Skip to main content

Pseudomonas as Plant Growth-Promoting Bacteria and Its Role in Alleviation of Abiotic Stress

  • Chapter
  • First Online:
Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management

Abstract

Abiotic stresses are supposed to negate crop productivity leading to food insecurity. Plant growth-promoting rhizobacteria (PGPR) can significantly facilitate plant growth directly or indirectly by suppressing various plant pathogens, producing different phytohormones, mineralization and decomposition of organic matter, triggering antioxidant system, producing siderophores, and improving the bioavailability of different mineral nutrients. Among the PGPRs, Pseudomonas are ubiquitous and their occurrence in stressed environment has also been reported. Pseudomonas can produce different enzymes and metabolites that help plants withstand varied biotic and abiotic stresses. Pseudomonas-induced salt or drought tolerance has extensively studied at the physiological and biochemical levels in plants. The potential of Pseudomonas has also been explored under some other abiotic stress factors like water, temperature, nutrients, and heavy metals. Furthermore, in this chapter, we will elaborate the interactions among plant, Pseudomonas spp., and various abiotic environmental stresses with an objective to explore the underlying mechanisms and stress tolerance in plants as promises of Pseudomonas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbass Z, Okon Y (1993) Plant growth promotion by Azotobacter paspali in the rhizosphere. Soil Biol Biochem ozco25(8):1075–1083

    Article  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58(4):921–929

    Article  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20

    Article  Google Scholar 

  • Ahamed I, Hayat S, Ahmad A, Samiullah A (2004) Effect of heavy metal on survival of certain group of indigenous soil microbial population. J Appl Sci Environ Engag 9:115–121

    Google Scholar 

  • Ahn KS, Ha U, Jia J, Wu D, Jin S (2004) The truA gene of Pseudomonas aeruginosa is required for the expression of type III secretory genes. Microbiology 150(3):539–547

    Article  Google Scholar 

  • Akhgar AR, Arzanlou M, Bakker PAHM, Hamidpour M (2014) Characterization of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing Pseudomonas spp. in the rhizosphere of salt-stressed canola. Pedosphere 24(4):461–468

    Article  Google Scholar 

  • Al-Dhabi NA, Esmail GA, Ghilan AKM, Arasu MV (2019) Optimizing the management of cadmium bioremediation capacity of metal-resistant Pseudomonas sp. strain Al-Dhabi-126 isolated from the industrial city of Saudi Arabian environment. Int J Environ Res Public Health 16:4788. https://doi.org/10.3390/ijerph16234788

    Article  Google Scholar 

  • Ali S, Kim WC (2018) Plant growth promotion under water: decrease of waterlogging-induced ACC and ethylene levels by ACC deaminase-producing bacteria. Front Microbiol 9:1096

    Article  Google Scholar 

  • Ali SZ, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46(1):45–55

    Article  Google Scholar 

  • Ali SZ, Sandhya V, Grover M, Linga VR, Bandi V (2011) Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. J Plant Interact 6(4):239–246

    Article  Google Scholar 

  • Ali S, Charles TC, Glick BR (2012) Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. J Appl Microbiol 113(5):1139–1144

    Article  Google Scholar 

  • Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167

    Article  Google Scholar 

  • Ali S, Khan MA, Kim WC (2018) Pseudomonas veronii KJ mitigates flood stress-associated damage in Sesamum indicum L. Appl Biol Chem 61(5):575–585

    Article  Google Scholar 

  • Almansouri M, Kinet JM, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and Soil 231(2):243–254

    Article  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97(5):883–893

    Article  Google Scholar 

  • Aponte A, Castillo O, Cabrera G, Pernia M, Hernandez Y (2017) Rhizobacteria Pseudomonas fluorescens and Azospirillum sp. association enhances growth of Lactuca sativa L. under tropical conditions. J Cent Eur Agric 18(2):424–440

    Article  Google Scholar 

  • Appanna VD, Gazso LG, Pierre MS (1996) Multiple-metal tolerance in Pseudomonas fluorescens and its biotechnological significance. J Biotechnol 52(2):75–80

    Article  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25(8):356–362

    Article  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora Morphol Distrib Funct Ecol Plants 199(5):361–376

    Article  Google Scholar 

  • Ashraf MA, Rasool M, Mirza MS (2011) Nitrogen fixation and indole acetic acid production potential of bacteria isolated from rhizosphere of sugarcane (Saccharum officinarum L.). Adv Biol Res 5(6):348–355

    Google Scholar 

  • Ashwitha K, Rangeshwaran R, Vajid NV, Sivakumar G, Jalali SK, Rajalaksmi K, Manjunath H (2013) Characterization of abiotic stress tolerant Pseudomonas sp. occurring in Indian soils. J Biol Control 27(4):45–48

