Skip to main content

Challenges and Opportunities in Vegetable Production in Changing Climate: Mitigation and Adaptation Strategies

  • Chapter
  • First Online:
Advances in Research on Vegetable Production Under a Changing Climate Vol. 1

Abstract

A considerable change in climate at globally will impact the vegetable cultivation as well as overall agriculture; thus affecting the whole chain of world food. Itself change in climate is not so much harmful but the extreme events such as irregular rainfall patterns, high and low temperatures that are difficult to forecast and reduce crop productivity. Any sudden changes in climatic factors like change in temperature, erratic precipitation can affect the different growth stages of plant growth like pollination, flowering, fruit setting, development and ripening because of succulent (have 90% water) and sensitive nature of vegetables towards climate change. The irregular precipitation also causes the soil salinity and is major challenge in many vegetable growing areas. Development of adequate adaptation strategies is one of most important need to stand against the adverse situation and the preference should be given on development of heat, cold, drought, flood and salinity stress tolerant genotypes along with climate proofing through traditional and advanced breeding techniques. In India, according to existing events the occurrence and intensity of climate related natural hazards are increasing due to which potential threat caused by climate change related to natural disasters got increased; moreover Bihar is also affected by these hazard. Bihar is mainly affected by hydro-meteorological natural disasters, like North Bihar is mainly affected by flooding whereas, South Bihar by drought and heat stress due to the recent climatic change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla AA, Verderk K (1968) Growth, flowering and fruit set of tomato at high temperature. Neth J Agric Sci 16:71–76

    Google Scholar 

  • Abdelmageed AHA, Gruda N (2009) Influence of grafting on growth, development and some physiological parameters of tomatoes under controlled heat stress conditions. Eur J Hortic Sci 74(1):16–20

    Google Scholar 

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ackerman F, Stanton E (2013) Climate impacts on agriculture: a challenge to complacency? 13-04. Global Development and Environment Institute Working Paper. Tufts University, Medford

    Google Scholar 

  • Acquaah G (2009) Principles of plant genetics and breeding. Wiley, New York

    Google Scholar 

  • Afroza B, Wani KP, Khan SH, Jabeen N, Hussain K, Mufti S, Amin A (2010) Various technological interventions to meet vegetable production challenges in view of climate change. Asian J Hortic 5(2):523–529

    Google Scholar 

  • Akhtar S, Naik A, Hazra P (2014) Harnessing heat stress in vegetable crops towards mitigating impacts of climate change. Chapter 10: 173–200. In: Chaudhary ML, Patel VB, Siddiqui MW, Mahdi SS (eds) Climate change: the principles and applications in horticultural science, vol I. CRC Press, Boca Raton, pp 1–396. isbn:9781771880312

    Google Scholar 

  • Alam MS, Sultana N, Ahmad S, Hossain MM, Islam AKMA (2010) Performance of heat tolerant tomato hybrid lines under hot, humid conditions. Bangladesh J Agric Res 35(3):367–373

    Article  Google Scholar 

  • Anonymous (2000) United States global change program research. Global climate change impacts in the United States: Agriculture: Washington, DC, pp 71–78

    Google Scholar 

  • Anonymous (2006). http://solgenomics.net

  • Anonymous (2015) Indian horticulture database – 2014, Ministry of Agriculture, Government of India, Gurgaon

    Google Scholar 

  • Anonymous (2020) Great American Media Services & Vegetable Growers News- 2020. https://vegetablegrowersnews.com/news/some-heat-tolerant-vegetable-varieties-to-consider/

  • Arvin MJ, Donnelly DJ (2008) Screening potato cultivars and wild species to abiotic, stresses using an electrolyte leakage bioassay. J Agric Sci Technol 10:33–42

    Google Scholar 

  • AVRDC (1990) Vegetable production training manual. Asian Vegetable Research and Training Center. Shanhua, Tainan, 447.

