Skip to main content
Log in

Plasmid pUPI126-encoded pyrrolnitrin production by Acinetobacter haemolyticus A19 isolated from the rhizosphere of wheat

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An Acinetobacter species identified as A. haemolyticus A19 produces an antibiotic and the enzyme chitinase. The antibiotic produced by A. haemolyticus A19 was extracellular and inducible by co-cultivation with Klebsiella pneumoniae in the optimum ratio 2:1, respectively. pH 7, temperature 28 °C, and addition of 2 % (w/v) NaCl are the most suitable environmental conditions for production and activity of the antibiotic. The antibiotic was produced in the early stationary growth phase (48 h) of A. haemolyticus A19. It has a very broad spectrum of antimicrobial activity against plant and human pathogenic bacteria and fungi. The antibiotic was extracted with ethyl acetate and purified by column chromatography with further purification by preparative thin-layer chromatography. Yield of the antibiotic was 15 mg/l. The antibiotic was active at very low concentrations, for example 50 μg/ml, and was water-soluble. It was stable at room temperature for up to 7 days. 1H NMR analysis revealed the antibiotic was a pyrrolnitrin. It was found that pyrrolnitrin production by A. haemolyticus A19 was encoded by plasmid pUPI126 of molecular weight 25.7 kb. Plasmid pUPI126 was transferred to E. coli HB101 at a frequency of 5 × 10−5 per μg DNA. It was also conjugally transformed to E. coli HB101 rif r mutants at a frequency of 5.9 × 10−8 per recipient cell. Plasmid pUPI126 was 100 % stable in Acinetobacter and 95 % stable in E. coli HB101. Transconjugants and transformants both produced the antibiotic. This is the first report of plasmid-mediated pyrrolnitrin production by A. haemolyticus A19 isolated from wheat rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baumann P (1968) Isolation of Acinetobacter from soil and water. J Bacteriol 96:39–42

    CAS  Google Scholar 

  • Burkhead KD, Schisler DA, Shinner PJ (1994) Pyrrolnitrin production by biological control agent Pseudomonas cepacia B37w in culture and in colonized wounds of potatoes. Appl Environ Microbiol 60:2031–2039

    CAS  Google Scholar 

  • Cartwright DK, Chilton WS, Benson DM (1995) Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5B, a biocontrol agent of Rhizoctonia solani. Appl Environ Microbiol 43:211–216

    CAS  Google Scholar 

  • Casida SD (1988) Industrial microbiology in fermentation, 2nd edn. Oxford and IBH Publication, Co. Pvt. Ltd., Oxford

    Google Scholar 

  • Chernin L, Ismailov Z, Haran S et al (1995) Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogen. Appl Environ Microbiol 61(5):1720–1726

    CAS  Google Scholar 

  • Chernin L, Brandis A, Ismailov Z et al (1996) Pyrrolnitrin production by an Enterobacter agglomerans strain with a broad spectrum of antagonistic activity towards fungal and bacterial pathogens. Curr Microbiol 32:208–212

    Article  CAS  Google Scholar 

  • Chopade BA, Wise PJ, Towner KJ (1985) Plasmid transfer and behavior in Acinetobacter calcoaceticus EBF 65/65. J Gen Microbiol 131:2805–2809

    CAS  Google Scholar 

  • Chopade BA, Patwardhan RB, Dhakepahlkar PK (1994) Acinetobacter infections in India: genetic and molecular biological studies and some approaches to the problem. In: Sushil Kumar A, Sen K, Gupta GP, Sharma RN (eds) Tropical diseases: molecular biology and control strategies. CSIR Publication and Information Directorate, New Delhi, pp 704–717

  • Chopade BA., Huddedar SB, Shete AM, Tilekar JN, Dhavale DD (2008) Plasmid encoding IAA and a method thereof. United States Patent: US 7341868 B2

  • Corinia S, Schnerr H, Rumpf J, Kunzendorf A, Hatscher C, Wage T, Ernyei AJ, Dong C, Naismith JH, Van Pee KH (2006) A flavin dependent tryptophan 6-halogenase and its use in modification in pyrrolnitrin biosynthesis. Biocat Biotransform 24(6):401–408