    Google Scholar 

  • Barrientos-Moreno L, Molina-Henares MA, Pastor-García M, Ramos-González MI, Espinosa-Urgel M (2019) Arginine biosynthesis modulates pyoverdine production and release in Pseudomonas putida as part of the mechanism of adaptation to oxidative stress. J Bacteriol 201:e00454–e00419. https://doi.org/10.1128/JB.00454-19

    Article  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant and Soil 317(1–2):235–255

    Article  Google Scholar 

  • Batts GR, Morison JIL, Ellis RH, Hadley P, Wheeler TR (1997) Effects of CO2 and temperature on growth and yield of crops of winter wheat over four seasons. Eur J Agron 7(1–3):43–52

    Article  Google Scholar 

  • Bensidhoum L, Nabti E, Tabli N, Kupferschmied P, Weiss A, Rothballer M, Schmid M, Keel C, Hartmann A (2016) Heavy metal tolerant Pseudomonas protegens isolates from agricultural well water in northeastern Algeria with plant growth promoting, insecticidal and antifungal activities. Eur J Soil Biol 75:38–46

    Article  Google Scholar 

  • Braun V, Hantke K (2011) Recent insights into iron import by bacteria. Curr Opin Chem Biol 15:328–334

    Article  Google Scholar 

  • Bruins M, Kapil S, Oehme F (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  Google Scholar 

  • Chandra D, Srivastava R, Glick BR, Sharma AK (2018) Drought-tolerant Pseudomonas spp. improve the growth performance of finger millet (Eleusine coracana (L.) Gaertn.) under non-stressed and drought-stressed conditions. Pedosphere 28(2):227–240

    Article  Google Scholar 

  • Chang WC, Hsu GS, Chiang SM, Su MC (2006) Heavy metal removal from aqueous solution by wasted biomass from a combined AS-biofilm process. Bioresour Technol 97(13):1503–1508

    Article  Google Scholar 

  • Chatterjee P, Samaddar S, Anandham R, Kang Y, Kim K, Selvakumar G, Sa T (2017) Beneficial soil bacterium Pseudomonas frederiksbergensis OS261 augments salt tolerance and promotes red pepper plant growth. Front Plant Sci 8:705

    Article  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560

    Article  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53(7):912–918

    Article  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:752708. https://doi.org/10.1155/2014/752708

    Article  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH, Cho BH, Yang KY, Ryu CM, Kim YC (2008) 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant Microbe Interact 21(8):1067–1075

    Article  Google Scholar 

  • Clair SBS, Lynch JP (2010) The opening of Pandora’s box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant and Soil 335(1–2):101–115

    Article  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  Google Scholar 

  • Dakora FD, Matiru V, Kanu AS (2015) Rhizosphere ecology of lumichrome and riboflavin, two bacterial signal molecules eliciting developmental changes in plants. Front Plant Sci 6:700

    Article  Google Scholar 

  • De Jaysankar, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Marine Biotechnol 10(4):471–477

    Article  Google Scholar 

  • del Carmen Orozco-Mosqueda M, Glick BR, Santoyo G (2020) ACC deaminase in plant growth-promoting bacteria (PGPB): an efficient mechanism to counter salt stress in crops. Microbiol Res 235:126439

    Article  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4(2):215–223

    Article  Google Scholar 

  • Denton B (2007) Advances in phytoremediation of heavy metals using plant growth promoting bacteria and fungi. MMG 445 Basic Biotechnol 3: 1–5

    Google Scholar 

  • Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek 106(1):85–125

    Article  Google Scholar 

  • Egamberdiyeva D (2005) Plant-growth-promoting rhizobacteria isolated from a Calcisol in a semi-arid region of Uzbekistan: biochemical characterization and effectiveness. J Plant Nutr Soil Sci 168(1):94–99

    Article  Google Scholar 

  • Esitken A, Yildiz HE, Ercisli S, Donmez MF, Turan M, Gunes A (2010) Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci Hortic 124(1):62–66

    Article  Google Scholar 

  • Estévez J, Dardanelli MS, Megías M, Rodríguez-Navarro DN (2009) Symbiotic performance of common bean and soybean co-inoculated with rhizobia and Chryseobacterium balustinum Aur9 under moderate saline conditions. Symbiosis 49(1):29–36

    Article  Google Scholar 

  • Ferreira MJ, Silva H, Cunha A (2019) Siderophore-producing rhizobacteria as a promising tool for empowering plants to cope with iron limitation in saline soils: a review. Pedosphere 29(4):409–420

    Article  Google Scholar 

  • Fioreze SL, Pinheiro MG, Pereira YD, da Cruz SP (2020) Inoculation of wheat plants with Pseudomonas spp. and Azospirillum brasilense under drought stress. J Exp Agric Int 42(2):1–7