    Google Scholar 

  • AVRDC (2003) Guide: grafting tomatoes for production in the hot-wet season. Asian Vegetable Research and Development Center, Publ. No#03-551, Shanhua, Tainan, Taiwan, 6pp. www.avrdc.org/fileadmin/pdfs/graftingtomatoes.pdf

  • AVRDC (2009) Guide: grafting sweet peppers for production in the hot-wet season. Asian vegetable Research and Development Center, Publ.-No 09-722-e, Shanhua, Tainan, Taiwan, 8pp. www.libnts.avrdc.org.tw/fulltext pdf/FLYER/f0002.pdf

  • Bahadur A, Chatterjee A, Kumar R, Singh M, Naik PS (2011) Physiological and biochemical basis of drought tolerance in vegetables. Vegetable Sci 38(1):1–16

    Google Scholar 

  • Bahieldin A, Hesham HT, Eissa HF, Saleh OM, Ramadan AM, Ahmed IA, Dyer WEEL, Itriby HA, Madkour MA (2005) Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol Plant 123:421–427

    Article  CAS  Google Scholar 

  • Basnayake J, Looper M, Ludlow MM, Henzell RG, Snell PJ (1995) Inheritance of osmotic adjustment to water stress in three sorghum crosses. Theoratical Appl Genetics 90(5):675–682

    Article  CAS  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (2008) Climate change and water. IPCC Technical Paper VI, Geneva, 210 pp

    Google Scholar 

  • Ben-Ahmad C, Ben-Rouina B, Athar HUR, Boukhriss M (2006) Olive tree (Olea europaea L. CV. “Chemlali”) under salt stress: water relations and ions content. Pak J Bot 38(5):1477–1484

    Google Scholar 

  • Beppu K, Kataoka I (2011) Studies on pistil doubling and fruit set of sweet cherry in warm climate. J Japn Soc Hortic Sci 80:1–13

    Article  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beyly GB, Peltier A, Rey GP (1998) Molecular characterization of CDSP-34, a chloroplastic protein induced by water deficit in Solanum tuberosum L. plants, and regulation of CDSP-34 expression by ABA and high illumination. Plant J Cell Molecular Biol 16(2):257–262

    Article  Google Scholar 

  • Bieto JA, Talon M, Fisiologia Y (1996) Bioquimica vegetal. McGraw-Hill Inter-Americana, Madrid, p 581

    Google Scholar 

  • Bloom AJ, Zwieniecki MA, Passioura JB, Randall LB, Holbrook NM, St. Clair DA (2004) Water relations under root chilling in a sensitive and tolerant tomato species. Plant Cell Environ 27:971–979

    Article  Google Scholar 

  • Blum A (1988a) Plant breeding for stress environments. CRC Press, Boca Raton, 223p

    Google Scholar 

  • Blum A (1988b) Improving wheat grain filling under stress by stem reserve mobilisation. Euphytica 100:77–83

    Article  Google Scholar 

  • Blum A, Schertz KF, Toler RW, Welch RI, Rosenow DT, Johnson JW, Clark LE (1978) Selection for drought avoidance in sorghum using aerial infrared photography. Agron J 70:472–477

    Article  CAS  Google Scholar 

  • Blum A, Mayer J, Golan G (1982) Infrared thermal sensing of plant canopies as a screening technique for dehydration avoidance in wheat. Field Crop Res 57:137–146

    Article  Google Scholar 

  • Blum A, Piorkova H, Golan G, Mayer J (1983) Chemical desiccation of wheat plants as simulator of post-anthesis stress I. Effects on translocation and kernel growth. Field Crop Res 6:51–58

    Article  Google Scholar 

  • Bohm W (1974) Mini-rhizotrons for root observations under field conditions. J Agron Crop Sci-Zeitschrift Für Acker Und Pflanzenbau 140:282–287

