). Analyses of physico-chemical characteristics of rice mill effluents and its utilization in algal biomass production. International Journal of Biology, Pharmacy and Allied Sciences, 9, 2589–2597.

    Google Scholar 

  • Leenen, E. J. T. M., dos Santos, V. A. P., Grolle, K. F. C., Tramper, J., & Wijffels, R. H. (1996). Characteristics of and selection criteria for support materials for cell immobilization in wastewater treatment. Water Research, 30, 2985–2996.

    Article  CAS  Google Scholar 

  • Liang, Y., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31, 1043–1049.

    Article  CAS  Google Scholar 

  • Liu, Y. K., Seki, M., Tanaka, H., & Furusaki, S. (1998). Characteristics of loofa (Luffa cylindrica) sponge as a carrier for plant cell immobilization. Journal of Fermentation and Bioengineering, 85(4), 416–421.

    Article  CAS  Google Scholar 

  • Liu, H., Guo, L., Liao, S., & Wang, G. (2012). Reutilization of immobilized fungus Rhizopus sp. LG04 to reduce toxic chromate. Journal of Applied Microbiology, 112, 651–659.

    Article  CAS  Google Scholar 

  • Martinez, M. E., Jimenez, J. M., & El Yousfi, F. (1999). Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus. Bioresource Technology, 67(3), 233–240.

    Article  CAS  Google Scholar 

  • Mishra, S. P., Thirree, J., Manent, A. S., Chabot, B., & Daneault, C. (2011). Ultrasound-catalyzed TEMPO-mediated oxidation of native cellulose for the production of nanocellulose: Effect of process variables. Bioresources, 6(1), 121–143.

    Article  CAS  Google Scholar 

  • Morales, J., de la Noüe, J., & Picard, G. (1985). Harvesting marine microalgae species by chitosan flocculation. Aquacultural Engineering, 4(4), 257–270. https://doi.org/10.1016/0144-8609(85)90018-4

    Article  Google Scholar 

  • Morales-Sánchez, D., Tinoco-Valencia, R., Kyndt, J., & Martinez, A. (2013). Heterotrophic growth of Neochloris oleoabundans using glucose as a carbon source. Biotechnolers on photosystem II energy fluxes of green algae and cyanobacteria. Environmental Research, 111, 520–529.

    Google Scholar 

  • Moreira, S. M., Moreira-Santos, M., Guilhermino, L., & Ribeiro, R. (2006). Immobilization of the marine microalga Phaeodactylum tricornutum in alginate for in situ experiments: Bead stability and suitability. Enzyme and Microbial Technology, 38(1–2), 135–141.

    Article  CAS  Google Scholar 

  • Moreno-Garrido, I. (2008). Microalgae immobilization: Current techniques and uses. Bioresource Technology, 99, 3949–3964.

    Article  CAS  Google Scholar 

  • Naja, G., & Volesky, B. (2011). The mechanism of metal cation and anion biosorption. In Microbial biosorption of metals (pp. 19–58). Springer.

    Chapter  Google Scholar 

  • Nasreen, A., Iqbal, M., Zafar, S. I., & Iqbal, J. (2008). Biosorption characteristics of unicellular green alga Chlorella Sorokiniana immobilized in loofa sponge for removal of Cr(III). Journal of Environmental Sciences, 20, 231–239.

    Article  Google Scholar 

  • Nelson, D. L., Lehninger, A. L., & Cox, M. M. (2008). Lehninger principles of biochemistry (p. 1100). New York: Macmillan.

    Google Scholar 

  • Ogbonna, J. C., Tomiyama, S., & Tanaka, H. (1996). Development of a method for immobilization of non-flocculating cells in loofa (Luffa cylindrica) sponge. Process Biochemistry, 31(8), 737–744.

    Article  CAS  Google Scholar 

  • Pane, L., Feletti, M., Bertino, C., & Carli, A. (1998). Viability of the marine microalga Tetraselmis suecica grown free and immobilized in alginate beads. Aquaculture International, 6(6), 411–420.

    Article  Google Scholar 

  • Papageorgiou, G. C. (1987). Immobilized photosynthetic microorganisms. Photosynthetica, 21, 367–383.

    CAS  Google Scholar 

  • Perez-Garcia, O., Escalante, F. M. E., de-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 45, 11–36.

    Article  CAS  Google Scholar 

  • Revathi, S., Madhan Kumar, S., Santhanam, P., Dinesh Kumar, S., Son, N., & Kim, M. K. (2017). Bioremoval of the indigo blue dye by immobilized microalga Chlorella vulgaris (PSBDU06). Journal of Scientific and Industrial Research, 76, 50–56.

    CAS  Google Scholar 

  • Saeed, A., Iqbal, M., & Zafar, S. I. (2009). Immobilization of Trichoderma viride for enhanced methylene blue biosorption: Batch and column studies. Journal of Hazardous Materials, 168, 406–415.

    Article  CAS  Google Scholar 

  • Schaller, J., Brackhage, C., Mkandawire, M., & Dudel, E. G. (2011). Metal/metalloid accumulation/remobilization during aquatic litter decomposition in freshwater: A review. Science of the Total Environment., 409(23), 4891–4898.

    Article  CAS  Google Scholar 

  • Seki, H., & Suzuki, A. (2002). Adsorption of heavy metal ions to floc-type biosorbents. Aquacultural Engineering, 249, 295–300.

    CAS  Google Scholar 

  • Sforza, E., Cipriani, R., Morosinotto, T., Bertucco, A., & Giacometti, G. M. (2012). Excess CO2 supply inhibits mixotrophic growth of Chlorella protothecoides and Nannochloropsis salina. Bioresource Technology, 104, 523–529.

