Skip to main content

Abstract

The interest in ancient cereals has been revived during the last decades due to the demand for products with health benefits, better taste and favourable nutritional composition. Especially the ancient wheat species -einkorn, emmer, khorasan and spelt- play a special role within the group of ancient cereals. The ancient wheat species evolved thousands of years ago and were the dominant wheat species in former times, but today their cultivation and use are negligible compared to modern wheats. A possible higher nutritional value of ancient wheat species compared to modern ones was the subject of several studies indicating that ancient wheat species only have slightly higher contents of e.g., bioactive phytochemicals. One characteristic of einkorn, emmer and spelt is that they are gluten-containing cereals, which give them better baking quality compared to pseudocereals, but gluten ingestion can also lead to adverse reactions in susceptible individuals. In modern wheat, the gluten is responsible for the superior baking quality and changes at the molecular level of this two-component glue explain the poorer baking quality of ancient wheat species. Nevertheless, ancient wheat species are not suitable for a gluten-free diet, even if differences in their immunogenic potential were identified in the context of celiac disease and wheat sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giambanelli E, Ferioli F, Koçaoglu B, Jorjadze M, Alexieva I, Darbinyan N, et al. A comparative study of bioactive compounds in primitive wheat populations from Italy, Turkey, Georgia, Bulgaria and Armenia. J Sci Food Agric. 2013;93(14):3490–501. https://doi.org/10.1002/jsfa.6326.

    Article  CAS  PubMed  Google Scholar 

  2. Sakuma S, Salomon B, Komatsuda T. The domestication syndrome genes responsible for the major changes in plant form in the Triticeae crops. Plant Cell Physiol. 2011;52(5):738–49. https://doi.org/10.1093/pcp/pcr025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Soriano JM, Villegas D, Aranzana MJ, García del Moral LF, Royo C. Genetic structure of modern durum wheat cultivars and mediterranean landraces matches with their agronomic performance. PLoS One. 2016;11(8):e0160983. https://doi.org/10.1371/journal.pone.0160983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boukid F, Folloni S, Sforza S, Vittadini E, Prandi B. Current trends in ancient grains-based foodstuffs: insights into nutritional aspects and technological applications. Compr Rev Food Sci Food Saf. 2018;17(1):123–36. https://doi.org/10.1111/1541-4337.12315.

    Article  PubMed  Google Scholar 

  5. Lev-Yadun S, Gopher A, Abbo S. The cradle of agriculture. Science. 2000;288(5471):1602–3. https://doi.org/10.1126/science.288.5471.1602.

    Article  CAS  PubMed  Google Scholar 

  6. Zoccatelli G, Sega M, Bolla M, Cecconi D, Vaccino P, Rizzi C, et al. Expression of α-amylase inhibitors in diploid Triticum species. Food Chem. 2012;135(4):2643–9. https://doi.org/10.1016/j.foodchem.2012.06.123.

    Article  CAS  PubMed  Google Scholar 

  7. Matsuoka Y, Nasuda S. Durum wheat as a candidate for the unknown female progenitor of bread wheat: An empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Theor Appl Genet. 2004;109(8):1710–7. https://doi.org/10.1007/s00122-004-1806-6.

    Article  PubMed  Google Scholar 

  8. Dvorak J, Deal KR, Luo MC, You FM, Von Borstel K, Dehghani H. The origin of spelt and free-threshing hexaploid wheat. J Hered. 2012;103(3):426–41. https://doi.org/10.1093/jhered/esr152.

    Article  CAS  PubMed  Google Scholar 

  9. Heun M, Schaefer-Pregl R, Klawan D, Castagna R, Accerbi M, Borghi B, et al. Site of einkorn wheat domestication identified by DNA fingerprinting. Science. 1997;278(5341):1312–4. https://doi.org/10.1126/science.278.5341.1312.

    Article  CAS  Google Scholar 

  10. Salse J, Chagué V, Bolot S, Magdelenat G, Huneau C, Pont C, et al. New insights into the origin of the B genome of hexaploid wheat: evolutionary relationships at the SPA genomic region with the S genome of the diploid relative Aegilops speltoides. BMC Genomics. 2008;9:555–67. https://doi.org/10.1186/1471-2164-9-555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. El Baidouri M, Murat F, Veyssiere M, Molinier M, Flores R, Burlot L, et al. Reconciling the evolutionary origin of bread wheat (Triticum aestivum). New Phytol. 2017;213(3):1477–86. https://doi.org/10.1111/nph.14113.

    Article  CAS  PubMed  Google Scholar 

  12. Luo MC, Yang ZL, You FM, Kawahara T, Waines JG, Dvorak J. The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor Appl Genet. 2007;114(6):947–59. https://doi.org/10.1007/s00122-006-0474-0.

    Article  PubMed  Google Scholar 

  13. Feldman M, Kislev ME. Domestication of emmer wheat and evolution of free-threshing tetraploid wheat. Isr J Plant Sci. 2007;55(3–4):207–21. https://doi.org/10.1560/IJPS.55.3-4.207.

    Article  Google Scholar 

  14. Shewry PR. Do ancient types of wheat have health benefits compared with modern bread wheat? J Cereal Sci. 2018;79:469–76. https://doi.org/10.1016/j.jcs.2017.11.010.

    Article  PubMed  PubMed Central  Google Scholar 

  15. McFadden ES, Sears ER. The origin of triticum spelta and its free-threshing hexaploid relatives. J Hered. 1946;37(3):81–9. https://doi.org/10.1093/oxfordjournals.jhered.a105590.

    Article  PubMed  Google Scholar 

  16. Marcussen T, Sandve S, Heier L, Spannagl M, Pfeifer M, Jakobsen K, et al. Ancient hybridizations among the ancestral genomes of bread wheat. Science. 2014;345:1250092. https://doi.org/10.1126/science.1250092.