    Google Scholar 

  • Bolanos J, Edmeades GO (1993) Eight cycles of selection for drought tolerance in lowland tropical maize.1. Responses in grain-yield, biomass, and radiation utilization. Field Crop Res 31:233–252

    Article  Google Scholar 

  • Boyer JS, Westgate ME (2004) Grain yields with limited water. J Exp Bot 55:2385–2394

    Article  CAS  PubMed  Google Scholar 

  • Buescher RW (1979) Influence of high temperature on physiological and compositional characteristics tomato fruits. Leben-Wissen Technol 12:162–164

    CAS  Google Scholar 

  • Capiati DA, País SM, Téllez-Iñón MT (2006) Wounding increases salt tolerance in tomato plants: evidence on the participation of calmodulin-like activities in cross-tolerance signaling. J Exp Bot 57:2391–2400

    Article  CAS  PubMed  Google Scholar 

  • Cattivelli L, Baldi P, Crosatti C, Di Fonzo N, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM (2002) Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol 48:649–665

    Article  CAS  Google Scholar 

  • Chakhchar A, Lamaoui M, Aissam S, Ferradous A, Wahbi S, El Mousadik A, Ibnsouda-Koraichi S, Filali-Maltouf A, El Modafar C (2016) Differential physiological and antioxidative responses to drought stress and recovery among four contrasting Argania spinosa ecotypes. J Plant Interact 11(1):30–40. https://doi.org/10.1080/17429145.2016.1148204

    Article  CAS  Google Scholar 

  • Chakrabarti B, Singh SD, Anand A, Singh MP, Pathak H, Nagarajan S (2012) Impact of high temperature on crop and soil (Chapter 8), 88–95. In: Pathak H, Aggarwal PK, Singh SD (eds) Climate change impact, adaptation and mitigation in agriculture: methodology for assessment and applications. Indian Agricultural Research Institute, New Delhi, p xix + 302. isbn:978-81-88708-82-6

    Google Scholar 

  • Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathol 60:1–14

    Article  Google Scholar 

  • Chan HT, Linse E (1989) Conditioning cucumbers to increase heat resistance in the EFE system. J Food Sci 54:1375–1376

    Article  Google Scholar 

  • Charrler A (1984) Genetic resources of Abelmoschus (okra). IBPGR Secretariat, Rome, 5pp

    Google Scholar 

  • Chatterjee A, Solankey SS (2014) Functional physiology in drought tolerance of vegetable crops- an approach to mitigate climate change impact, Chapter 9, 149–172. In: Chaudhary ML, Patel VB, Siddiqui MW, Mahdi SS (eds) Climate change: the principles and applications in horticultural science, vol I. CRC Press, Boca Raton, pp 1–396. isbn:9781771880312

    Google Scholar 

  • Chaudhary A, Sehgal VK, Das M, Pathak H (2012) Vulnerability of the Indo-Gangetic plains to climate change (Chapter 19), 263–269. In: Pathak H, Aggarwal PK, Singh SD (eds) Climate change impact, adaptation and mitigation in agriculture: methodology for assessment and applications. Indian Agricultural Research Institute, New Delhi, p xix + 302. isbn:978-81-88708-82-6

    Google Scholar 

  • Chavan ML (2007) Drought tolerance studies in tomato (Lycopersicon esculentum Mill.). Department of Crop Physiolgoy College of Agriculture, Dharwad University of Agricultural Sciences, Dharwad, pp 133–135

    Google Scholar 

  • Chigumira NF, Grubben GJH (2004) Cucurbita maxima Duchesne. In: Grubben GJH, Denton OA (eds) PROTA2: vegetables/legumes. PROTA, Wageningen

    Google Scholar 

  • Chinnusamy V, Zhu J, Zhou T, Zhu JK (2007) Small RNAs big role in abiotic stress tolerance of plants. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht

    Google Scholar 

  • Clarke JM, Townley-Smith TF, McCaig TN, Green DG (1984) Growth analysis of spring wheat cultivars of varying drought resistance. Crop Sci 24:537–541