    Google Scholar 

  • Flemming HC (1995) Sorption sites in biofilms. Water Sci Technol 32(8):27

    Article  Google Scholar 

  • Flexas J, Niinemets Ü, Gallé A, Barbour MM, Centritto M, Diaz-Espejo A, Douthe C, Galmés J, Ribas-Carbo M, Rodriguez PL, Rosselló F (2013) Diffusional conductance to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynth Res 117(1–3):45–59

    Article  Google Scholar 

  • Fox AR, Soto G, Valverde C, Russo D, Lagares A Jr, Zorreguieta Á, Alleva K, Pascuan C, Frare R, Mercado-Blanco J, Dixon R (2016) Major cereal crops benefit from biological nitrogen fixation when inoculated with the nitrogen-fixing bacterium Pseudomonas protegens Pf-5 X940. Environ Microbiol 18(10):3522–3534

    Article  Google Scholar 

  • Frawley ER, Fang FC (2014) The ins and outs of bacterial iron metabolism. Mol Microbiol 93:609–616

    Article  Google Scholar 

  • García de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth-promoting rhizobacteria and selected mutants. Can J Microbiol 47(5): 404–411

    Google Scholar 

  • Gibbons SM, Feris K, McGuirl MA, Morales SE, Hynninen A, Ramsey PW, Gannon JE (2011) Use of microcalorimetry to determine the costs and benefits to Pseudomonas putida strain KT2440 of harboring cadmium efflux genes. Appl Environ Microbiol 77:108–113

    Article  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401

    Article  Google Scholar 

  • Gómez-Garrido M, Navarro JM, Navarro FJM, Cano AF (2018) The chelating effect of citric acid, oxalic acid, amino acids and Pseudomonas fluorescens bacteria on phytoremediation of cu, Zn, and Cr from soil using Suaeda vera. Int J Phytoremediation 20(10):1033–1042

    Article  Google Scholar 

  • Gong T, Xu X, Dang Y, Kong A, Wu Y, Liang P, Wang S, Yu H, Xu P, Yang C (2018) An engineered Pseudomonas putida can simultaneously degrade organophosphates, pyrethroids and carbamates. Sci Total Environ 628–629:1258–1265

    Article  Google Scholar 

  • Gopalakrishnan S, Humayun P, Kiran BK, Kannan IGK, Vidya MS, Deepthi K, Rupela O (2011a) Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot of sorghum caused by Macrophomina phaseolina (Tassi) Goid. World J Microbiol Biotechnol 27(6):1313–1321

    Article  Google Scholar 

  • Gopalakrishnan S, Kiran BK, Humayun P, Vidya MS, Deepthi K, Jacob S, Vadlamudi S, Alekhya G, Rupela O (2011b) Biocontrol of charcoal-rot of sorghum by actinomycetes isolated from herbal vermicompost. Afr J Biotechnol 10(79):18142–18152

    Google Scholar 

  • Gopalakrishnan S, Pande S, Sharma M, Humayun P, Kiran BK, Sandeep D, Vidya MS, Deepthi K, Rupela O (2011c) Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Prot 30(8):1070–1078

    Article  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Prakash B, Sathya A, Vijayabharathi R (2015) Plant growth-promoting traits of Pseudomonas geniculata isolated from chickpea nodules. 3 Biotech 5(5):653–661

    Article  Google Scholar 

  • Göre ME, Altin N (2006) Growth promoting of some ornamental plants by root treatment with specific fluorescent pseudomonads. Aust J Biol Sci 6:610–615

    Article  Google Scholar 

  • Govindasamy V, Senthilkumar M, Mageshwaran V, Annapurna K (2009) Detection and characterization of ACC deaminase in plant growth promoting rhizobacteria. J Plant Biochem Biotech 18(1):71–76

    Article  Google Scholar 

  • Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39(8):1968–1977

    Article  Google Scholar 

  • Green J, Paget MS (2004) Bacterial redox sensors. Nat Rev Microbiol 2:954–966

    Article  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39(1):11–17

    Article  Google Scholar 

  • Guo Y, Ni Y, Huang J (2010) Effects of rhizobium, arbuscular mycorrhiza and lime on nodulation, growth and nutrient uptake of lucerne in acid purplish soil in China. Trop Grassl 44:109–114

    Google Scholar 

  • Gupta S, Pandey S (2019) Unravelling the biochemistry and genetics of ACC deaminase-an enzyme alleviating the biotic and abiotic stress in plants. Plant Gene 18:100175

    Article  Google Scholar 

  • Gupta P, Rani R, Chandra A, Kumar V (2018) Potential applications of Pseudomonas sp. (strain CPSB21) to ameliorate Cr6+ stress and phytoremediation of tannery effluent contaminated agricultural soils. Sci Rep 8:4860. https://doi.org/10.1038/s41598-018-23322-5

