Skip to main content

Microbial Endophytes: New Direction to Natural Sources

  • Chapter
  • First Online:
Endophytes: Mineral Nutrient Management, Volume 3

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 26))

Abstract

The concept of endophytes and their beneficial relationship with the plant is widely accepted as an important step in the co-evolution and diversity of plants. The symbiotic relationship between plants and fungi and rhizobia with legumes have a long evolutionary history. During exploration, fossils have shown close associations between endophytic fungi and plants roughly, 400 million years ago. The common symbiotic relationship between fungi and plants facilitated the evolution of large group of primary and secondary metabolites of considerable chemical diversity, have a unique structure and high biological activity. During the last two decades, a growing interest in the study of endophytes, origin, biodiversity, interactions between endophytes and host plants, their role in ecology as well as biological activities of metabolites have been established. Several novel and beneficial activities for these microorganisms are evident by available literature, reveals their role as multifarious biologicals. The diversity and dynamics of endophyte populations, use of microbial inoculants to improve plant growth and health, and their role as a new bio-resource for metabolites are considerable interests of the twenty-first century. The exploration of active secondary metabolite is one of the most important reasons for the endophytes of industrial significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla MA, Matasyoh JC (2014) Endophytes as producers of peptides: an overview about the recently discovered peptides from endophytic microbes. Nat Prod Bioprospect 4(5):257–270. https://doi.org/10.1007/s13659-014-0038-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdel-Azeem AM, Abdel-Azeem MA, Khalil WF (2019) Endophytic fungi as a new source of antirheumatoid metabolites. In: Bioactive food as dietary interventions for arthritis and related inflammatory diseases, pp 355–384

    Google Scholar 

  • Abdel-Azeem AM, Zaki SM, Khalil WF, Makhlouf NA, Farghaly LM (2016) Anti-rheumatoid activity of secondary metabolites produced by endophytic Chaetomium globosum. Front Microbiol 7:1477

    Article  PubMed  PubMed Central  Google Scholar 

  • Aboobaker Z, Viljoen A, Chen W, Crous PW, Maharaj VJ, van Vuuren S (2019) Endophytic fungi isolated from Pelargonium sidoides DC: antimicrobial interaction and isolation of a bioactive compound. South Afr J Bot 122:535–542. https://doi.org/10.1016/j.sajb.2019.01.011

    Article  CAS  Google Scholar 

  • Afridi MS, Mahmood T, Salam A et al (2019) Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: involvement of ACC deaminase and antioxidant enzymes. Plant Physiol Biochem 139:569–577. https://doi.org/10.1016/j.plaphy.2019.03.041

    Article  CAS  PubMed  Google Scholar 

  • Ahmad RZ, Khalid R, Aqeel M, Ameen F, Li CJ (2020) Fungal endophytes trigger Achnatherum inebrians germination ability against environmental stresses. South Afr J Bot. https://doi.org/10.1016/j.sajb.2020.01.004

    Article  Google Scholar 

  • Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169(7–8):483–495. https://doi.org/10.1016/j.micres.2013.12.00

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41(1):1–16

    Article  Google Scholar 

  • Araújo WL, Marcon J, Maccheroni W, van Elsas JD, van Vuurde JW, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68(10):4906–4914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ardal E (2014) Phycoremediation of pesticides using microalgae. Department of Plant Breeding. SLU, Swedish University of Agricultural Sciences, Alnarp 10–35

    Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D et al (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci 100(26):15649–15654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aviles-Garcia ME, Flores-Cortez I, Hernández-Soberano C, Santoyo G, Valencia-Cantero E (2016) The plant growth-promoting rhizobacterium Arthrobacter agilis UMCV2 endophytically colonizes Medicago truncatula. Rev Argent Microbiol 48(4):342–346. https://doi.org/10.1016/j.ram.2016.07.004

    Article  PubMed  Google Scholar 

  • Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. J Environ Manag 151:160–166

    Article  CAS  Google Scholar 

  • Backman PA, Sikora RA (2008) Endophytes: an emerging tool for biological control. Biol Control 46(1):1–3

    Article  Google Scholar 

  • Bacon CW, White JF, Stone JK (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, pp 29–33

    Google Scholar 

  • Bastias DA, Martínez-Ghersa MA, Ballaré CL, Gundel PE (2017) Epichloë fungal endophytes and plant defenses: not just alkaloids. Trends Plant Sci 22(11):939–948. https://doi.org/10.1016/j.tplants.2017.08.005

    Article  CAS  PubMed  Google Scholar 

  • Becerra-Castro C, Kidd P, Kuffner M et al (2013) Bacterially induced weathering of ultramafic rock and its implications for phytoextraction. Appl Environ Microbiol 79:5094–5103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becerra-Castro C, Monterroso C, Prieto-Fernández A et al (2012) Pseudometallophytes colonizing Pb/Zn mine tailings: a description of the plant-microorganism-rhizosphere soil system and isolation of metal-tolerant bacteria. J Hazard Mater 217–218:350–359