    Article  Google Scholar 

  • Cruz RV, Harasawa H, Lal M, Wu S, Anokhin Y, Punsalmaa B, Honda Y, Jafari M, Li C, Huu N (2007) Asia climate change-2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of Working Group-II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 469–506

    Google Scholar 

  • Cuartero J, Fernandez-Munoz R (1999) Tomato and salinity. Sciencia Hortic 78:83–125

    Article  CAS  Google Scholar 

  • Cuartero J, Bolarin MC, Asins MJ, Moreno V (2006) Increasing salt tolerance in tomato. J Exp Bot 57:1045–1058

    Article  CAS  PubMed  Google Scholar 

  • Cushman JC (2001) Crasulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant Physiol 127:1439–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dane F, Liu J (2007) Diversity and origin of cultivated and citron type watermelon (Citrullus lanatus). Genet Resour Crop Evol 54:1255–1265

    Article  CAS  Google Scholar 

  • Davis AR, Perkins-Veazie P, Dakata Y, Lopez-Galarza S, Maroto JV, Lee SG, Hyh YC, Sun Z, Miguel A, King SR, Cohen R, Lee JM (2008) Cucurbit grafting. Crit Rev Plant Sci 27:50–74

    Article  Google Scholar 

  • de la Peña R, Hughes J (2007) Improving vegetable productivity in a variable and changing climate. SAT eJ 4(1):1–22

    Google Scholar 

  • Deschenes O, Greenstone M (2012) The economic impacts of climate change: evidence from agricultural output and random fluctuations in weather: reply. Am Econ Rev 102:3761–3773

    Article  Google Scholar 

  • Drew MC (1979) Plant responses to anaerobic conditions in soil and solution culture. Curr Adv Plant Sci 36:1–14

    Google Scholar 

  • Edelstein M (2004) Grafting vegetable crop plants pros and cons. Acta Hortic 65

    Google Scholar 

  • Edmeades GO, Bolanos J, Elings A, Ribaut JM, Banziger M, Westgate ME (2000) The role and regulation of the anthesis silking interval in maize. In: Westgate ME, Boote KJ (eds) Physiology and modelling kernel set in maize. CSSA special publication no 29. CSSA, Madison, pp 43–73

    Google Scholar 

  • Ekanayake IJ, O’Toole JC, Garrity DP, Masajo TM (1985) Inheritance of root characters and their relations to drought resistance in rice. Crop Sci 25:927–933

    Article  Google Scholar 

  • Ezin V, Vodounon CA, de la Peña R, Ahanchede A, Handa AK (2012) Gene expression and phenotypic characterization of flooding tolerance in tomato. J Evol Biol Res 4(3):59–65

    Article  Google Scholar 

  • FAO (2009). Global Agriculture towards 2050. Issues brief. High level expert forum. Rome, 12–13 October. www.fao.org/wsfs/forum2050/wsfs-background-documents/hlef-issuesbriefs/en/. Accessed Mar 2010

  • Farlas-Rodriguez R, Melllor RB, Arias C, Peña CJ (1998) The accumulation of trehalose in nodules of several cultivars of common bean (Phaseolus vulgaris L.) with resistance to drought stress. Physiol Plants 102:353–359

    Article  Google Scholar 

  • Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust J Plant Physiol 11:539–552

    CAS  Google Scholar 

  • Firon N, Shaked R, Peet MM, Phari DM, Zamsk E, Rosenfeld K, Althan L, Pressman NE (2006) Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Sci Hortic 109:212–217

    Article  CAS  Google Scholar 

  • Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296(5573):1689–1691

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Yeo AR (1986) Ion relations of plants under drought and salinity. Aust J Plant Physiol 13:75–91

    CAS  Google Scholar 

  • Foolad MR (2005) Breeding for abiotic stress tolerances in tomato. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. The Haworth Press Inc., New York, pp 613–684