    Article  CAS  PubMed  Google Scholar 

  17. Blatter RH, Jacomet S, Schlumbaum A. About the origin of European spelt (Triticum spelta L.): allelic differentiation of the HMW Glutenin B1–1 and A1–2 subunit genes. Theor Appl Genet. 2004;108(2):360–7. https://doi.org/10.1007/s00122-003-1441-7.

    Article  CAS  PubMed  Google Scholar 

  18. Khlestkina EK, Röder MS, Grausgruber H, Börner A. A DNA fingerprinting-based taxonomic allocation of Kamut wheat. Plant Genet Resour. 2006;4(3):172–80. https://doi.org/10.1079/PGR2006120.

    Article  CAS  Google Scholar 

  19. Michalcová V, Dušinský R, Sabo M, Al Beyroutiová M, Hauptvogel P, Ivaničová Z, et al. Taxonomical classification and origin of Kamut® wheat. Plant Syst Evol. 2014;300(7):1749–57. https://doi.org/10.1007/s00606-014-1001-4.

    Article  Google Scholar 

  20. Bordoni A, Danesi F, Di Nunzio M, Taccari A, Valli V. Ancient wheat and health: a legend or the reality? A review on KAMUT khorasan wheat. Int J Food Sci Nutr. 2017;68(3):278–86. https://doi.org/10.1080/09637486.2016.1247434.

    Article  PubMed  Google Scholar 

  21. Willett WC, Sacks F, Trichopoulou A, Drescher G, Ferro-Luzzi A, Helsing E, et al. Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr. 1995;61(6):1402S–6S. https://doi.org/10.1093/ajcn/61.6.1402S.

    Article  CAS  PubMed  Google Scholar 

  22. D'Alessandro A, De Pergola G. Mediterranean diet pyramid: a proposal for Italian people. Nutrients. 2014;6(10):4302–16. https://doi.org/10.3390/nu6104302.

    Article  PubMed  PubMed Central  Google Scholar 

  23. van der Kamp JW, Poutanen K, Seal CJ, Richardson DP. The HEALTHGRAIN definition of ‘whole grain’. Food Nutr Res. 2014;58(1):22100. https://doi.org/10.3402/fnr.v58.22100.

    Article  Google Scholar 

  24. Longin CFH, Ziegler J, Schweiggert R, Koehler P, Carle R, Wuerschum T. Comparative study of hulled (einkorn, emmer, and spelt) and naked wheats (durum and bread wheat): agronomic performance and quality traits. Crop Sci. 2015;56:302–11. https://doi.org/10.2135/cropsci2015.04.0242.

    Article  CAS  Google Scholar 

  25. Shewry PR, Hey S. Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J Cereal Sci. 2015;65:236–43. https://doi.org/10.1016/j.jcs.2015.07.014.

    Article  CAS  Google Scholar 

  26. Arzani A, Ashraf M. Cultivated ancient wheats (Triticum spp.): a potential source of health-beneficial food products. Compr Rev Food Sci Food Saf. 2017;16(3):477–88. https://doi.org/10.1111/1541-4337.12262.

    Article  PubMed  Google Scholar 

  27. Hammed A, Simsek S. REVIEW: hulled wheats: a review of nutritional properties and processing methods. Cereal Chem. 2014;91:97–104. https://doi.org/10.1094/CCHEM-09-13-0179-RW.

    Article  CAS  Google Scholar 

  28. Dinu M, Whittaker A, Pagliai G, Benedettelli S, Sofi F. Ancient wheat species and human health: biochemical and clinical implications. J Nutr Biochem. 2018;52:1–9. https://doi.org/10.1016/j.jnutbio.2017.09.001.

    Article  CAS  PubMed  Google Scholar 

  29. Authority EFS. Dietary reference values for nutrients summary report. EFSA Support Pub. 2017;14(12):e15121E. https://doi.org/10.2903/sp.efsa.2017.e15121.

    Article  Google Scholar 

  30. Gebruers K, Dornez E, Boros D, Fraś A, Dynkowska W, Bedo Z, et al. Variation in the content of dietary fiber and components thereof in wheats in the HEALTHGRAIN diversity screen. J Agric Food Chem. 2008;56(21):9740–9. https://doi.org/10.1021/jf800975w.

    Article  CAS  PubMed  Google Scholar 

  31. Messia MC, Candigliota T, De Arcangelis E, Marconi E. Arabinoxylans and β-glucans assessment in cereals. Ital J Food Sci. 2016;29(1). https://doi.org/10.14674/1120-1770/ijfs.v573.

  32. Løje H, Møller B, Laustsen AM, Hansen Å. Chemical composition, functional properties and sensory profiling of einkorn (Triticum monococcum L.). J Cereal Sci. 2003;37(2):231–40. https://doi.org/10.1006/jcrs.2002.0498.

    Article  CAS  Google Scholar 

  33. Shewry PR, Piironen V, Lampi AM, Edelmann M, Kariluoto S, Nurmi T, et al. The HEALTHGRAIN wheat diversity screen: effects of genotype and environment on phytochemicals and dietary fiber components. J Agric Food Chem. 2010;58(17):9291–8. https://doi.org/10.1021/jf100039b.

    Article  CAS  PubMed  Google Scholar 

  34. Mandak E, Nyström L. Steryl ferulates, bioactive compounds in cereal grains. Lipid Technol. 2012;24(4):80–2. https://doi.org/10.1002/lite.201200179.

    Article  CAS  Google Scholar 

  35. Li L, Shewry PR, Ward JL. Phenolic acids in wheat varieties in the HEALTHGRAIN diversity screen. J Agric Food Chem. 2008;56(21):9732–9. https://doi.org/10.1021/jf801069s.

    Article  CAS  PubMed  Google Scholar 

  36. Abdel-Aal E-SM, Rabalski I. Bioactive compounds and their antioxidant capacity in selected primitive and modern wheat species. Open Agric. 2008;2(1):7–14. https://doi.org/10.2174/1874331500802010007.