    Article  PubMed  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI et al. (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37(2): 241–250

    Google Scholar 

  • Busby PE, Ridout M, Newcombe G (2016) Fungal endophytes: modifiers of plant disease. Plant Mol Biol 90(6):645–655

    Article  CAS  PubMed  Google Scholar 

  • Carroll GC (1986) The biology of endophytism in plants with particular reference to woody perennials. Microbiol Phyll 203–222

    Google Scholar 

  • Castulo-Rubio DY, Alejandre-Ramírez NA, del Carmen Orozco-Mosqueda M, Santoyo G, Macías-Rodríguez LI, Valencia-Cantero E (2015) Volatile organic compounds produced by the rhizobacterium Arthrobacter agilis UMCV2 modulate Sorghum bicolor (strategy II plant) morphogenesis and SbFRO1 transcription in vitro. J Plant Growth Regul 34(3):611–623. https://doi.org/10.1007/s00344-015-9495-8

    Article  CAS  Google Scholar 

  • Chamovitz DA (2018) Plants are intelligent; now what? Nat Plants 4:622–623

    Article  PubMed  Google Scholar 

  • Chareprasert S, Piapukiew J, Thienhirun S, Whalley AJ, Sihanonth P (2006) Endophytic fungi of teak leaves Tectona grandis L. and rain tree leaves Samanea saman Merr. World J Microbiol Biotechnol 22(5):481–486

    Google Scholar 

  • Chen C, Xin K, Liu H, Cheng J, Shen X, Wang Y et al (2017) Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci Rep 7:41564. https://doi.org/10.1038/srep41564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Luo SL, Li XJ, Wan Y, Chen JL, Liu CB (2014) Interaction of Cd hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308

    Article  CAS  Google Scholar 

  • Chen L, Shi H, Heng J, Wang D, Bian K (2019) Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2. Microbiol Res 218:41–48. https://doi.org/10.1016/j.micres.2018.10.002

    Article  CAS  PubMed  Google Scholar 

  • Chow YY, Rahman S, Ting ASY (2019) Evaluating the host defense responses in oil palm to complex biocontrol endophyte-pathogen-host plant interaction via Fluidigm® real-time polymerase chain reaction (RT-PCR). Biol Control 129:148–157. https://doi.org/10.1016/j.biocontrol.2018.10.011

    Article  CAS  Google Scholar 

  • Christina A, Christapher V, Bhore SJ (2013) Endophytic bacteria as a source of novel antibiotics: an overview. Pharmacog Rev 7:11–16. https://doi.org/10.4103/0973-7847.112833

    Article  Google Scholar 

  • Clark TN, Bishop AI, McLaughlin M, Calhoun LA, Johnson JA, Gray CA (2014) Isolation of (−)-avenaciolide as the antifungal and antimycobacterial constituent of a Seimatosporium sp. Endophyte from the medicinal plant Hypericum perforatum. Nat Prod Commun 9:1495–1496

    CAS  PubMed  Google Scholar 

  • Cruz-Miranda OL, Folch-Mallol J, Martínez-Morales F, Gesto-Borroto R, Villarreal ML, Taketa AC (2020) Identification of a Huperzine A-producing endophytic fungus from Phlegmariurus taxifolius. Mol Biol Rep 47(1):489–495. https://doi.org/10.1007/s11033-019-05155-1

    Article  CAS  PubMed  Google Scholar 

  • Cui L, Yang C, Wei L, Li T, Chen X (2020) Isolation and identification of an endophytic bacteria Bacillus velezensis 8-4 exhibiting biocontrol activity against potato scab. Biol Control 141:104–156

    Article  CAS  Google Scholar 

  • Dara SK, Dara SR (2015) Soil application of the entomopathogenic fungus, Metarhizium brunneum protects strawberry plants from spider mite damage. In: UCANR eNewsletter strawberries and vegetables. Available via DIALOG. https://ucanr.edu/blogs/strawberries-vegetables/index.cfm?start=54. Accessed 18 Feb 2015

  • De Silva N, Lumyong S, Hyde KD, Bulgakov T, Phillips AJ, Yan JY (2016) Mycosphere essays 9: defining biotrophs and hemibiotrophs 7(5):545–559

    Google Scholar 

  • De Silva NI, Brooks S, Lumyong S, Hyde KD (2019) Use of endophytes as biocontrol agents. Fungal Biol Rev 33(2):133–148. https://doi.org/10.1016/j.fbr.2018.10.001

    Article  Google Scholar 

  • Deng Z, Cao L (2017) Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere 168:1100–1106