    Google Scholar 

  • Gaff DF (1980) Protoplasmic tolerance of extreme water stress. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley, New York, pp 207–230

    Google Scholar 

  • Garg A, Kim J, Owens T, Ranwala A, Choi Y, Kochian L, Wu R (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought and salt tolerant plants result from over expression of the AVP1 H+- pump. Proc Natl Acad Sci USA 98:11444–11449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gay AP (1986) Variation in selection for leaf water conductance in relation to growth and stomatal dimensions in Lolium perenne L. Ann Bot 57:361–369

    Article  Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent management and case studies. The Australian National University/CAB International, Canberra/Wallingford, 526p

    Google Scholar 

  • Ghini R, Bettiol W, Hamada E (2011) Diseases in tropical and plantation crops as affected by climate changes: current knowledge and perspectives. Plant Pathol 60:122–132

    Article  Google Scholar 

  • Giombini MI, Frankel N, Iusem ND, Hasson E (2009) Nucleotide polymorphism in the drought responsive gene Asr-2 in wild populations of tomato. Genetica 136(1):13–25

    Article  CAS  PubMed  Google Scholar 

  • Goodstal F, Kohler G, Randall L, Bloom A, St. Clair D (2005) A major QTL introgressed from wild Lycopersicon hirsutum confers chilling tolerance to cultivated tomato (Lycopersicon esculentum). Theor Appl Genet 111:898–905

    Article  CAS  Google Scholar 

  • Gulam F, Prodhan ZH, Nezhadahmadi A, Rahman M (2012) Heat tolerance in tomato. Life Sci J 9(4):1936–1950

    Google Scholar 

  • Hall AJ, McPherson HG, Crawford RA, Seager NG (1996) Using early season measurements to estimate fruit volume at harvest in kiwifruit. N Z J Crop Hortic Sci 24:379–391

    Article  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2010) Selenium in higher plants physiological role, antioxidant metabolism and abiotic stress tolerance. J Plant Sci 5:354–375

    Article  CAS  Google Scholar 

  • Hazra P, Som MG (1999) Technology for vegetable production and improvement. Naya Prokash, Kolkata, India

    Google Scholar 

  • Hemantaranjan A, Nishant BA, Singh MN, Yadav DK, Patel PK (2014) Heat stress responses and thermotolerance. Adv Plants Agric Res 1(3):00012. https://doi.org/10.15406/apar.2014.01.00012

    Article  Google Scholar 

  • Hicks JR, Manzano-Mendez J, Masters JF (1983) Temperature extremes and tomato ripening. Proc Fourth Tomato Quality Workshop 4:38–51

    Google Scholar 

  • Hoad SP, Russell G, Lucas ME, Bingham IJ (2001) The management of wheat, barley and oat root systems. Adv Agron 74:193–246

    Article  CAS  Google Scholar 

  • Hsieh TH, Lee JT, Charng YY, Chan MT (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh TH, Li CW, Su RC, Cheng CP, Sanjaya T, Y.C. and Chan, M.T. (2010) A tomato bZIP transcription factor, SIAREB, is involved in water deficit and salt stress response. Planta 231(6):1459–1473

    Article  CAS  PubMed  Google Scholar 

  • Hu WH, Zhou YD, Du YS, Xia XJ, Yu JQ (2006a) Differential response of photosynthesis in greenhouse and field ecotypes of tomato to long-term chilling under low light. J Plant Physiol 163:1238–1246

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006b) Over expressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IMD, Annual Climate Summary (2010) India Meteorological Department, Pune. Government of India, Ministry of Earth Sciences, p 27

    Google Scholar 

  • IPCC (2001) Climate change 2001 impacts, adaptation and vulnerability. Intergovernmental Panel on Climate Change, New York

    Google Scholar 

  • IPCC (2007) Climate change–2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB et al (eds) Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/ CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:1–13