    Article  Google Scholar 

  • Gupta V, Kumar GN, Buch A (2020) Colonization by multi-potential Pseudomonas aeruginosa P4 stimulates peanut (Arachis hypogaea L.) growth, defense physiology and root system functioning to benefit the root-rhizobacterial interface. J Plant Physiol 248:153144

    Article  Google Scholar 

  • Gutiérrez-Mañero FJ, Ramos-Solano B, Probanza AN, Mehouachi JR, Tadeo F, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111(2):206–211

    Article  Google Scholar 

  • Han H, Sheng X, Hu J, He L, Wang Q (2018) Metal-immobilizing Serratia liquefaciens CL-1 and Bacillus thuringiensis X30 increase biomass and reduce heavy metal accumulation of radish under field conditions. Ecotoxicol Environ Saf 161:526–533

    Article  Google Scholar 

  • Hassan TU, Bano A, Naz I (2017) Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. Int J Phytoremediation 19(6):522–529

    Article  Google Scholar 

  • He C-J, Drew MC, Morgan PW (1994) Plant induction of enzymes associated with lysigenous aerenchyma formation in roots of Zea mays L. during hypoxia and nitrogen starvation. Plant Physiol 105:861–865

    Article  Google Scholar 

  • He M, He CQ, Ding NZ (2018) Abiotic stresses: general defenses of land plants and chances for engineering multi stress tolerance. Front Plant Sci 9:1771

    Article  Google Scholar 

  • He Y, Wu Z, Wang W, Liu X, Ye BC (2019) Bacterial community and phosphorus species changes in pepper rhizosphere soils after Pseudomonas putida Rs-198 inoculation. Rhizosphere 11:100164

    Article  Google Scholar 

  • Hernández-León R, Rojas-Solís D, Contreras-Pérez M, del Carmen Orozco-Mosqueda M, Macías-Rodríguez LI, Reyes-de la Cruz H, Valencia-Cantero E, Santoyo G (2015) Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Control 81:83–92

    Article  Google Scholar 

  • Heydarian Z, Yu M, Gruber M, Glick BR, Zhou R, Hegedus DD (2016) Inoculation of soil with plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression of the corresponding acdS gene in transgenic plants increases salinity tolerance in Camelina sativa. Front Microbiol 7:1966

    Article  Google Scholar 

  • Höflich G, Kühn G (1996) Förderung das Wachstums und der Nährstoffaufnahme bei kurziferen Öl-und Zwischenfruhten durch inokulierte Rhizospherenmikroorganismen. Zeischrift für Pflanzenernährung und Bodenkunde 159:575–578

    Article  Google Scholar 

  • Höflich G, Wiehe W, Kühn G (1994) Plant growth stimulation with symbiotic and associative rhizosphere microorganisms. Experientia 50:897–905

    Article  Google Scholar 

  • Howarth CJ (2005) Genetic improvements of tolerance to high temperature. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. Howarth Press, New York, pp 277–300

    Google Scholar 

  • Hu J, Wei Z, Weidner S, Friman VP, Xu YC, Shen QR, Jousset A (2017) Probiotic Pseudomonas communities enhance plant growth and nutrient assimilation via diversity-mediated ecosystem functioning. Soil Biol Biochem 113:122–129

    Article  Google Scholar 

  • Igiri BE, Okoduwa SIR, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. Hindawi J Toxicol 2018:2568038. https://doi.org/10.1155/2018/2568038

    Article  Google Scholar 

  • Igwe JC, Nnororm IC, Gbaruko BC (2005) Kinetics of radionuclides and heavy metals behavior in soils: implications for plant growth. Afr J Biotechnol 4(13)

    Google Scholar 

  • Jain R, Pandey A (2016) A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities. Microbiol Res 190:63–71

    Article  Google Scholar 

  • Johnstone TC, Nolan EM (2015) Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans 44(14):6320–6339

    Article  Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4(3):179–183

    Article  Google Scholar 

  • Kang SM, Khan AL, Waqas M, You YH, Kim JH, Kim JG, Hamayun M, Lee IJ (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9(1):673–682

    Article  Google Scholar 

  • Karimi K, Amini J, Harighi B, Bahramnejad B (2012) Evaluation of biocontrol potential of Pseudomonas and Bacillus spp. against Fusarium wilt of chickpea. Aust J Crop Sci 6(4):695

    Google Scholar 

  • Kaur G, Reddy MS (2014) Influence of P-solubilizing bacteria on crop yield and soil fertility at multilocational sites. Eur J Soil Biol 61:35–40