    Article  CAS  PubMed  Google Scholar 

  • Dharni S, Srivastava AK, Samad A, Patra DD (2014) Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicidas F610 on metal uptake and production of secondary metabolite (monoterpenes) by rose-scented geranium (Pelargonium graveolens cv. bourbon) grown on tannery sludge amended soil. Chemosphere 117:433–439

    Article  CAS  PubMed  Google Scholar 

  • Dheeman S, Maheshwari DK, Baliyan N (2017) Bacterial endophytes for ecological intensification of agriculture. In: Maheshwari D (eds) Endophytes: biology and biotechnology. Sustainable development and biodiversity, vol 15. Springer, Cham, pp 193–231. https://doi.org/10.1007/978-3-319-66541-2_9

  • Ding S, Huang C, Sheng H, Song C, Li Y, Li A (2011) Effect of inoculation with the endophyte Clavibacter sp. strain Enf12 on chilling tolerance in Chorispora bungeana. Physiol Plant 141:141–151

    Article  CAS  PubMed  Google Scholar 

  • Dong G, Wang Y, Gong L, Wang M, Wang H, He N, Zheng Y, Li Q (2013) Formation of soluble Cr (III) end-products and nanoparticles during Cr (VI) reduction by bacillus cereus strain XMCr-6. Biochem Eng J 70:166–172

    Article  CAS  Google Scholar 

  • Doty SL, Oakley B, Xin G, Kang JW, Singleton G, Khan Z et al (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47(1):23–33

    Article  CAS  Google Scholar 

  • Dupont PY, Eaton CJ, Wargent JJ et al (2015) Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. New Phytol 208(4):1227–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebada SS, Ebrahim W (2020) A new antibacterial quinolone derivative from the endophytic fungus Aspergillus versicolor strain Eich. 5.2. 2. S Afr J Bot

    Google Scholar 

  • El-Bialy HA, El-Bastawisy HS (2020) Elicitors stimulate paclitaxel production by endophytic fungi isolated from ecologically altered Taxus baccata. J Rad Res Appl Sci 13(1):79–87

    CAS  Google Scholar 

  • Fisher PJ, Petrini O (1992) Fungal saprobes and pathogens as endophytes of rice (Oryza sativa L.). New Phytol 120(1):137–143

    Google Scholar 

  • Gangwar M, Dogra S, Gupta UP, Kharwar RN (2014) Diversity and biopotential of endophytic actinomycetes from three medicinal plants in India. Afr J Microbiol Res 8(2):184–191

    Article  CAS  Google Scholar 

  • Gimenez C, Cabrera R, Reina M, Gonzalez-Coloma A (2007) Fungal endophytes and their role in plant protection. Curr Org Chem 11(8):707–720

    Article  CAS  Google Scholar 

  • Girsowicz R, Moroenyane I, Steinberger Y (2019) Bacterial seed endophyte community of Annal plants modulated by plant photosynthetic pathways. Microbiol Res 223:58–62

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M (2015) Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek 108(2):267–289

    Article  PubMed  PubMed Central  Google Scholar 

  • Govindasamy V, George P, Kumar M et al (2020) Multi-trait PGP rhizobacterial endophytes alleviate drought stress in a senescent genotype of sorghum [Sorghum bicolor (L.) Moench]. 3 Biotech 10(1):13. https://doi.org/10.1007/s13205-019-2001-4

  • Guerrero-Zúñiga AL, López-López E, Rodríguez-Tovar AV, Rodríguez-Dorantes A (2020) Functional diversity of plant endophytes and their role in assisted phytoremediation. In: Bharagava R, Saxena G (eds) Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 237–255

    Chapter  Google Scholar 

  • Guo L, Niu S, Chen S, Liu L (2020) Diaporone A, a new antibacterial secondary metabolite from the plant endophytic fungus Diaporthe sp. J Antibiot 73(2):116–119

    Article  CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43(10):895–914

    Article  CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Rodriguez-Kbana R, Kloepper JW (1998) Interactions between meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biol Biochem 30(1):925–937

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends microbial 16(10):463–471

    Article  CAS  Google Scholar 

  • Hata K, Sone K (2008) Isolation of endophytes from leaves of Neolitsea sericea in broadleaf and conifer stands. Mycoscience 49(4):229–232

    Article  Google Scholar 

  • He H, Ye Z, Yang D, Yan J, Xiao L, Zhong T, Yuan M, Cai X, Fang Z, Jing Y (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:1960–1965

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Soberano C, Ruíz-Herrera LF, Valencia-Cantero E (2020) Endophytic bacteria Arthrobacter agilis UMCV2 and Bacillus methylotrophicus M4-96 stimulate achene germination, in vitro growth, and greenhouse yield of strawberry (Fragaria× ananassa). Scientia Horticulturae 261:109005

    Google Scholar 

  • Hussain MA, Mahajan V, Rather IA et al (2017) Isolation and identification of growth promoting endophytes from Artemisia Anna L. and its effects on artemisinin content. Trends Phytochem Res 1(4):207–214

    Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33(163):173

    Google Scholar 

  • Jakuschkin B, Fievet V, Schwaller L, Fort T, Robin C, Vacher C (2016) Deciphering the pathobiome: intra- and interkingdom interactions involving the pathogen Erysiphe alphitoides. Microb Ecol 72:870–880

    Article  CAS  PubMed  Google Scholar 

  • Jayawardena RS, Hyde KD, Damm U et al (2016) Notes on currently accepted species of Colletotrichum. Mycosphere 1192–1260

    Google Scholar 

  • Jha PN, Gupta G, Jha P, Mehrotra R (2013) Association of rhizospheric/ endophytic bacteria with plants: a potential gateway to sustainable agriculture. Gr J Agric Sci 3(2):73–84. https://doi.org/10.15580/GJAS.2013.2.010313354

    Article  Google Scholar 

  • Jiao J, Ma Y, Chen S, Liu C, Song Y, Qin Y et al (2016) Melatonin producing endophytic bacteria from grapevine roots promote the abiotic stress-induced production of endogenous melatonin in their hosts. Front Plant Sci 7:1387

    Article  PubMed  PubMed Central  Google Scholar 

  • Joseph B, Priya RM (2011) Bioactive compounds from endophytes and their potential in. Am J Biochem Mol Biol 1(3):291–309

    Article  Google Scholar 

  • Jung HJ, Yonghyo K, Hyang BL, Kwon HJ (2015) Antiangiogenic activity of the lipophilic antimicrobial peptides from an endophytic bacterial strain isolated from Red Pepper leaf. Mol Cells 38:273–278

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Ali L, Chaudhary HJ, Munis MFH, Bano A, Masood S (2016a) Bacillus pumilus alleviates boron toxicity in tomato (Lycopersicum esculentum L.) due to enhanced antioxidant enzymatic activity. Sci hort 200:178–185

    Article  CAS  Google Scholar 

  • Khan A, Zhao XQ, Javed MT, Khan KS, Bano A, Shen RF, Masood S (2016b) Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of Na+. Environ Exp Bot 124:120–129

    Article  CAS  Google Scholar 

  • Khan S (2010) Resistance mechanism in plants under stress conditions. Am J Sci 6:34–41

    Google Scholar 

  • Khan Z, Guelich G, Phan H, Redman R, Doty S (2012) Bacterial and yeast endophytes from poplar and willow promote growth in crop plants and grasses. ISRN Agron

    Google Scholar 

  • Khan Z, Rho H, Firrincieli A et al (2016c) Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia. Curr Plant Biol 6:38–47

    Article  Google Scholar 

  • Kim H, Mohanta TK, Park YH et al (2020) Complete genome sequence of the mountain-cultivated ginseng endophyte Burkholderia stabilis and its antimicrobial compounds against ginseng root rot disease. Biol Control 140:104126

    Article  CAS  Google Scholar 

  • Kim H, Rim SO, Bae H (2019) Antimicrobial potential of metabolites extracted from ginseng bacterial endophyte Burkholderia stabilis against ginseng pathogens. Biol Control 128:24–30

    Article  CAS  Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial Endophytes. Marcel Dekker, New York, pp 199–236

    Google Scholar 

  • Kolbas A, Kidd P, Guinberteau J, Jaunatre R, Herzig R, Mench M (2015) Endophytic bacteria take the challenge to improve Cu phytoextraction by sunflower. Environ Sci Pollut Res 22(7):5370–5382

    Article  CAS  Google Scholar 

  • Korzekwa K (2015) News Releases. In: Probiotics—for plants. American Society of Agronomy. Available via DIALOG. https://www.agronomy.org/news/media-inquiries/releases. Accessed 8 July 2015

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304(1–2):35–44

    Article  CAS  Google Scholar 

  • Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1(6):1079–1093

    Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19(7):792–798

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Singh S, Jayabaskaran C (2014) Rethinking production of Taxol (Paclitaxel) using endophyte biotechnology. Trends Biotechnol 32:304–311. https://doi.org/10.1016/j.tibtech.2014.03.011

    Article  CAS  PubMed  Google Scholar 

  • Larran S, Simón MR, Moreno MV, Siurana MPS, Perelló A (2016) Endophytes from wheat as biocontrol agents against tan spot disease. Biol Control 92:17–23

    Article  Google Scholar 

  • Leistner E, Steiner U (2009) Fungal Origin of Ergoline Alkaloids Present in Dicotyledonous Plants (Convolvulaceae). In: Anke T, Weber D (eds) Physiology and Genetics. The Mycota (A comprehensive treatise on fungi as experimental systems for basic and applied research). Springer, Berlin, Heidelberg, pp 197–208