    Article  Google Scholar 

  • Deshpande LM, Chopade BA (1994) Plasmid mediated silver resistance in Acinetobacter baumannii. Biometals 7:49–56

    Article  CAS  Google Scholar 

  • Di Santo R, Costi R, Artico M et al (1998) Pyrrolnitrin and related pyrroles endowed with antibacterial activities against Mycobacterium tuberculosis. Bioorg Med Chem Lett 8:2931–2936

    Article  Google Scholar 

  • Duffy BK, Defago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescence biocontrol strains. Appl Environ Microbiol 65:2429–2438

    CAS  Google Scholar 

  • Gaffney TD, Lam ST, Ligon J et al (1994) Global regulation of expression of antifungal factors by Pseudomonas fluorescens biological control strain. Mol Plant Microbe Interact 7:455–463

    Article  CAS  Google Scholar 

  • Gehmann K, Neyfeler R, Leadbeater A et al (1990) CGA173506: a new phenylpyrrol fungicide for broad spectrum disease control. Proc Brighton Crop Prot Conf Pests Dis 2:399–406

    Google Scholar 

  • Gupte TE, Naik SR (1999) Isolation, taxonomic and fermentation studies on a new strain of Streptomyces arenae ver ukrainiana producing a tetraene antibiotic. World J Microbiol Biotechnol 15:545–552

    Article  CAS  Google Scholar 

  • Hacene H, Daoudi-Handad Bhatnagar T et al (2000) H107, a new aminoglycosidase anti-Pseudomonas antibiotic produced by a new strain of Spirillospora. Microbios 102:69–77

    CAS  Google Scholar 

  • Hammer PE, Evensen KB (1993) Post harvest control of Botrytis cinerea on cut rose flowers with pyrrolnitrin. Plant Dis 77:283–286

    Article  CAS  Google Scholar 

  • Hammer PE, Hill DS, Lam ST et al (1997) Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl Environ Microbiol 63(6):2147–2154

    CAS  Google Scholar 

  • Huddedar SB, Gore SD, Chopade BA (2001) Studies on distribution and characterization of Acinetobacter species isolated form rhizosphere of wheat exhibiting antifungal and antibacterial activity. In: Proceedings of International Conference on Microbial Biotechnology Public Policy and Trade (ICMBT), Osmania University, Hyderabad, India. Paper no.: 13, pp 1–16

  • Huddedar SB, Shete AM, Tilekar JN et al (2002) Isolation, characterization and plasmid pUPI126 mediated indole 3 acetic acid (IAA) production in Acinetobacter strains from rhizosphere of wheat. J Appl Biochem Biotechnol 102–103:21–39

    Article  Google Scholar 

  • Hwang J, Chiltonb WS, Benson DM (2002) Pyrrolnitrin production by Burkholderia cepacia and biocontrol of Rhizoctonia stem rot of poinsettia. Biol Control 25(1):56–63

    Article  CAS  Google Scholar 

  • Itoh N, Morinsga N, Nomura A (1992) A variety of catalases and bromoperoxidases in genus Pseudomonas and their characterization. Biochem Biophys Acta 1122:189–195

    CAS  Google Scholar 

  • Itoh N, Morinaga M, Kouzai T (1994) Purification and characterization of novel metal containing bromoperoxidase from Pseudomonas putida. Biochem Biophys Acta 1207:208–216

    CAS  Google Scholar 

  • Jayaswal RK, Fernandez M, Upadhyay RS et al (1993) Antagonism of Pseudomona cepacia against pathogenic fungi. Curr Microbiol 26:17–22

    Article  CAS  Google Scholar 

  • Jespers BK, Davidase LC, Waard MA (1994) Interference of the phenylpyrrole fungicide fenpriclonil with membranes and membrane function. Pest Sci 40:133–140

    Article  CAS  Google Scholar 

  • Kado CI, Liu ST (1981) Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145:1365–1375