    Article  CAS  Google Scholar 

  • Janska A, Marsik P, Zelenkova S, Ovesna J (2012) Cold stress and acclimation: what is important for metabolic adjustment? Plant Biol 12:395–405

    Article  CAS  Google Scholar 

  • Jones HG (1999) Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell Environ 22:1043–1055

    Article  Google Scholar 

  • Jones HG (2007) Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. J Exp Bot 58:119–130

    Article  CAS  PubMed  Google Scholar 

  • Jones MM, Osmond CB, Turner NC (1980) Accumulation of solutes in leaves of sorghum and sunflower in response to water deficits. Aust J Plant Physiol 7:181–192

    Google Scholar 

  • Kadioglu A, Terzi R, Saruhan N, Saglam A (2012) Current advances in the investigation of leaf rolling caused by biotic and abiotic stress factors. Plant Sci 182:42–48

    Article  CAS  PubMed  Google Scholar 

  • Kalia P, Yadav RK (2014) Climate change and its impact on productivity and bioactive health compounds of vegetable crops. Chapter 8, pp 117–147. In: Chaudhary ML, Patel VB, Siddiqui MW, Mahdi SS (eds) Climate change: the principles and applications in horticultural science, vol I. CRC Press, Boca Raton, pp 1–396. isbn:9781771880312

    Google Scholar 

  • Kavar T, Maras M, Kidriè M, Šuštar-Vozliè J, Megliè V (2011) The expression profiles of selected genes in different bean species (Phaseolus spp.) as response to water deficit. J Cent Eur Agric 12(4):557–576

    Article  Google Scholar 

  • Kavi Kishor PB, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Over-expression of d-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 25:1387–1394

    Article  Google Scholar 

  • Kawase M (1981) Anatomical and morphological adaptation of plants to water logging. Hortic Sci 16:30–34

    CAS  Google Scholar 

  • Kerstiens G (1996) Cuticular water permeability and its physiological significance. J Exp Bot 47:1813–1832

    Article  CAS  Google Scholar 

  • Khah EM, Kakava E, Mavromatis A, Chachalis D, Goulas C (2006) Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open-field. J Appl Hortic 8:3–7

    Article  Google Scholar 

  • Kim HL, Kim JH, Kim JJ, Sung CJ, Young H (2005) Molecular and functional characterization of CaLEA6, the gene for a hydrophobic LEA protein from Capsicum annuum. Gene 344:115–123

    Article  CAS  PubMed  Google Scholar 

  • Kirnak H, Kaya C, Ismail TAS, Higgs D (2001) The influence of water deficit on vegetative growth, physiology, fruit yield and quality in eggplants. Bulg J Plant Physiol 27(3-4):34–46

    Google Scholar 

  • Krammer PJ (1980) Drought resistance and the origin of adaptation. In: Turner NC, Krammer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley-Interscience, New York, pp 7–20

    Google Scholar 

  • Kremen C (2013) Integrated crop pollination for resilience against climate change and other problems. Presented at the California Department of Food and Agriculture Climate Change Adaptation Consortium, March, 20, American Canyon, CA

    Google Scholar 

  • Krishna R, Karkute SG, Ansari WA, Jaiswal DK, Verma JP, Singh M (2019) Transgenic tomatoes for abiotic stress tolerance: status and way ahead. 3 Biotech 9(4):143. https://doi.org/10.1007/s13205-019-1665-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar RR, Goswami S (2012) Biochemical traits of crops for adaptation to climate change. Chapter 13, 149–172. In: Pathak H, Aggarwal PK, Singh SD (eds) Climate change impact, adaptation and mitigation in agriculture: methodology for assessment and applications. Indian Agricultural Research Institute, New Delhi, p xix + 302

    Google Scholar 

  • Kumar R, Singh M (2006) Citation information genetic resources, chromosome engineering, and crop improvement vegetable crops (Singh RJ, ed) Vol 3. CRC Press, Boca Raton, pp 473–496