    Google Scholar 

  • Li P, Wu Z, Liu T, Wang Y (2016) Biodiversity, phylogeny and antifungal functions of endophytic fungi associated with Zanthoxylum bungeanum. Int J Mol Sci 17:1541–1564. https://doi.org/10.3390/ijms17091541

    Article  CAS  PubMed Central  Google Scholar 

  • Li WC, Ye ZH, Wong MH (2007) Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. J Exp Bot 58(15–16):4173–4182

    Article  CAS  PubMed  Google Scholar 

  • Liang P, Liu S, Xu F, Jiang S, Yan J, He Q et al (2018) Powdery mildews are characterized by contracted carbohydrate metabolism and diverse effectors to adapt to obligate biotrophic lifestyle. Front Microbiol 9:3160

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu K, Ding X, Deng B, Chen W (2009) Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J Ind Microbiol Biotech 36(9):1171–1177

    Article  CAS  Google Scholar 

  • Liu Y, Liu W, Liang Z (2015) Endophytic bacteria from Pinellia ternata, a new source of purine alkaloids and bacterial manure. Pharm Biol 5:1545–1548. https://doi.org/10.3109/13880209.1016580

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Ann Rev Microbiol 63:541–556

    Article  CAS  Google Scholar 

  • Ma Y, Oliveira RS, Nai FJ, Rajkumar M, Luo YM, Rocha I, Freitas H (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manag 156:62–69

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Luo YM, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25

    Article  CAS  Google Scholar 

  • Macabeo AP, Cruz AJ, Narmani A, Arzanlou M, Babai-Ahari A, Pilapil LA, Garcia KY, Huch V, Stadler M (2020) Tetrasubstituted α-pyrone derivatives from the endophytic fungus, Neurospora udagawae. Phytochem Lett 35:147–151

    Article  CAS  Google Scholar 

  • Mahmoud AY, Abdallah HM, El-Halawani MA, Jiman-Fatani AAM (2015) Anti-tuberculous activity of Treponemycin produced by a Streptomyces strain MS-6-6 isolated from Saudi Arabia. Molecules 20:2576–2590. https://doi.org/10.3390/molecules20022576

    Article  CAS  Google Scholar 

  • Mano H, Morisaki H (2008) Endophytic bacteria in the rice plant. Microb Environ 23(2):109–117

    Article  Google Scholar 

  • Marquez-Santacruz HA, Hernandez-Leon R, Orozco-Mosqueda MD, Velazquez-Sepulveda I, Santoyo G (2010) Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. Genet Mol R 9(4):2372–2380

    Article  CAS  Google Scholar 

  • Martinez-Klimova E, Rodríguez-Peña K, Sánchez S (2017) Endophytes as sources of antibiotics. Biochem Pharmacol 134:1–7. https://doi.org/10.1016/j.bcp.2016.10.010

    Article  CAS  PubMed  Google Scholar 

  • McEvoy A, O’Regan F, Fleming CC et al (2016) Bleeding canker of horse chestnut (Aesculus hippocastanum) in Ireland: incidence, severity and characterization using DNA sequences and real-time PCR. Plant Pathol 65:1419–1429

    Article  CAS  Google Scholar 

  • Mejía LC, Herre EA, Sparks JP et al (2014) Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Front Microbiol 5:479

    PubMed  PubMed Central  Google Scholar 

  • Molina-Montenegro MA, Oses R, Torres-Díaz C, Atala C, Núñez MA, Armas C (2015) Fungal endophytes associated with roots of nurse cushion species have positive effects on native and invasive beneficiary plants in an alpine ecosystem. Perspect Plant Ecol 17(3):218–226

    Article  Google Scholar 

  • Muehe EM, Weigold P, Adaktylou IJ et al (2015) Rhizosphere microbial community composition affects cadmium and zinc uptake of the metalhyperaccumulating plant Arabidopsis halleri. Appl Environ Microbiol 81:2173–2181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mujumdar SS, Bashetti SP, Chopade BA (2014) Plasmid pUPI126-encoded pyrrolnitrin production by Acinetobacter haemolyticus A19 isolated from the rhizosphere of wheat. World J Microbiol Biotechnol 30:495–505. https://doi.org/10.1007/s11274-013-1426-x

    Article  CAS  PubMed  Google Scholar 

  • Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. Sci World J

    Google Scholar 

  • Neilands JB (1993) Perspectives in biochemistry and biophysics-siderophores. Arch Biochem Biophys 302:1–3

    Article  CAS  PubMed  Google Scholar 

  • Nuankeaw K, Chaiyosang B, Suebrasri T, Kanokmedhakul S, Lumyong S, Boonlue S (2020) First report of secondary metabolites, Violaceol I and Violaceol II produced by endophytic fungus, Trichoderma polyalthiae and their antimicrobial activity. Mycoscience 61(1):16–21. https://doi.org/10.1016/j.myc.2019.10.001