    Article  CAS  Google Scholar 

  37. Ziegler JU, Schweiggert RM, Würschum T, Longin CFH, Carle R. Lipophilic antioxidants in wheat (Triticum spp.): a target for breeding new varieties for future functional cereal products. J Func Foods. 2016;20:594–605. https://doi.org/10.1016/j.jff.2015.11.022.

    Article  CAS  Google Scholar 

  38. Hidalgo A, Brandolini A, Pompei C, Piscozzi R. Carotenoids and tocols of einkorn wheat (Triticum monococcum ssp. monococcum L.). J Cereal Sci. 2006;44(2):182–93. https://doi.org/10.1016/j.jcs.2006.06.002.

    Article  CAS  Google Scholar 

  39. Ziegler JU, Wahl S, Würschum T, Longin CFH, Carle R, Schweiggert RM. Lutein and lutein esters in whole grain flours made from 75 genotypes of 5 Triticum species grown at multiple sites. J Agric Food Chem. 2015;63(20):5061–71. https://doi.org/10.1021/acs.jafc.5b01477.

    Article  CAS  PubMed  Google Scholar 

  40. Lampi A-M, Nurmi T, Ollilainen V, Piironen V. Tocopherols and Tocotrienols in wheat genotypes in the HEALTHGRAIN diversity screen. J Agric Food Chem. 2008;56(21):9716–21. https://doi.org/10.1021/jf801092a.

    Article  CAS  PubMed  Google Scholar 

  41. Andersson AAM, Kamal-Eldin A, Fraś A, Boros D, Åman P. Alkylresorcinols in wheat varieties in the HEALTHGRAIN diversity screen. J Agric Food Chem. 2008;56(21):9722–5. https://doi.org/10.1021/jf8011344.

    Article  CAS  PubMed  Google Scholar 

  42. Ziegler JU, Steingass CB, Longin CFH, Würschum T, Carle R, Schweiggert RM. Alkylresorcinol composition allows the differentiation of Triticum spp. having different degrees of ploidy. J Cereal Sci. 2015;65:244–51. https://doi.org/10.1016/j.jcs.2015.07.013.

    Article  CAS  Google Scholar 

  43. Piironen V, Edelmann M, Kariluoto S, Bedő Z. Folate in wheat genotypes in the HEALTHGRAIN diversity screen. J Agric Food Chem. 2008;56(21):9726–31. https://doi.org/10.1021/jf801066j.

    Article  CAS  PubMed  Google Scholar 

  44. Nurmi T, Nyström L, Edelmann M, Lampi A-M, Piironen V. Phytosterols in wheat genotypes in the HEALTHGRAIN diversity screen. J Agric Food Chem. 2008;56(21):9710–5. https://doi.org/10.1021/jf8010678.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao FJ, Su YH, Dunham SJ, Rakszegi M, Bedo Z, McGrath SP, et al. Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J Cereal Sci. 2009;49(2):290–5. https://doi.org/10.1016/j.jcs.2008.11.007.

    Article  CAS  Google Scholar 

  46. Suchowilska E, Wiwart M, Kandler W, Krska R. A comparison of macro- and microelement concentrations in the whole grain of four Triticum species. Plant Soil Environ. 2012;58:141–7. https://doi.org/10.17221/688/2011-PSE.

    Article  CAS  Google Scholar 

  47. Hussain A, Larsson H, Kuktaite R, Johansson E. Mineral composition of organically grown wheat genotypes: contribution to daily minerals intake. Int J Environ Res Public Health. 2010;7(9):3442–56. https://doi.org/10.3390/ijerph7093442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Geisslitz S, Wieser H, Scherf KA, Koehler P. Gluten protein composition and aggregation properties as predictors for bread volume of common wheat, spelt, durum wheat, emmer and einkorn. J Cereal Sci. 2018;83:204–12. https://doi.org/10.1016/j.jcs.2018.08.012.

    Article  CAS  Google Scholar 

  49. Brandolini A, Hidalgo A, Moscaritolo S. Chemical composition and pasting properties of einkorn (Triticum monococcum L. subsp. monococcum) whole meal flour. J Cereal Sci. 2008;47(3):599–609. https://doi.org/10.1016/j.jcs.2007.07.005.

    Article  CAS  Google Scholar 

  50. Scherf KA, Koehler P. Wheat and gluten: technological and health aspects. Ernahrungs Umschau. 2016;63(08):166–75. https://doi.org/10.4455/eu.2016.035.

    Article  Google Scholar 

  51. Belton PS. On the elasticity of wheat gluten. J Cereal Sci. 1999;29(2):103–7. https://doi.org/10.1006/jcrs.1998.0227.

    Article  CAS  Google Scholar 

  52. Ewart JA. A modified hypothesis for the structure and rheology of glutelins. J Sci Food Agric. 1972;23(6):687–99. https://doi.org/10.1002/jsfa.2740230604.

    Article  CAS  PubMed  Google Scholar 

  53. Cornec M, Popineau Y, Lefebvre J. Characterization of gluten subfractions by SE-HPLC and dynamic rheological analysis in shear. J Cereal Sci. 1994;19(2):131–9. https://doi.org/10.1006/jcrs.1994.1018.

    Article  CAS  Google Scholar 

  54. Khatkar BS, Bell AE, Schofield JD. The dynamic rheological properties of glutens and gluten sub-fractions from wheats of good and poor bread making quality. J Cereal Sci. 1995;22(1):29–44. https://doi.org/10.1016/S0733-5210(05)80005-0.

    Article  CAS  Google Scholar 

  55. Wesley IJ, Larroque O, Osborne BG, Azudin N, Allen H, Skerritt JH. Measurement of Gliadin and Glutenin content of flour by NIR spectroscopy. J Cereal Sci. 2001;34(2):125–33. https://doi.org/10.1006/jcrs.2001.0378.