    Article  CAS  Google Scholar 

  • Sharma, N. K., Tiwari, S. P., Tripathi, K., & Rai, A. K. (2011). Sustainability and cyanobacteria (blue-green algae): Facts and challenges. Journal of Applied Phycology, 23(6), 1059–1081.

    Article  CAS  Google Scholar 

  • Shi, J. (2009). Removal of nitrogen and phosphorus from municipal wastewater using microalgae immobilized on twin-layer system (Doctoral dissertation). University of Cologne, Germany, p. 147.

    Google Scholar 

  • Singh, Y. (2003). Photosynthetic activity, lipid and hydrocarbon production by alginate-immobilized cells of Botryococcus sp. in relation to growth phase. Journal of Microbiology and Biotechnology, 13, 687–691.

    CAS  Google Scholar 

  • Smidsrod, O., & Skjak-Braek, G. (1990). Alginate as immobilization matrix for cells. Trends Biotechnol, 8, 71–78.

    Article  CAS  Google Scholar 

  • Sun, Y., Chen, Z., Wu, G., Wu, Q., Zhang, F., Niu, Z., & Hu, H. Y. (2016). Characteristics of water quality of municipal wastewater treatment plants in China: Implications for resources utilization and management. Journal of Cleaner Production, 131, 1–9.

    Article  Google Scholar 

  • Thakur, A., & Kumar, H. D. (1999). Nitrate, ammonium and phosphate uptake by the immobilized cells of Dunaliella salina. Bulletin of Environmental Contamination & Toxicology, 62, 70–78.

    Article  CAS  Google Scholar 

  • Tosa, T., Sato, T., Mori, T., Yamamoto, K., Takata, I., Nishida, Y., & Chibata, I. (1979). Immobilization of enzymes and microbial cells using carrageenan as matrix. Biotechnology and Bioengineering, 21, 1697–1709.

    Article  CAS  Google Scholar 

  • Travieso, L., Benıtez, F., Weiland, P., Sanchez, E., Dupeyron, R., & Domınguez, A. R. (1996). Experiments on immobilization of microalgae for nutrient removal in wastewater treatments. Bioresource Technology, 55, 181–186.

    Article  CAS  Google Scholar 

  • Valderrama, L. T., Del Campo, C. M., Rodriguez, C. M., de-Bashan, L. E., & Bashan, Y. (2002). Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscula. Water Research, 36, 4185–4192.

    Article  CAS  Google Scholar 

  • Wang, L., Luo, Q. F., Zhao, J. H., Zhang, X. H., & Huang, L. J. (2006). Preparation of seeding type immobilized microorganisms and their degradation characteristics on Di-n-butyl phthalate. Biomedical and Environmental Sciences, 19, 147–152.

    CAS  Google Scholar 

  • Wang, Y., Duanmu, D., & Spalding, M. H. (2011). Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: Inorganic carbon transport and CO2 recapture. Photosynthesis Research, 109, 115–122.

    Article  CAS  Google Scholar 

  • Wang, S. K., Stiles, A. R., Guo, C., & Liu, C. Z. (2014). Microalgae cultivation in photobioreactors: An overview of light characteristics. Engineering in Life Sciences, 14, 550–559.

    Article  CAS  Google Scholar 

  • Wilde, E. W., & Benemann, J. R. (1993). Bioremoval of heavy metals by the use of microalgae. Biotechnology Advances, 11(4), 781–812.

    Article  CAS  Google Scholar 

  • Yang, C., Hua, Q., & Shimizu, K. (2000). Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochemical Engineering Journal, 6, 87–102.

    Article  CAS  Google Scholar 

  • Yang, L., Junping, J. F., Qi, L., Fangru, N., & Shulian, X. (2019). Treatment of real aquaculture wastewater from a fishery utilizing phytoremediation with microalgae. Journal of Chemical Technology & Biotechnology, 94(3), 900–910.

    Article  Google Scholar 

  • Zhan, J., Rong, J., & Wang, Q. (2017). Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. International Journal of Hydrogen Energy, 42(12), 8505–8517.

    Article  CAS  Google Scholar 

  • Zhou, L., Guiying, L., Taicheng, A., Jiamo, F., & Guoying, S. (2008). Recent patents on immobilized microorganism technology and its engineering application in wastewater treatment. Recent Patents on Engineering, 2, 28–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Head, Department of Marine Science, and the authorities of Bharathidasan University, Tiruchirappalli-620 024, for the facilities provided. While SDK thanks the UGC, New Delhi, for providing Post-Doctoral Fellowship (Ref. No. F./31-1/2017/PDFSS-2017- -TAM-13681 dated 19.06.2017), the MD and NK thank the UGC, Govt. of India, New Delhi, and Bharathidasan University, respectively, for providing research fellowships. The UGC (MRP-MAJOR-ZOOL-2013-4956) and DBT (BT/PR5856/AAQ/3/598/2012) have financially supported the establishment of TLR system and Microalgal culture system at Bharathidasan University, and the authors are grateful to them for the same.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santhanam, P., Dinesh Kumar, S., Divya, M., Krishnaveni, N., Perumal, P. (2022). Application of Phycoremediation Techniques Toward Nutrients Removal from Wastewaters: Evaluation of Adsorption and Absorption Methods. In: Vasanthy, M., Sivasankar, V., Sunitha, T.G. (eds) Organic Pollutants. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-72441-2_18

Download citation

Publish with us

Policies and ethics