    Article  Google Scholar 

  • Palanichamy P, Krishnamoorthy G, Kannan S, Marudhamuthu M (2018) Bioactive potential of secondary metabolites derived from medicinal plant endophytes. Egypt J Basic Appl Sci 5:303–312

    Article  Google Scholar 

  • Pandey SS, Singh S, Babu CSV, Shanker K, Shrivastava NK, Kalra A (2016) Endophytes of opium poppy differentially modulate host plant productivity and genes for the biosynthetic pathway of benzylisoquinoline alkaloids. Planta 243:1097–1114

    Article  CAS  PubMed  Google Scholar 

  • Panstruga R, Kuhn H (2019) Microreview: mutual interplay between phytopathogenic powdery mildew fungi and other microorganisms. Mol Plant Pathol 20:463–470

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Flores P, Valencia-Cantero E, Altamirano-Hernández J et al (2017) Bacillus methylotrophicus M4-96 isolated from maize (Zea mays) rhizoplane increases growth and auxin content in Arabidopsis thaliana via emission of volatiles. Protoplasma 254:2201–2213. https://doi.org/10.1007/s00709-017-1109-9

    Article  CAS  PubMed  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Brock/Springer Series in Contemporary Bioscience, Springer, New York, NY, pp 179–197

    Chapter  Google Scholar 

  • Phetcharat P, Duangpaeng A (2012) Screening of endophytic bacteria from organic rice tissue for indole acetic acid production. Procedia Eng 32:177–183

    Article  CAS  Google Scholar 

  • Pietro-Souza W, de Campos Pereira F, Mello IS (2020) Mercury resistance and bioremediation mediated by endophytic fungi. Chemosphere 240:124874

    Article  CAS  PubMed  Google Scholar 

  • Pirttilä AM, Laukkanen H, Pospiech H, Myllylä R, Hohtola A (2000) Detection of intracellular bacteria in the buds of scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl Environ Microbiol 66(7):3073–3077

    Google Scholar 

  • Pirttilä AM, Pospiech H, Laukkanen H, Myllylä R, Hohtola A (2003) Two endophytic fungi in different tissues of Scots pine buds (Pinus sylvestris L.). Microb Ecol 45(1):53–62

    Google Scholar 

  • Porter JR (1976) Antony van Leeuwenhoek: tercentenary of his discovery of bacteria. Bacteriol rev 40(2):260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pullen CB, Schmitz P, Hoffmann D et al (2003) Occurrence and non-detectability of maytansinoids in individual plants of the genera Maytenus and Putterlickia. Phytochem 62(3):377–387

    Article  CAS  Google Scholar 

  • Purushotham N, Jones E, Monk J, Ridgway H (2020) Community structure, diversity and potential of endophytic bacteria in the primitive New Zealand medicinal plant Pseudowintera colorata. Plants 9(2):156

    Article  PubMed Central  Google Scholar 

  • Rai R, Dash PK, Prasanna BM, Singh A (2007) Endophytic bacterial flora in the stem tissue of a tropical maize (Zea mays L.) genotype: isolation, identification and enumeration. World J Microbiol Biotechnol 23(6):853–858

    Google Scholar 

  • Rana KL, Kour D, Kaur T et al (2020) Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. Proc Natl Acad Sci, India Sect B Biol Sci 18:1–11

    Google Scholar 

  • Randriamanana TR, Nissinen K, Ovaskainen A et al (2018) Does fungal endophyte inoculation affect the responses of aspen seedlings to carbon dioxide enrichment? Fungal Ecol 33:24–31

    Article  Google Scholar 

  • Raya-González J, Velázquez-Becerra C, Barrera-Ortiz S, López-Bucio J, Valencia-Cantero E (2017) N, N-dimethyl hexadecylamine and related amines regulate root morphogenesis via jasmonic acid signalling in Arabidopsis thaliana. Protoplasma 254:1399–1410. https://doi.org/10.1007/s00709-016-1031-6

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6(4):139–144

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Romero FM, Marina M, Pieckenstain FL (2014) The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing. FEMS microbiology letters 351(2):187–194

    Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19(8):827–837

    Article  CAS  PubMed  Google Scholar 

  • Salam N, Khieu T, Liu M et al. (2017) Endophytic actinobacteria associated with Dracaena cochinchinensis Lour.: isolation, diversity, and their cytotoxic activities. BioMed Res Int. https://doi.org/10.1155/2017/1308563

  • Santangelo JS, Turley NE, Johnson MT (2015) Fungal endophytes of Festuca rubra increase in frequency following long-term exclusion of rabbits. Bot 93(4):233–241

    Article  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Römmert AK, Dammann U, Aust HJ, Strack D (1999) The endophyte-host interaction: a balanced antagonism? Mycol Res 103(10):1275–1283