    Article  CAS  Google Scholar 

  56. Osborne TB. The proteins of the wheat kernel. Washington: Carnegie Institution; 1907.

    Book  Google Scholar 

  57. Wieser H, Antes S, Seilmeier W. Quantitative determination of gluten protein types in wheat flour by reversed-phase high-performance liquid chromatography. Cereal Chem. 1998;75(5):644–50. https://doi.org/10.1094/CCHEM.1998.75.5.644.

    Article  CAS  Google Scholar 

  58. Thanhaeuser SM, Wieser H, Koehler P. Spectrophotometric and fluorimetric quantitation of quality-related protein fractions of wheat flour. J Cereal Sci. 2015;62:58–65. https://doi.org/10.1016/j.jcs.2014.12.010.

    Article  CAS  Google Scholar 

  59. Marti A, Augst E, Cox S, Koehler P. Correlations between gluten aggregation properties defined by the GlutoPeak test and content of quality-related protein fractions of winter wheat flour. J Cereal Sci. 2015;66:89–95. https://doi.org/10.1016/j.jcs.2015.10.010.

    Article  CAS  Google Scholar 

  60. Plessis A, Ravel C, Bordes J, Balfourier F, Martre P. Association study of wheat grain protein composition reveals that gliadin and glutenin composition are trans-regulated by different chromosome regions. J Exp Bot. 2013;64(12):3627–44. https://doi.org/10.1093/jxb/ert188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ozuna CV, Barro F. Characterization of gluten proteins and celiac disease-related immunogenic epitopes in the Triticeae: cereal domestication and breeding contributed to decrease the content of gliadins and gluten. Mol Breed. 2018;38(3). https://doi.org/10.1007/s11032-018-0779-0.

  62. Hajas L, Scherf KA, Török K, Bugyi Z, Schall E, Poms RE, et al. Variation in protein composition among wheat (Triticum aestivum L.) cultivars to identify cultivars suitable as reference material for wheat gluten analysis. Food Chem. 2018;267:387–94. https://doi.org/10.1016/j.foodchem.2017.05.005.

    Article  CAS  PubMed  Google Scholar 

  63. Thanhaeuser SM, Wieser H, Koehler P. Correlation of quality parameters with the baking performance of wheat flours. Cereal Chem. 2014;91(4):333–41. https://doi.org/10.1094/CCHEM-09-13-0194-CESI.

    Article  CAS  Google Scholar 

  64. Wieser H, Mueller K-J, Koehler P. Studies on the protein composition and baking quality of einkorn lines. Eur Food Res Technol. 2009;229(3):523–32. https://doi.org/10.1007/s00217-009-1081-5.

    Article  CAS  Google Scholar 

  65. Koenig A, Konitzer K, Wieser H, Koehler P. Classification of spelt cultivars based on differences in storage protein compositions from wheat. Food Chem. 2015;168:176–82. https://doi.org/10.1016/j.foodchem.2014.07.040.

    Article  CAS  PubMed  Google Scholar 

  66. Wieser H. Comparative investigations of gluten proteins from different wheat species. I. Qualitative and quantitative composition of gluten protein types. Eur Food Res Technol. 2000;211(4):262–8. https://doi.org/10.1007/s002170000165.

    Article  CAS  Google Scholar 

  67. Dupont FM, Altenbach SB. Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. J Cereal Sci. 2003;38(2):133–46. https://doi.org/10.1016/S0733-5210(03)00030-4.

    Article  CAS  Google Scholar 

  68. Geisslitz S, Longin FHC, Scherf AK, Koehler P. Comparative study on gluten protein composition of ancient (einkorn, emmer and spelt) and modern wheat species (durum and common wheat). Foods. 2019;8(9):409. https://doi.org/10.3390/foods8090409.

    Article  CAS  PubMed Central  Google Scholar 

  69. Shewry PR, Miflin BJ, Kasarda DD. The structural and evolutionary relationships of the prolamin storage proteins of barley, rye and wheat. Philos Trans R Soc B. 1984;304(1120):297. https://doi.org/10.1098/rstb.1984.0025.

    Article  CAS  Google Scholar 

  70. Rombouts I, Lamberts L, Celus I, Lagrain B, Brijs K, Delcour JA. Wheat gluten amino acid composition analysis by high-performance anion-exchange chromatography with integrated pulsed amperometric detection. J Chromatogr A. 2009;1216(29):5557–62. https://doi.org/10.1016/j.chroma.2009.05.066.

    Article  CAS  PubMed  Google Scholar 

  71. Grosch W, Wieser H. Redox reactions in wheat dough as affected by ascorbic acid. J Cereal Sci. 1999;29(1):1–16. https://doi.org/10.1006/jcrs.1998.0218.

    Article  CAS  Google Scholar 

  72. Qi PF, Wei YM, Yue YW, Yan ZH, Zheng YL. Biochemical and molecular characterization of gliadins. Mol Biol. 2006;40(5):713–23. https://doi.org/10.1134/S0026893306050050.

    Article  CAS  Google Scholar 

  73. Wieser H. Chemistry of gluten proteins. Food Microbiol. 2007;24(2):115–9. https://doi.org/10.1016/j.fm.2006.07.004.

    Article  CAS  PubMed  Google Scholar 

  74. Wang D-W, Li D, Wang J, Zhao Y, Wang Z, Yue G, et al. Genome-wide analysis of complex wheat gliadins, the dominant carriers of celiac disease epitopes. Sci Rep. 2017;7(1):44609. https://doi.org/10.1038/srep44609.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Dubois B, Bertin P, Mingeot D. Molecular diversity of α-gliadin expressed genes in genetically contrasted spelt (Triticum aestivum ssp. spelta) accessions and comparison with bread wheat (T. aestivum ssp. aestivum) and related diploid Triticum and Aegilops species. Mol Breed. 2016;36(11):152. https://doi.org/10.1007/s11032-016-0569-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wieser H. Comparative investigations of gluten proteins from different wheat species. III. N-terminal amino acid sequences of α-gliadins potentially toxic for coeliac patients. Eur Food Res Technol. 2001;213(3):183–6. https://doi.org/10.1007/s002170100365.