    CAS  Google Scholar 

  • Kearns LP, Mahanty HK (1997) Antibiotic production by Erwinia herbicola Eh 1087: its role in inhibition of Erwinia amylovora and partial characterization of antibiotic biosynthesis genes. Appl Environ Microbiol 64(5):1837–1844

    Google Scholar 

  • Koga J, Adachi T, Hidaka H (1991) IAA biosynthetic pathway from tryptophan via indole 3 pyruvic acid in Enterobacter cloacae. Agric Biol Chem 55:701–706

    Article  CAS  Google Scholar 

  • Laurentis WD, Khim L, Anderson JLR, Adam A, Johnson KA, Phillips RS, Chapman SK, van Pee KH, Naismith JH (2007) The second enzyme in pyrrolnitrin pathway is related to heme dependent dioxygenase family. Biochem 46(43):12393–12404

    Article  Google Scholar 

  • Leinhos V, Vocek O (1984) Biosynthesis of auxins by phosphate solubilizing rhizobacteria from wheat and rye. Microbiol Res 149(1):31–35

    Article  Google Scholar 

  • Ligon JM, Hill DS, Hammer PE, Torkewitz NR, Hofmann D, Kempf HJ, van Pee K-H (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manage Sci 56(8):688–695

    Article  CAS  Google Scholar 

  • Lilley AK, Fry JC, Day MJ et al (1994) In situ transfer of an exogenously isolated plasmid between Pseudomonas spp. in sugarbeet rhizosphere. Microbiology 140:27–33

    Article  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol regent. J Biol Chem 193:256–275

    Google Scholar 

  • Mali BS, Thengal SS, Pate PL (2012) Physico-chemical characteristics of salt affected soil from Barhanpur, MS, India. Ann Biol Res 3(8):4091–4092

    CAS  Google Scholar 

  • Mavordi DV, Loper JE, Paulsen IT, Thomashaow LS (2009) Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5. BMC Microbiol. doi:10.1186/1471-2180-9-8

    Google Scholar 

  • Naik GA, Bhat LN, Chopade BA et al (1994) Transfer of broad host range antibiotic resistant plasmids in soil microcosms. Curr Microbiol 28:209–215

    Article  Google Scholar 

  • Nevill D, Nyfeler R, Sozzi D (1988) CGA142705: a novel fungicide for seed treatment. Proc Brighton Crop Prot Conf Pests Dis 1:65–72

    Google Scholar 

  • Paradkar VR, Gupte TE, Joshi AP et al (1998) A novel Streptoverticillium cinnamonium var scleroticum producing a polyene antibiotic. World J Microbiol Biotechnol 14:1–5

    Article  Google Scholar 

  • Patil JR, Chopade BA (2001) Studies on bioemulsifier production by Acinetobacter strains isolated from healthy human skin. J Appl Microbiol 91:290–298

    Article  CAS  Google Scholar 

  • Payne SM (1994) Detection, isolation and characterization of siderophores. Meth Enzymol 235:329–344

    CAS  Google Scholar 

  • Perez C, Paul M, Bazerque P (1990) An antibiotic assay by the agar well diffusion method. Acta Biol Med Exp 15:113–115

    Google Scholar 

  • Porreta GC, Chimenti F, Biava M, Bolasco A et al (1985) Pyrrolnitrin analogues. XI-synthesis and microbiological activity of new 1,4 and 1,5,- diarylpyrroles. Farmaco Sci 40(8):589–607

    Google Scholar 

  • Porreta GC, Biavam M, Fioravanti R et al (1991) Research on antibacterial and antifungal agents. IX: synthesis and microbiological activity of new N-arylpyrroles. Farmaco Sci 46(7–8):987–995

    Google Scholar 

  • Reichenbach H, Gerth K, IrschikKunze HB et al (1988) Myxobacteria: a source of new antibiotics. Trends Biotechnol 6:115–121

    Article  CAS  Google Scholar 

  • Roitman JN, Mahoeny NE, Janisiewicz WJ (1990) Production and composition of phenylpyrrole metabolites produced by Pseudomonas cepacia. Appl Microbiol Biotechnol 34:381–386