    Google Scholar 

  • Kumar A, Verma JP (2018) Does plant—microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52. https://doi.org/10.1016/j.micres.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Solankey SS, Singh M (2012) Breeding for drought tolerance in vegetables. Veg Sci 39(1):1–15

    Google Scholar 

  • Kuo DG, Tsay JS, Chen BW, Lin PY (1982) Screening for flooding tolerance in the genus Lycopersicon. Hortic Sci 17(1):76–78

    Google Scholar 

  • Kusvuran S (2012) Effects of drought and salt stresses on growth, stomatal conductance, leaf water and osmotic potentials of melon genotypes (Cucumis melo L.). Afr J Agric Res 7(5):775–781

    Google Scholar 

  • Laporte MM, Shen B, Tarczynski MC (2002) Engineering for drought avoidance: expression of maize NADP-malic enzyme in tobacco results in altered stomatal function. J Exp Bot 53:699–705

    Article  CAS  PubMed  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    Article  CAS  PubMed  Google Scholar 

  • Lazcano-Ferrat I, Louatt CJ (1999) Relationship between relative water content, nitrogen pools, and growth of Phaseolus vulgaris L. and P. acutifolius A. Gray during water deficit. Crop Sci 39:467–475

    Article  CAS  Google Scholar 

  • Leonardis AMD, Petrarulo M, Vita PD, Mastrangelo AM (2012) Genetic and molecular aspects of plant response to drought in annual crop species. In: Giuseppe M, Dichio B (eds) Advances in selected plant physiology aspects. InTech Publisher, Rijeka, pp 45–74

    Google Scholar 

  • Levitt JB (1972) Responses of plants to environmental stresses. Academic, New York

    Google Scholar 

  • Li Z, Palmer WM, Martin AP, Wang R, Rainsford F, Jin Y et al (2012) High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. J Exp Bot 63:1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Liao CT, Lin CH (1996) Photosynthetic response of grafted bitter melon seedling to flood stress. Environ Exp Bot 36:167–172

    Article  Google Scholar 

  • Linsley RK, Kohler MA, Paulhus JLH (1959) Applied hydrology. McGraw-Hill, New York

    Google Scholar 

  • Lloyd J, Farquhar GD (2008) Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philos Trans R Soc Biol Sci 363:1811–1817

    Article  CAS  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620

    Article  CAS  PubMed  Google Scholar 

  • Lunin J, Gallatin MH, Batchelder AR (1963) Saline irrigation of several vegetable crops at various growth stages I. Effect on yields. Agron J 55:107–114

    Article  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1995) Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J Exp Bot 46:1843–1852

    Article  CAS  Google Scholar 

  • Magan N, Medina A, Aldred D (2011) Possible climate-change effects on mycotoxin contamination of food crops pre- and postharvest. Plant Pathol 60:150–163

    Article  CAS  Google Scholar 

  • Maheswari M, Sarkar B, Vanaja M, Srinivasa Rao M, Srinivasa Rao C, Venkateswarlu B, Sikka AK (2015) Climate resilient crop varieties for sustainable food production under aberrant weather conditions. Central Research Institute for Dryland Agriculture (ICAR), Hyderabad, p 47

    Google Scholar 

  • Maldonado C, Squeo FA, Ibacache E (2003) Phenotypic response of Lycopersicon chilense to water deficit. Revista Chilena Historia Natural 76:129–137

    Article  Google Scholar 

  • Martin B, Thorstenson YR (1988) Stabel carbon isotope composition (delta 13C), water use efficiency and biomass productivity of Lycopersicon esculentum, Lycopersicon pennellii, and the F1 hybrid. Plant Physiol 88:213–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin B, Tauer CG, Lin RK (1999) Carbon isotope discrimination as a tool to improve water-use efficiency in tomato. Crop Sci 39:1775–1783