    Article  CAS  Google Scholar 

  77. Juhász A, Belova T, Florides CG, Maulis C, Fischer I, Gell G, et al. Genome mapping of seed-borne allergens and immunoresponsive proteins in wheat. Sci Adv. 2018;4(8):eaar8602. https://doi.org/10.1126/sciadv.aar8602.

  78. Salentijn EMJ, Goryunova SV, Bas N, van der Meer IM, van den Broeck HC, Bastien T, et al. Tetraploid and hexaploid wheat varieties reveal large differences in expression of alpha-gliadins from homoeologous Gli-2 loci. BMC Genomics. 2009;10(1):48. https://doi.org/10.1186/1471-2164-10-48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang Z, Long H, Wei Y-M, Yan Z-H, Zheng Y-L. Allelic variations of α-gliadin genes from species of Aegilops section Sitopsis and insights into evolution of α-gliadin multigene family among Triticum and Aegilops. Genetica. 2016;144(2):213–22. https://doi.org/10.1007/s10709-016-9891-4.

    Article  CAS  PubMed  Google Scholar 

  80. Ma ZC, Wei YM, Yan ZH, Zheng YL. Characterization of α-gliadin genes from diploid wheats and the comparative analysis with those from polyploid wheats. Russ J Genet. 2007;43(11):1286–93. https://doi.org/10.1134/S1022795407110117.

    Article  CAS  Google Scholar 

  81. Shewry PR, Tatham AS. Disulphide bonds in wheat gluten proteins. J Cereal Sci. 1997;25(3):207–27. https://doi.org/10.1006/jcrs.1996.0100.

    Article  CAS  Google Scholar 

  82. Singh NK, Shepherd KW. Linkage mapping of genes controlling endosperm storage proteins in wheat. Theor Appl Genet. 1988;75(4):628–41. https://doi.org/10.1007/BF00289132.

    Article  CAS  Google Scholar 

  83. Ibba MI, Kiszonas AM, Guzmán C, Morris CF. Definition of the low molecular weight glutenin subunit gene family members in a set of standard bread wheat (Triticum aestivum L.) varieties. J Cereal Sci. 2017;74:263–71. https://doi.org/10.1016/j.jcs.2017.02.015.

    Article  CAS  Google Scholar 

  84. Gupta RB, Shepherd KW. Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin. Theor Appl Genet. 1990;80(1):65–74. https://doi.org/10.1007/BF00224017.

    Article  CAS  PubMed  Google Scholar 

  85. Liu L, Ikeda TM, Branlard G, Peña RJ, Rogers WJ, Lerner SE, et al. Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat. BMC Plant Biol. 2010;10(1):124. https://doi.org/10.1186/14712229-10-124.

  86. Rodríguez-Quijano M, Nieto-Taladriz MT, Carrillo JM. Variation in B-LMW glutenin subunits in einkorn wheats. Genet Resour Crop Evol. 1997;44(6):539–43. https://doi.org/10.1023/A:1008691524039.

    Article  Google Scholar 

  87. Lee YK, Bekes F, Gupta R, Appels R, Morell MK. The low-molecular-weight glutenin subunit proteins of primitive wheats. I. Variation in A-genome species. Theor Appl Genet. 1999;98(1):119–25. https://doi.org/10.1007/s001220051048.

    Article  CAS  Google Scholar 

  88. Pflüger LA, Martín LM, Alvarez JB. Variation in the HMW and LMW glutenin subunits from Spanish accessions of emmer wheat (Triticum turgidum ssp. Dicoccum Schrank). Theor Appl Genet. 2001;102(5):767–72. https://doi.org/10.1007/s001220051708.

    Article  Google Scholar 

  89. Caballero L, Martín LM, Alvarez JB. Genetic variability of the low-molecular-weight glutenin subunits in spelt wheat (Triticum aestivum ssp. spelta L. em Thell.). Theor Appl Genet. 2004;108(5):914–9. https://doi.org/10.1007/s00122-003-1501-z.

    Article  CAS  PubMed  Google Scholar 

  90. Cuesta S, Alvarez JB, Guzmán C. Identification and molecular characterization of novel LMW-m and -s glutenin genes, and a chimeric -m/−i glutenin gene in 1A chromosome of three diploid Triticum species. J Cereal Sci. 2017;74:46–55. https://doi.org/10.1016/j.jcs.2017.01.010.

    Article  CAS  Google Scholar 

  91. An X, Zhang Q, Yan Y, Li Q, Zhang Y, Wang A, et al. Cloning and molecular characterization of three novel LMW-i glutenin subunit genes from cultivated einkorn (Triticum monococcum L.). Theor Appl Genet. 2006;113(3):383–95. https://doi.org/10.1007/s00122-006-0299-x.

    Article  CAS  PubMed  Google Scholar 

  92. Baar A, Pahr S, Constantin C, Scheiblhofer S, Thalhamer J, Giavi S, et al. Molecular and immunological characterization of tri a 36, a low molecular weight Glutenin, as a novel major wheat food allergen. J Immunol. 2012;189(6):3018–25. https://doi.org/10.4049/jimmunol.1200438.

    Article  CAS  PubMed  Google Scholar 

  93. Qin L, Liang Y, Yang D, Sun L, Xia G, Liu S. Novel LMW Glutenin subunit genes from wild emmer wheat (Triticum turgidum ssp. dicoccoides) in relation to Glu-3 evolution. Dev Genes Evol. 2015;225(1):31–7. https://doi.org/10.1007/s00427-014-0484-x.