    Article  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P et al (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sette LD, Passarini MRZ, Delarmelina C, Salati F, Duarte MCT (2006) Molecular characterization and antimicrobial activity of endophytic fungi from coffee plants. World J Microbiol Biotechnol 22(11):1185–1195

    Article  CAS  Google Scholar 

  • Shi XS, Li HL, Li XM et al (2020) Highly oxygenated polyketides produced by Trichoderma koningiopsis QA-3, an endophytic fungus obtained from the fresh roots of the medicinal plant Artemisia argyi. Bioorganic Chem 94:103448. https://doi.org/10.1016/j.bioorg.2019.103448

    Article  CAS  Google Scholar 

  • Shi Y, Yang H, Zhang T, Sun J, Lou K (2014) Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain. Appl Microbiol Biotechnol 98(14):6375–6385

    Article  CAS  PubMed  Google Scholar 

  • Shu S, Zhao X, Wang W, Zhang G, Cosoveanu A, Ahn Y, Wang M (2014) Identification of a novel endophytic fungus from Huperzia serrata which produces huperzine A. World J Microbiol Biotechnol 30(12):3101–3109. https://doi.org/10.1007/s11274-014-1737-6

  • Sikora RA, Schäfer K, Dababat AA (2007) Modes of action associated with microbially induced in planta suppression of plant-parasitic nematodes. Australas Plant Path 36(2):124–134

    Article  Google Scholar 

  • Singh BP (2019) Advances in endophytic fungal research: present status and future challenges, 1st edn. Springer, Switzerland

    Book  Google Scholar 

  • Spry C, Sewell AL, Hering Y, Villa MV, Weber J, Hobson SJ et al (2018) Structure-activity analysis of CJ-15,801 analogues that interact with Plasmodium falciparum pantothenate kinase and inhibit parasite proliferation. Eur J Med Chem 143:1139–1147

    Article  CAS  PubMed  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993(Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Sci 260:214–216

    Google Scholar 

  • Stone JK, Bacon CW, White JF (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF (eds) Microbial endophytes. Dekker, New York, pp 3–30

    Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19(1):1–30

    Article  Google Scholar 

  • Sumarah MW, Miller JD (2009) Anti-insect secondary metabolites from fungal endophytes of conifer trees. Nat Prod Commun 4(11):1497–1504

    CAS  PubMed  Google Scholar 

  • Suryanarayanan TS, Rajulu G, Vidal S (2016) Biological control through fungal endophytes: gaps in knowledge hindering success. Curr Biotechnol 5:1–13

    Google Scholar 

  • Taechowisan T, Wanbanjob A, Tuntiwachwuttikul P, Taylor WC (2006) Identification of Streptomyces sp. Tc022, an endophyte in Alpinia galanga, and the isolation of actinomycin D. Ann Microbiol. 2006(56):113–117. https://doi.org/10.1007/BF03174991

  • Tang L, Hamid Y, Sahito ZA, Gurajala HK, He Z, Yang X (2019) Effects of CO2 application coupled with endophyte inoculation on rhizosphere characteristics and cadmium uptake by Sedum alfredii Hance in response to cadmium stress. J Environ Manage 239:287–298

    Article  CAS  PubMed  Google Scholar 

  • Tawfike AF, Romli M, Clements C et al (2019) Isolation of anticancer and anti-trypanosome secondary metabolites from the endophytic fungus Aspergillus flocculus via bioactivity guided isolation and MS based metabolomics. J Chromatogr B 1106:71–83. https://doi.org/10.1016/j.jchromb.2018.12.032

    Article  CAS  Google Scholar 

  • Tomasino SF, Leister RT, Dimock MB, Beach RM, Kelly JL (1995) Field performance of Clavibacter xyli subsp. cynodontis expressing the insecticidal protein gene cryIA (c) of Bacillus thuringiensis against European corn borer in field corn. Biol Control 5(3):442–448

    Google Scholar 

  • Ullah A, Heng S, Farooq M, Munis H, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  • Vázquez-Chimalhua E, Ruíz-Herrera LF, Barrera-Ortiz S, Valencia-Cantero E, López-Bucio J (2019) The bacterial volatile dimethyl-hexa-decylamine reveals an antagonistic interaction between jasmonic acid and cytokinin in controlling primary root growth of Arabidopsis seedlings. Protoplasma 256(3):643–654. https://doi.org/10.1007/s00709-018-1327-9

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK et al (2019) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci 26(7):1882–1895. https://doi.org/10.1016/j.sjbs.2016.01.042

    Article  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK et al (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65(4):1885–1899. https://doi.org/10.1007/s13213-014-1027-4

    Article  CAS  Google Scholar 

  • Vicente-Hernández A, Salgado-Garciglia R, Valencia-Cantero E et al (2019) Bacillus methylotrophicus M4-96 stimulates the growth of strawberry (Fragaria x ananassa “Aromas”) plants in vitro and slows Botrytis cinerea infection by two different methods of interaction. J Plant Growth Regul. https://doi.org/10.1007/s00344-018-9888-6