    Article  Google Scholar 

  • Kausar R, Shahzad SM (2006) Effect of ACC-deaminase containing rhizobacteria on growth promotion of maize under salinity stress. J Agric Soc Sci 2(4):216–218

    Google Scholar 

  • Ke X, Feng S, Wang J, Lu W, Zhang W, Chen M, Lin M (2019) Effect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere. Syst Appl Microbiol 42(2):248–260

    Article  Google Scholar 

  • Keyvan S (2010) The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. J Anim Plant Sci 8(3):1051–1060

    Google Scholar 

  • Krishnakumar S, Bai VDM, Rajan RA (2014) Evaluation of phosphate solubilizing microorganisms (PSMs) from rhizosphere soil of different crop plants and its antagonistic activity. J Microbiol Biotech Food Sci 3(5): 412–415

    Google Scholar 

  • Kuddus M, Joseph B, Ramteke PW (2013) Production of laccase from newly isolated Pseudomonas putida and its application in bioremediation of synthetic dyes and industrial effluents. Biocatal Agric Biotechnol 2:333–338

    Article  Google Scholar 

  • Lata R, Chowdhury S, Gond SK, White JF Jr (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66(4):268276

    Article  Google Scholar 

  • Li J, Yin LY, Jongsma MA, Wang CY (2011) Effects of light, hydropriming and abiotic stress on seed germination, and shoot and root growth of pyrethrum (Tanacetum cinerariifolium). Ind Crop Prod 34(3):1543–1549

    Article  Google Scholar 

  • Li J, Sun J, Yang Y, Guo S, Glick BR (2012) Identification of hypoxic-responsive proteins in cucumber roots using a proteomic approach. Plant Physiol Biochecm, 51; 74–80

    Google Scholar 

  • Li Y, Zeng J, Wang S, Lin Q, Ruan D, Chi H, Zheng M, Chao Y, Qiu R, Yang Y (2020) Effects of cadmium-resistant plant growth-promoting rhizobacteria and Funneliformis mosseae on the cadmium tolerance of tomato (Lycopersicon esculentum L.). Int J Phytoremediation 22(5):451–458

    Article  Google Scholar 

  • Lu C, Yang Z, Liu J, Liao Q, Ling W, Waigi MG, Odinga ES (2020) Chlorpyrifos inhibits nitrogen fixation in rice-vegetated soil containing Pseudomonas stutzeri A1501. Chemosphere 2020:127098

    Article  Google Scholar 

  • Mabood F, Zhou X, Smith DL (2014) Microbial signaling and plant growth promotion. Can J Plant Sci 94(6):1051–1063

    Article  Google Scholar 

  • Mahajan SG, Nandre VS, Salunkhe RC, Shouche YS, Kulkarni MV (2020) Chemotaxis and physiological adaptation of an indigenous abiotic stress tolerant plant growth promoting Pseudomonas stutzeri: Amelioration of salt stress to Cicer arietinum. Biocatalysis Agric Biotechnol 101652

    Google Scholar 

  • Mallick I, Bhattacharyya C, Mukherji S, Dey D, Sarkar SC, Mukhopadhyay UK, Ghosh A (2018) Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: a step towards arsenic rhizoremediation. Sci Total Environ 610:1239–1250

    Article  Google Scholar 

  • Meliani A, Bensoltane A (2016) Biofilm-mediated heavy metals bioremediation in PGPR pseudomonas. J Bioremed Biodegr 7(370):2

    Google Scholar 

  • Mia MB, Shamsuddin Z, Mahmood M (2010) Use of plant growth promoting bacteria in banana: a new insight for sustainable banana production. Int J Agric Biol 12(3):459–467

    Google Scholar 

  • Mohanty SS, Jena HM (2019) Degradation kinetics and mechanistic study on herbicide bioremediation using hyper butachlor-tolerant Pseudomonas putida G3. Proc Saf Environ Protect 125:172–181

    Article  Google Scholar 

  • Moradi A, Tahmourespour A, Hoodaji M, Khors F (2011) Effect of salinity on free living-diazotroph and total bacterial populations of two saline soils. Afr J Microbiol Res 5(2):144–148

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  Google Scholar 

  • Muñoz R, Alvarez MT, Muñoz A, Terrazas E, Guieysse B, Mattiasson B (2006) Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium. Chemosphere 63(6):903–911

    Article  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74(2):533–542

    Article  Google Scholar 

  • Nadeem S, Imran M, Naveed M, Khan MY, Ahmad M, Zahir Z, Crowley D (2017) Synergistic use of biochar, compost and plant growth promoting rhizobacteria for enhancing cucumber growth under water deficit conditions. J Sci Food Agric 97. 10.1002/jsfa.8393.

    Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulate gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    Article  Google Scholar 

  • Niu X, Song L, Xiao Y, Ge W (2018) Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol 8:2580

    Article  Google Scholar 

  • Nordstedt NP, Chapin LJ, Taylor CG, Jones ML (2020) Identification of Pseudomonas Spp. that increase ornamental crop quality during abiotic stress. Front Plant Sci 10:1754. https://doi.org/10.3389/fpls.2019.01754

    Article  Google Scholar 

  • Nowicki EM, O’Brien JP, Brodbelt JS, Trent MS (2015) Extracellular zinc induces phosphoethanolamine addition to Pseudomonas aeruginosa lipid a via the ColRS two-component system. Mol Microbiol 97(1):166–178

    Article  Google Scholar 

  • Oosten MJV, Pepe O, De Pascale S, Silletti S, Maggio A (2017) The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem Biol Technol Agric 4:5. https://doi.org/10.1186/s40538-017-0089-5

    Article  Google Scholar 

  • Orozco-Mosqueda M, Duan J, DiBernardo M, Zetter E, Campos-García J, Glick BR, Santoyo G (2019) The production of ACC deaminase and trehalose by the plant growth promoting bacterium Pseudomonas sp. UW4 synergistically protect tomato plants against salt stress. Front Microbiol 10:1392

    Article  Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013) Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur J Soil Biol 56:72–83

    Article  Google Scholar 

  • Pandey P, Maheshwari DK (2007) Two-species microbial consortium for growth promotion of Cajanus cajan. Curr Sci:1137–1142

    Google Scholar 

  • Panhwar QA, Othman R, Rahman ZA, Meon S, Ismail MR (2012) Isolation and characterization of phosphate-solubilizing bacteria from aerobic rice. Afr J Biotechnol 11(11):2711–2719

    Google Scholar 

  • Parmar HY, Chakraborty H (2016) Effect of siderophore on plant growth promotion. Int J Appl Pure Sci Agric 2(3):60–68

    Google Scholar 

  • Parmar N, Dadarwal KR (1999) Stimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteria. J Appl Microbiol 86(1):36–44

    Article  Google Scholar 

  • Pham V, Rediers H, Ghequire M, Nguyen H, Mot R, Vanderleyden J, Spaepen S (2017) The plant growth-promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15. Arch Microbiol 199(3):513–517

    Google Scholar 

  • Puig S, Ramos-Alonso L, Romero AM, Martínez-Pastor MT (2017) The elemental role of iron in DNA synthesis and repair. Metallomics 9:1483–1500

    Article  Google Scholar 

  • Rahneshan Z, Nasibi F, Moghadam AA (2018) Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J Plant Interact 13(1):73–82

    Article  Google Scholar 

  • Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32(3):237–249

    Article  Google Scholar 

  • Ramadass K, Megharaj M, Venkateswarlu K, Naidu R (2018) Bioavailability of weathered hydrocarbons in engine oil-contaminated soil: impact of bioaugmentation mediated by pseudomonas spp. on bioremediation. Sci Total Environ 636:968–974

    Article  Google Scholar 

  • Ravanbakhsh M, Sasidharan R, Voesenek LA, Kowalchuk GA, Jousset A (2017) ACC deaminase-producing rhizosphere bacteria modulate plant responses to flooding. J Ecol 105(4):979–986

    Article  Google Scholar 

  • Ritchie SW, Nguyen HT, Holaday AS (1990) Leaf water content and gas-exchange parameters of two wheat genotypes differing in drought resistance. Crop Sci 30(1):105–111

    Article  Google Scholar 

  • Rizvi A, Khan MS (2017) Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Chemosphere 185:942–952

    Article  Google Scholar 

  • Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in a soil pseudomonas sp. Appl Environ Microbiol 58(4):1284–1291

    Article  Google Scholar 

  • Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69(3):225–232

    Article  Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23(5):3984–3999

    Article  Google Scholar 

  • Saikia J, Sarma RK, Dhandia R, Yadav A, Bharali R, Gupta VK, Saikia R (2018) Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep 8(1):1–16

    Google Scholar 

  • Sairam RK, Kumutha D, Ezhilmathi K, Deshmukh PS, Srivastava GC (2008) Physiology and biochemistry of waterlogging tolerance in plants. Biol Planta 52:401–412

    Article  Google Scholar 

  • Salazar C, Hernández C, Pino MT (2015) Plant water stress: associations between ethylene and abscisic acid response. Chil J Agric Res 75:71–79

    Article  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34(10):635–648

    Article  Google Scholar 

  • Samaddar S, Chatterjee P, Choudhury AR, Ahmed S, Sa T (2019) Interactions between Pseudomonas spp. and their role in improving the red pepper plant growth under salinity stress. Microbiol Res 219:66–73