    Article  CAS  PubMed  Google Scholar 

  94. Li X, Wang A, Xiao Y, Yan Y, He Z, Appels R, et al. Cloning and characterization of a novel low molecular weight glutenin subunit gene at the Glu-A3 locus from wild emmer wheat (Triticum turgidum L. var. dicoccoides). Euphytica. 2008;159(1):181–90. https://doi.org/10.1007/s10681-007-9471-x.

    Article  CAS  Google Scholar 

  95. Payne PI, Lawrence GJ. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res Commun. 1983;11(1):29–35.

    Google Scholar 

  96. Payne PI, Holt LM, Law CN. Structural and genetical studies on the high-molecular-weight subunits of wheat glutenin. Theor Appl Genet. 1981;60(4):229–36. https://doi.org/10.1007/BF02342544.

    Article  CAS  PubMed  Google Scholar 

  97. Payne PI, Corfield KG, Holt LM, Blackman JA. Correlations between the inheritance of certain high-molecular weight subunits of glutenin and bread-making quality in progenies of six crosses of bread wheat. J Sci Food Agric. 1981;32(1):51–60. https://doi.org/10.1002/jsfa.2740320109.

    Article  CAS  Google Scholar 

  98. Jiang P, Xue J, Duan L, Gu Y, Mu J, Han S, et al. Effects of high-molecular-weight glutenin subunit combination in common wheat on the quality of crumb structure. J Sci Food Agric. 2019;99(4):1501–8. https://doi.org/10.1002/jsfa.9323.

    Article  CAS  PubMed  Google Scholar 

  99. Shewry PR, Halford NG, Tatham AS. High molecular weight subunits of wheat glutenin. J Cereal Sci. 1992;15(2):105–20. https://doi.org/10.1016/S0733-5210(09)80062-3.

    Article  CAS  Google Scholar 

  100. Waines JG, Payne PI. Electrophoretic analysis of the high-molecular-weight glutenin subunits of Triticum monococcum, T. urartu, and the a genome of bread wheat (T. aestivum). Theor Appl Genet. 1987;74(1):71–6. https://doi.org/10.1007/BF00290086.

    Article  CAS  PubMed  Google Scholar 

  101. Ciaffi M, Dominica L, Lafiandra D. High molecular weight glutenin subunit variation in wild and cultivated einkorn wheats (Triticum spp., Poaceae). Plant Syst Evol. 1998;209(1–2):123–37. https://doi.org/10.1007/BF00991528.

    Article  CAS  Google Scholar 

  102. Vallega V, Waines JG. High molecular weight glutenin subunit variation in Triticum turgidum var. dicoccum. Theor Appl Genet. 1987;74(6):706–10. https://doi.org/10.1007/BF00247545.

    Article  CAS  PubMed  Google Scholar 

  103. Rodríguez-Quijano M, Vázquez JF, Carrillo JM. Variation of high molecular weight glutenin subunits in Spanish landraces of Triticum aestivum ssp. vulgare and ssp. spelta. J Genet Breed. 1990;44(2):121–6.

    Google Scholar 

  104. Caballero L, Martin LM, Alvarez JB. Allelic variation of the HMW glutenin subunits in spanish accessions of spelt wheat (Triticum aestivum ssp. spelta L. em. Thell.). Theor Appl Genet. 2001;103(1):124–8. https://doi.org/10.1007/s001220100565.

    Article  CAS  Google Scholar 

  105. Xu L-L, Li W, Wei Y-M, Zheng Y-L. Genetic diversity of HMW glutenin subunits in diploid, tetraploid and hexaploid Triticum species. Genet Resour Crop Evol. 2009;56(3):377–91. https://doi.org/10.1007/s10722-008-9373-3.

    Article  CAS  Google Scholar 

  106. Li HY, Li ZL, Zeng XX, Zhao LB, Chen G, Kou CL, et al. Molecular characterization of different Triticum monococcum ssp. monococcum Glu-A1mx alleles. Cereal Res Commun. 2016;44(3):444. https://doi.org/10.1556/0806.44.2016.006.

    Article  CAS  Google Scholar 

  107. Guo X-H, Wu B-H, Hu X-G, Bi Z-G, Wang Z-Z, Liu D-C, et al. Molecular characterization of two y-type high molecular weight glutenin subunit alleles 1Ay12⁎ and 1Ay8⁎ from cultivated einkorn wheat (Triticum monococcum ssp. monococcum). Gene. 2013;516(1):1–7. https://doi.org/10.1016/j.gene.2012.12.037.

    Article  CAS  PubMed  Google Scholar 

  108. Li Z, Li H, Chen G, Kou C, Ning S, Yuan Z, et al. Characterization of a novel y-type HMW-GS with eight cysteine residues from Triticum monococcum ssp. monococcum. Gene. 2015;573(1):110–4. https://doi.org/10.1016/j.gene.2015.07.040.

    Article  CAS  PubMed  Google Scholar 

  109. Jin M, Xie ZZ, Ge P, Li J, Jiang SS, Subburaj S, et al. Identification and molecular characterisation of HMW glutenin subunit 1By16* in wild emmer. Theor Appl Genet. 2012;53(3):249–58. https://doi.org/10.1007/s13353-012-0101-5.

    Article  CAS  Google Scholar 

  110. Margiotta B, Colaprico G, Urbano M. Polymorphism of high Mr glutenin subunits in wild emmer Triticum turgidum subsp. dicoccoides: chromatographic, electrophoretic separations and PCR analysis of their encoding genes. Genet Resour Crop Evol. 2014;61(2):331–43. https://doi.org/10.1007/s10722-013-0037-6.

    Article  CAS  Google Scholar 

  111. Shewry PR, Halford NG, Belton PS, Tatham AS. The structure and properties of gluten: an elastic protein from wheat grain. Philos Trans R Soc Lond Ser B Biol Sci. 2002;357(1418):133–42. https://doi.org/10.1098/rstb.2001.1024.