    Article  CAS  Google Scholar 

  • Saha SC, Chopade BA (2001) Studies on occurrence and distribution of Acinetobacter spp. and other gram negative bacteria from meat. J Food Sci Technol 38:17–22

    Google Scholar 

  • Sambrook, Fritsch JEF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. CSH Publication, vol 1. Cold Spring Harbor Laboratory Press, New York

  • Scalzo M, Porretta GC, Cementi F et al (1988) A substance with antibacterial and antifungal activity. IV. Synthesis and microbiological activity of new 1,5,-diarylpyrrole derivatives. Farmaco Sci 43:665–676

    CAS  Google Scholar 

  • Sfalanga A, Di Cello F, Mugnai L et al (1999) Isolation and characterization of new antagonistic Burkholderia strain from rhizosphere of healthy tomato plants. Res Microbiol 150(1):45–59

    Article  CAS  Google Scholar 

  • Shakibaie MR, Kapdnis BP, Dhakephalker PK et al (1999) Removal of silver from photographic waste water effluent using Acinetobacter baumannii BL54. Can J Microbiol 45:995–1000

    CAS  Google Scholar 

  • Smit E, Wolters A, van Elsas JD (1998) Self-transmissible mercury resistance plasmids with gene mobilizing capacity in soil bacterial populations: influence of wheat roots and mercury addition. Appl Environ Microbiol 64(4):1210–1219

    CAS  Google Scholar 

  • Tawara S, Matsumoto S, Hirose T et al (1989) In vitro antifungal synergism between pyrrolnitrin and clotrimazole. Jpn J Med Mycol 30:202–210

    Article  Google Scholar 

  • Thongsri Y, Aromdee C, Yenjai C, Kanokmedhakul S, Chaiprasert A, Hamal P, Prariyachatigul C (2012) Detection of diketopiperazine and pyrrolnitrin compounds with anti-pythium insidiosum activity, in Pseudomonas stutzeri environmental strain. Biomed. Pap Med Fac Univ Palacky Olomouc Czech Repub 156(XX):1–6

  • Umio S, Kamimura T, Kamishita T et al (1986) Antifungal composition employing pyrrolnitrin in combination with imidazole compound. U.S. Patent, US4, 636,520

  • van Elsas JD, Trevors JT, Starodub ME (1988) Bacterial conjugation in rhizosphere of wheat. FEMS Microbiol Ecol 53:299–306

    Article  Google Scholar 

  • van Pee KH, Ligon JM (2000) Biosynthesis of pyrrolnitrin and other phenylpyrrole derivatives by bacteria. Nat Prod Rep 17(2):157–164

    Article  Google Scholar 

  • van Pée KH, Ligon JM (1998) Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J Bacteriol 180(7):1939–1943

    Google Scholar 

  • van Pee K-H, Patallo EP (2006) Flavin dependent halogenases involved in secondary metabolism in bacteria. Appl Microbiol Biotechnol 70:631–641

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We express our thanks to Dr D. D. Dhavale, Department of Chemistry, University of Pune, India, for his valuable help. We would also like to express our gratitude to Dr Karishma Pardesi, Department of Microbiology, University of Pune, for her support. We would also like to thank the National Collection of Industrial Microorganisms (NCIM), Pune, India, the Armed Forces Medical College (AFMC), Pune, India, and Byramjee Jeejeebhoy Medical College (BJMC), Pune, India, for providing us with the cultures and contributing significantly to the research work. We thank Dr H. V. Ghate, Department of Zoology, Modern College of Arts, Science and Commerce, Shivajinagar, Pune, India, for checking the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpa S. Mujumdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mujumdar, S.S., Bashetti, S.P. & Chopade, B.A. Plasmid pUPI126-encoded pyrrolnitrin production by Acinetobacter haemolyticus A19 isolated from the rhizosphere of wheat. World J Microbiol Biotechnol 30, 495–505 (2014). https://doi.org/10.1007/s11274-013-1426-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1426-x

Keywords

Navigation