    Article  Google Scholar 

  • Sandhya V, Ali S, Grover M, Kishore N, Venkateswarlu B (2009a) Pseudomonas sp. strain P45 protects sunflowers seedlings from drought stress through improved soil structure. J Oilseed Res 26:600–601

    Google Scholar 

  • Sandhya VZ, Ali S, Grover M, Reddy G, Venkateswarlu B (2009b) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46(1):17–26

    Article  Google Scholar 

  • Santoro MV, Cappellari LDR, Giordano W, Banchio E (2015) Plant growth-promoting effects of native pseudomonas strains on Mentha piperita (peppermint): an in vitro study. Plant Biol 17(6):1218–1226

    Article  Google Scholar 

  • Sarabi B, Bolandnazar S, Ghaderi N, Ghashghaie J (2017) Genotypic differences in physiological and biochemical responses to salinity stress in melon (Cucumis melo L.) plants: prospects for selection of salt tolerant landraces. Plant Physiol Biochem 119:294–311

    Article  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102(5):1283–1292

    Article  Google Scholar 

  • Sarkar A, Kumar P, Pramanik K, Mitra S, Soren T (2018) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169:20–32. https://doi.org/10.1016/j.resmic.2017.08.005

    Article  Google Scholar 

  • Sarma RK, Saikia R (2014) Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant and Soil 377(1–2):111–126

    Article  Google Scholar 

  • Sasirekha B, Srividya S (2016) Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agric Nat Resour 50(4):250–256

    Google Scholar 

  • Sayyed RZ, Ilyas N, Tabassum B, Hashem A, Abd-Allah EF, Jadhav HP (2019) Plausible role of plant growth-promoting rhizobacteria in future climatic scenario. Environmental biotechnology: for sustainable future. Springer, Singapore, pp 175–197

    Google Scholar 

  • Schöffl F, Prandl R, Reindl A (1999) Molecular responses to heat stress. In: Shinozaki K, Yamaguchi-Shinozaki K (eds) Molecular responses to cold, drought, heat and salt stress in higher plants. RG Landes, Austin, TX, pp 81–98

    Google Scholar 

  • Sharma P, Khanna P, Kumar PI (2013) Efficacy of aminocyclopropane-1-carboxylic acid (ACC)-deaminase-producing rhizobacteria in ameliorating water stress in chickpea under axenic conditions. Afr J Microbiol Res 7: 5749-5757

    Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2(1):587

    Article  Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156(3):1164–1170

    Article  Google Scholar 

  • Shilev S (2013) Soil rhizobacteria regulating the uptake of nutrients and undesirable elements by plants. In: Plant microbe symbiosis: fundamentals and advances. Springer, Berlin, pp 147–167

    Chapter  Google Scholar 

  • Siddikee MA, Sundaram S, Chandrasekaran M, Kim K, Selvakumar G, Sa T (2015) Halotolerant bacteria with ACC deaminase activity alleviate salt stress effect in canola seed germination. J Korean Soc Appl Biol Chem 58(2):237–241

    Article  Google Scholar 

  • Singh VK, Singh AK, Singh PP, Kumar A (2018) Interaction of plant growth promoting bacteria with tomato under abiotic stress: a review. Agric Ecosyst Environ 267:129–140

    Article  Google Scholar 

  • Sitaraman R (2015) Pseudomonas spp. as models for plant-microbe interactions. Front Plant Sci 6:787

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4):a001438

    Article  Google Scholar 

  • Srivastava S, Srivastava S (2020) Prescience of endogenous regulation in Arabidopsis thaliana by Pseudomonas putida MTCC 5279 under phosphate starved salinity stress condition. Sci Rep 10:5855. https://doi.org/10.1038/s41598-020-62725-1

    Article  Google Scholar 

  • Stearns JC, Glick BR (2003) Transgenic plants with altered ethylene biosynthesis or perception. Biotechnol Adv 21(3):193–210

    Article  Google Scholar 

  • Subramanian P, Mageswari A, Kim K, Lee Y, Sa T (2015) Psychrotolerant endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in tomato plants (Solanum lycopersicum mill.) by activation of their antioxidant capacity. Mol Plant Microbe Interact 28(10):1073–1081

    Article  Google Scholar 

  • Subramanium N, Sundaram L (2020) Siderophore producing Pseudomonas spp. isolated from rhizospheric soil and enhancing iron content in Arachis hypogaea L. plant. Int J Agric Technol 16(2):429–442

    Google Scholar 

  • Tanaka K, Cho SH, Lee H, Pham AQ, Batek JM, Cui S, Qiu J, Khan SM, Joshi T, Zhang ZJ, Xu D (2015) Effect of lipo-chito oligosaccharide on early growth of C4 grass seedlings. J Exp Bot 66(19):5727–5738