    Article  CAS  Google Scholar 

  112. Wrigley CW. Biopolymers: giant proteins with flour power. Nature. 1996;381(6585):738–9. https://doi.org/10.1038/381738a0.

    Article  CAS  PubMed  Google Scholar 

  113. Li W, Yang B, Shao Q, Xu F, Yan S. Glutenin macropolymer particles size distribution of six wheat varieties in eastern China. Wuhan Univ J Nat Sci. 2017;22(5):455–60. https://doi.org/10.1007/s11859-017-1272-z.

    Article  Google Scholar 

  114. Don C, Lichtendonk W, Plijter JJ, Hamer RJ. Glutenin macropolymer: a gel formed by Glutenin particles. J Cereal Sci. 2003;37(1):1–7. https://doi.org/10.1006/jcrs.2002.0481.

    Article  CAS  Google Scholar 

  115. Weegels PL, Hamer RJ, Schonfield JD. Functional properties of wheat glutenin. J Cereal Sci. 1996;23(1):1–18. https://doi.org/10.1006/jcrs.1996.0001.

    Article  CAS  Google Scholar 

  116. Mueller E, Wieser H, Koehler P. Preparation and chemical characterisation of glutenin macropolymer (GMP) gel. J Cereal Sci. 2016;70:79–84. https://doi.org/10.1016/j.jcs.2016.05.021.

    Article  CAS  Google Scholar 

  117. Gupta RB, Khan K, Macritchie F. Biochemical basis of flour properties in bread wheats. I. Effects of variation in the quantity and size distribution of polymeric protein. J Cereal Sci. 1993;18(1):23–41. https://doi.org/10.1006/jcrs.1993.1031.

    Article  CAS  Google Scholar 

  118. Scherf KA. Immunoreactive cereal proteins in wheat allergy, non-celiac gluten/wheat sensitivity (NCGS) and celiac disease. Curr Opin Food Sci. 2019;25:35–41. https://doi.org/10.1016/j.cofs.2019.02.003.

    Article  Google Scholar 

  119. Spisni E, Imbesi V, Giovanardi E, Petrocelli G, Alvisi P, Valerii MC. Differential physiological responses elicited by ancient and heritage wheat cultivars compared to modern ones. Nutrients. 2019;11:2879. https://doi.org/10.3390/nu11122879.

    Article  PubMed Central  Google Scholar 

  120. Koehler P, Wieser H, Konitzer K. Chapter 1 - celiac disease—a complex disorder. In: Koehler P, Wieser H, Konitzer K, editors. Celiac disease and gluten. Boston: Academic; 2014. p. 1–96. https://doi.org/10.1016/b978-0-12-420220-7.00001-8.

  121. Singh P, Arora A, Strand TA, Leffler DA, Catassi C, Green PH, et al. Global prevalence of celiac disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018;16(6):823–36.e2. https://doi.org/10.1016/j.cgh.2017.06.037.

    Article  PubMed  Google Scholar 

  122. Sollid LM, Tye-Din JA, Qiao S-W, Anderson RP, Gianfrani C, Koning F. Update 2020: nomenclature and listing of celiac disease–relevant gluten epitopes recognized by CD4+ T cells. Immunogenetics. 2020;72(1):85–8. https://doi.org/10.1007/s00251-019-01141-w.

    Article  PubMed  Google Scholar 

  123. van den Broeck H, de Jong H, Salentijn EJ, Dekking L, Bosch D, Hamer R, et al. Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: wheat breeding may have contributed to increased prevalence of celiac disease. Theor Appl Genet. 2010;121(8):1527–39. https://doi.org/10.1007/s00122-010-1408-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Van den Broeck H, Chen H, Lacaze X, Dusautoir J-C, Gilissen L, Smulders MJM, et al. In search of tetraploid wheat accessions reduced in celiac disease-related gluten epitopes. Mol BioSyst. 2010;6:2206–13. https://doi.org/10.1039/c0mb00046a.

    Article  CAS  PubMed  Google Scholar 

  125. Sievers S, Rohrbach A, Beyer K. Wheat-induced food allergy in childhood: ancient grains seem no way out. Eur J Nutr. 2019. https://doi.org/10.1007/s00394-019-02116-z.

  126. Gélinas P, McKinnon C. Gluten weight in ancient and modern wheat and the reactivity of epitopes towards R5 and G12 monoclonal antibodies. Int J Food Sci Technol. 2016;51(8):1801–10. https://doi.org/10.1111/ijfs.13151.

    Article  CAS  Google Scholar 

  127. Schopf M, Scherf KA. Wheat cultivar and species influence variability of gluten ELISA analyses based on polyclonal and monoclonal antibodies R5 and G12. J Cereal Sci. 2018;83:32–41. https://doi.org/10.1016/j.jcs.2018.07.005.

    Article  CAS  Google Scholar 

  128. Grausgruber H, Štěrbová L, Thrackl K, Bradová J, Baumgartner S, Dvořáček V, editors. Content of the immunodominant 33-mer peptide from a2-gliadin in common and ancient wheat flours determined by the G12 sandwich ELISA. 13th International Gluten Workshop, Mexiko; 2018.

    Google Scholar 

  129. Schalk K, Lang C, Wieser H, Koehler P, Scherf KA. Quantitation of the immunodominant 33-mer peptide from α-gliadin in wheat flours by liquid chromatography tandem mass spectrometry. Sci Rep. 2017;7:45092. https://doi.org/10.1038/srep45092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ribeiro M, Rodriguez-Quijano M, Nunes FM, Carrillo JM, Branlard G, Igrejas G. New insights into wheat toxicity: breeding did not seem to contribute to a prevalence of potential celiac disease's immunostimulatory epitopes. Food Chem. 2016;213:8–18. https://doi.org/10.1016/j.foodchem.2016.06.043.