    Article  Google Scholar 

  • Vinale F, Nicoletti R, Lacatena F et al (2017) Secondary metabolites from the endophytic fungus Talaromyces pinophilus. Nat Prod Res 31(15):1778–1785

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Lin H, Dong YB et al (2018) Isolation of vanadiumresistanceendophytic bacterium PRE01 from Pteris vittata in stone coal smelting district and characterization for potential use in phytoremediation. J Hazard Mater 341:1–9

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Yan H, Tang XC (2006) Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol Sin 27(1):1–26. https://doi.org/10.1111/j.1745-7254.2006.00255.x

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, Li HH, Feng GJ et al (2017) Biodegradation of diuron by an endophytic fungus Neurospora intermedia DP8-1 isolated from sugarcane and its potential for remediating diuron-contaminated soils. PLoS One 12(8):e0182556

    Google Scholar 

  • Wang ZR, Li G, Ji LX et al (2019) Induced production of steroids by co-cultivation of two endophytes from Mahonia fortunei. Steroids 145:1–4

    Article  CAS  PubMed  Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73(2):274–276. https://doi.org/10.2307/3545919

  • Wonglom P, Ito SI, Sunpapao A (2020) Volatile organic compounds emitted from endophytic fungus Trichoderma asperellum T1 mediate antifungal activity, defense response and promote plant growth in lettuce (Lactuca sativa). Fungal Ecol 43:100867

    Article  Google Scholar 

  • Xie Z, Chu Y, Zhang W, Lang D, Zhang X (2019) Bacillus pumilus alleviates drought stress and increases metabolite accumulation in Glycyrrhiza uralensis Fisch. Environ Exp Bot 158:99–106. https://doi.org/10.1016/j.envexpbot.2018.11.021

    Article  CAS  Google Scholar 

  • Xinxian L, Xuemei C, Yagang C, Woon-Chung WJ, Zebin W, Qitang W (2011) Isolation and characterization endophytic bacteria from hyperaccumulator Sedum alfredii Hance and their potential to promote phytoextraction of zinc polluted soil. World J Microbiol Biotechnol 27(5):1197–1207

    Article  CAS  Google Scholar 

  • Yadav AN, Kumar R, Kumar S et al (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5(6):45–57. https://doi.org/10.7324/JABB.2017.50607

    Article  CAS  Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020) Plant microbiomes for sustainable agriculture. Springer, Cham

    Book  Google Scholar 

  • Yamazaki Y, Someno T, Igarashi M, Kinoshita N, Hatano M, Kawada M et al (2015) Androprostamines A and B, the new anti-prostate cancer agents produced by Streptomyces sp. MK932-CF8. J Antibiot 68:279–285. https://doi.org/10.1038/ja.2014.135

  • Yan K, He L, Yang K (2020) Effects of SA and H2O2 mediated endophytic fungal elicitors on essential oil in suspension cells of Cinnamomum longepaniculatum. Open Acc Lib J 7(1):1–12. https://doi.org/10.4236/oalib.1106009

    Article  Google Scholar 

  • Young CA, Felitti S, Shields K et al (2006) A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genet Biol 43:679–693

    Article  CAS  PubMed  Google Scholar 

  • Yu TW, Bai L, Clade D et al (2002) The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci USA 99:7968–7973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang FF, Wang MZ, Zheng YX, Liu HY, Zhang XQ, Wu SS (2015) Isolation and characterization of endophytic huperzine A-producing fungi from Phlegmariurus phlegmaria. Microbiology 84(5):701–709. https://doi.org/10.1134/s0026261715050185

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23(5):753–771. https://doi.org/10.1039/b609472b

  • Zhao J, Zhou L, Wang J et al (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. Curr Res, Technol Educ Trop Appl Microbiol Microbial Biotechnol 1:567–576

    Google Scholar 

  • Zhao Y, Ji XL, Shen T et al (2020) Fungal endophytic communities of two wild Rosa varieties and the role of an endophytic Seimatosporium sp. in enhancing host plant powdery mildew resistance. Plant Soil 3:1–12

    Article  CAS  Google Scholar 

  • Zhou H, Yang Y, Peng T, Li W, Zhao L, Xu L, Ding Z (2014) Metabolites of Streptomyces sp., an endophytic actinomycete from Alpinia oxyphylla. Natural Product Research 28(4):265–267

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Ghorbanpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghasemnezhad, A., Frouzy, A., Ghorbanpour, M., Sohrabi, O. (2021). Microbial Endophytes: New Direction to Natural Sources. In: Maheshwari, D.K., Dheeman, S. (eds) Endophytes: Mineral Nutrient Management, Volume 3. Sustainable Development and Biodiversity, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-65447-4_6

Download citation

Publish with us

Policies and ethics