    Article  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5(1):51–58

    Article  Google Scholar 

  • Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61(15):4449–4459

    Article  Google Scholar 

  • Tisdall JM, Oades J (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33(2):141–163

    Article  Google Scholar 

  • Vardharajula S, Ali SZ, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6(1):1–14

    Article  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Lavakush S, Singh V (2010) Impact of plant growth promoting rhizobacteria on crop production. Int J Agric Res 5(11):954–983

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255(2):571–586

    Article  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26(3):266–291

    Article  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, Sk ZA (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  Google Scholar 

  • Wang Q, Zhang WJ, He LY, Sheng XF (2018) Increased biomass and quality and reduced heavy metal accumulation of edible tissues of vegetables in the presence of cd-tolerant and immobilizing Bacillus megaterium H3. Ecotoxicol Environ Saf 148:269–274

    Article  Google Scholar 

  • Wheeler TR, Batts GR, Ellis RH, Hadley P, Morison JIL (1996) Growth and yield of winter wheat (Triticum aestivum) crops in response to CO2 and temperature. J Agric Sci 127(1):37–48

    Article  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52(1):487511

    Google Scholar 

  • Wu Y, Ma L, Liu Q, Sikder MM, Vestergård M, Zhou K, Wang Q, Yang X, Feng Y (2020) Pseudomonas fluorescens promote photosynthesis, carbon fixation and cadmium phytoremediation of hyperaccumulator Sedum alfredii. Sci Total Environ 726:138554

    Google Scholar 

  • Yadegari M, Rahmani HA, Noormohammadi G, Ayneband A (2010) Plant growth promoting rhizobacteria increase growth, yield and nitrogen fixation in Phaseolus vulgaris. J Plant Nutr 33(12):1733–1743

    Article  Google Scholar 

  • Yaish MW, Kumar PP (2015) Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives. Front Plant Sci 6:348

    Article  Google Scholar 

  • Yaish MW, Al-Lawati A, Jana GA, Vishwas Patankar H, Glick BR (2016) Impact of soil salinity on the structure of the bacterial endophytic community identified from the roots of caliph medic (Medicago truncatula). PLoS One 11(7):e0159007

    Article  Google Scholar 

  • Yang Y, Singh RP, Song D, Chen Q, Zheng X, Zhang C, Zhang M, Li Y (2020) Synergistic effect of Pseudomonas putida II-2 and Achromobacter sp. QC36 for the effective biodegradation of the herbicide quinclorac. Ecotoxicol Environ Saf 188:109826

    Article  Google Scholar 

  • Yao L, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46(1):49–54

    Article  Google Scholar 

  • Yarzábal LA, Monserrate L, Buela L, Chica E (2018) Antarctic Pseudomonas spp. promote wheat germination and growth at low temperatures. Polar Biol 41(11):2343–2354

    Article  Google Scholar 

  • Yasmin H, Naeem S, Bakhtawar M, Jabeen Z, Nosheen A, Naz R, Keyani R, Mumtaz S, Hassan MN (2020) Halotolerant rhizobacteria Pseudomonas pseudoalcaligenes and Bacillus subtilis mediate systemic tolerance in hydroponically grown soybean (Glycine max L.) against salinity stress. PLoS One 15(4):e0231348

    Article  Google Scholar 

  • Younesi O, Moradi A (2014) Effects of plant growth-promoting rhizobacterium (PGPR) and arbuscular mycorrhizal fungus (AMF) on antioxidant enzyme activities in salt-stressed bean (Phaseolus vulgaris L.). Agric (Pol’nohospodárstvo) 60(1):10–21

    Google Scholar 

  • Yuan Z, Yi H, Wang T, Zhang Y, Zhu X, Yao J (2017) Application of phosphate solubilizing bacteria in immobilization of Pb and Cd in soil. Environ Sci Pollut Res 24(27):21877–21884

    Article  Google Scholar 

  • Yun-xiu JI, Xiao-dong H (2007) Effects of plant growth-promoting rhizobacteria on the seedling growth of oat and annual ryegrass under salt stress. Int Conf Agric Eng:661–665

    Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18(5):958–963

    Google Scholar 

  • Zarei T, Moradi A, Kazemeini SA, Farajee H, Yadavi A (2019) Improving sweet corn (Zea mays L. var saccharata) growth and yield using Pseudomonas fluorescens inoculation under varied watering regimes. Agric Water Manag 226:105757

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahira Yasmeen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yasmeen, T. et al. (2021). Pseudomonas as Plant Growth-Promoting Bacteria and Its Role in Alleviation of Abiotic Stress. In: Mohamed, H.I., El-Beltagi, H.ED.S., Abd-Elsalam, K.A. (eds) Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management. Springer, Cham. https://doi.org/10.1007/978-3-030-66587-6_7

Download citation

Publish with us

Policies and ethics