    Article  CAS  PubMed  Google Scholar 

  131. Prandi B, Tedeschi T, Folloni S, Galaverna G, Sforza S. Peptides from gluten digestion: a comparison between old and modern wheat varieties. Food Res Int. 2017;91:92–102. https://doi.org/10.1016/j.foodres.2016.11.034.

    Article  CAS  PubMed  Google Scholar 

  132. Dubois B, Bertin P, Hautier L, Muhovski Y, Escarnot E, Mingeot D. Genetic and environmental factors affecting the expression of α-gliadin canonical epitopes involved in celiac disease in a wide collection of spelt (Triticum aestivum ssp. spelta) cultivars and landraces. BMC Plant Biol. 2018;18(1):262. https://doi.org/10.1186/s12870-018-1487-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Schuppan D, Pickert G, Ashfaq-Khan M, Zevallos V. Non-celiac wheat sensitivity: differential diagnosis, triggers and implications. Best Pract Res Clin Gastroenterol. 2015;29(3):469–76. https://doi.org/10.1016/j.bpg.2015.04.002.

    Article  CAS  PubMed  Google Scholar 

  134. Tanveer M, Ahmed A. Non-celiac gluten sensitivity: a systematic review. J Coll Physicians Surg Pak. 2019;29(1):51–7. https://doi.org/10.29271/jcpsp.2019.01.51.

    Article  PubMed  Google Scholar 

  135. Zevallos VF, Raker V, Tenzer S, Jimenez-Calvente C, Ashfaq-Khan M, Ruessel N, et al. Nutritional wheat amylase-trypsin inhibitors promote intestinal inflammation via activation of myeloid cells. Gastroenterology. 2017;152(5):1100–13.e12. https://doi.org/10.1053/j.gastro.2016.12.006.

    Article  CAS  PubMed  Google Scholar 

  136. Junker Y, Zeissig S, Kim SJ, Barisani D, Wieser H, Leffler DA, et al. Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J Exp Med. 2012;209(13):2395–408. https://doi.org/10.1084/jem.20102660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zevallos VF, Raker VK, Maxeiner J, Scholtes P, Steinbrink K, Schuppan D. Dietary wheat amylase trypsin inhibitors exacerbate murine allergic airway inflammation. Eur J Nutr. 2018. https://doi.org/10.1007/s00394-018-1681-6.

  138. Capocchi A, Muccilli V, Cunsolo V, Saletti R, Foti S, Fontanini D. A heterotetrameric alpha-amylase inhibitor from emmer (Triticum dicoccon Schrank) seeds. Phytochemistry. 2013;88:6–14. https://doi.org/10.1016/j.phytochem.2012.12.010.

    Article  CAS  PubMed  Google Scholar 

  139. Fontanini D, Capocchi A, Muccilli V, Saviozzi F, Cunsolo V, Saletti R, et al. Dimeric inhibitors of human salivary α-amylase from emmer (Triticum dicoccon Schrank) seeds. J Agric Food Chem. 2007;55(25):10452–60. https://doi.org/10.1021/jf071739w.

    Article  CAS  PubMed  Google Scholar 

  140. Gélinas P, Gagnon F. Inhibitory activity towards human α-amylase in wheat flour and gluten. Int J Food Sci Technol. 2018;53(2):467–74. https://doi.org/10.1111/ijfs.13605.

    Article  CAS  Google Scholar 

  141. Call L, Kapeller M, Grausgruber H, Reiter E, Schoenlechner R, D'Amico S. Effects of species and breeding on wheat protein composition. J Cereal Sci. 2020. https://doi.org/10.1016/j.jcs.2020.102974.

  142. Bose U, Juhász A, Broadbent JA, Byrne K, Howitt CA, Colgrave ML. Identification and quantitation of amylase trypsin inhibitors across cultivars representing the diversity of bread wheat. J Proteome Res. 2020. https://doi.org/10.1021/acs.jproteome.0c00059.

  143. Geisslitz S, Ludwig C, Scherf KA, Koehler P. Targeted LC–MS/MS reveals similar contents of α-amylase/trypsin-inhibitors as putative triggers of nonceliac gluten sensitivity in all wheat species except einkorn. J Agric Food Chem. 2018;66(46):12395–403. https://doi.org/10.1021/acs.jafc.8b04411.

    Article  CAS  PubMed  Google Scholar 

  144. Cuccioloni M, Mozzicafreddo M, Bonfili L, Cecarini V, Giangrossi M, Falconi M, et al. Interfering with the high-affinity interaction between wheat amylase trypsin inhibitor CM3 and toll-like receptor 4: in silico and biosensor-based studies. Sci Rep. 2017;7(1):13169. https://doi.org/10.1038/s41598-017-13709-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Dieterich W, Zopf Y. Gluten and FODMAPS—sense of a restriction/when is restriction necessary? Nutrients. 2019;11:1957. https://doi.org/10.3390/nu11081957.

    Article  CAS  PubMed Central  Google Scholar 

  146. Ziegler JU, Steiner D, Longin CFH, Würschum T, Schweiggert RM, Carle R. Wheat and the irritable bowel syndrome – FODMAP levels of modern and ancient species and their retention during bread making. J Funct Foods. 2016;25:257–66. https://doi.org/10.1016/j.jff.2016.05.019.

  147. Dieterich W, Schuppan D, Schink M, Schwappacher R, Wirtz S, Agaimy A, et al. Influence of low FODMAP and gluten-free diets on disease activity and intestinal microbiota in patients with non-celiac gluten sensitivity. Clin Nutr. 2019;38(2):697–707. https://doi.org/10.1016/j.clnu.2018.03.017.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Alexandra Axthelm (Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany) for the excellent literature research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Scherf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Geisslitz, S., Scherf, K. (2021). The Holy Grail of Ancient Cereals. In: Boukid, F. (eds) Cereal-Based Foodstuffs: The Backbone of Mediterranean Cuisine. Springer, Cham. https://doi.org/10.1007/978-3-030-69228-5_11

Download citation

Publish with us

Policies and ethics