    Article  Google Scholar 

  • Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436:866–870

    Article  CAS  PubMed  Google Scholar 

  • Matsubara S (1989) Studies on salt tolerance of vegetables-3. Salt tolerance of rootstocks. Agric Bull, Okayama University 73:17–25

    Google Scholar 

  • Mattos LM, Moretti CL, Jan S, Sargent SA, Lima CEP, Fontenelle MR (2014) Climate changes and potential impacts on quality of fruit and vegetable crops (Chapter 19). In: Ahmad P (ed) Emerging technologies and management of crop stress tolerance, vol 1. Academic, San Diego, pp 467–486. https://doi.org/10.1016/B978-0-12-800876-8.00019-9

    Chapter  Google Scholar 

  • McKersie BD, Bowley SR, Harjanto E, Leprice O (1996) Water-deficit tolerance and field performance of transgenic alfalfa over-expressing superoxide dismutase. Plant Physiol 111:1177–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medellı’n-Azuara J, Howitt RE, Duncan J, MacEwan, Lund JR (2011) Economic impacts of climaterelated changes to California agriculture. Climate Change 109:387–405

    Article  Google Scholar 

  • Midmore DJ, Roan YC, Wu DL (1997) Management practices to improve lowland subtropical summer tomato production: yields, economic returns and risk. Exp Agric 33:125–137

    Article  Google Scholar 

  • Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet. https://doi.org/10.1007/s00122-012-1904-9

  • Mitra J (2001) Genetics and genetic improvement of drought resistance in crop plants. Curr Sci 80(6):758–763

    CAS  Google Scholar 

  • Mohammed M, Wilson LA, Gomes PI (1996) Influence of high temperature stress on postharvest quality of processing and non-processing tomato cultivars. J Food Qual 19:41–55

    Article  Google Scholar 

  • Moreno AA, Orellana A (2011) The physiological role of the unfolded protein response in plants. Biol Res 44:75–80

    Article  CAS  PubMed  Google Scholar 

  • Moretti CL, Mattos LM, Calbo AG, Sargent SA (2010) Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: a review. Food Res Int 43:1825–1832

    Article  CAS  Google Scholar 

  • Morgan JM (1980) Osmotic adjustment in the spikelet and leaves of wheat. J Exp Bot 31:655–665

    Article  Google Scholar 

  • Morgan JM (1983) Osmoregulatiom as selection criterion for drought tolerance in wheat. Aust J Agric Res 34:607–614

    Article  Google Scholar 

  • Muller F, Xu J, Kristensen L, Wolters-Arts M, de Groot PFM, Jansma SY, Mariani C, Park S, Rieu I (2016) High-temperature-induced defects in tomato (Solanum lycopersicum) anther and pollen development are associated with reduced expression of B-class floral patterning genes. PLoS One 11(12):e0167614. https://doi.org/10.1371/journal.pone.0167614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nahar K, Ullah SM (2011) Effect of water stress on moisture content distribution in soil and morphological characters of two tomato (Lycopersicon esculentum Mill) cultivars. J Sci Res 3(3):677–682

    Article  Google Scholar 

  • Nakagawa H, Horie T, Nakano HY, Kim K, Wada K, Kobayashi M (1993) Effects of elevated CO2 concentration and high temperature on the growth and development of rice. J Agri Meteorol 48:799–802

    Article  Google Scholar 

  • Narayan R (2009) Air pollution a threat in vegetable production. In: Sulladmath UV, Swamy KRM (eds) International conference on horticulture (ICH-2009): horticulture for livelihood security and economic growth, pp 158–159

    Google Scholar 

  • Naveed A, Khan AA, Khan IA (2009) Generation mean analysis of water stress tolerance in okra (Abelmoschous esculentus L.). Pak J Bot 41(1):195–205

    Google Scholar 

  • Ndunguru BJ, Ntare BR, Williams JH, Greenberg DC (1995) Assessment of groundnut cultivars for end of season drought tolerance in a Sahelian environment. J Agric Sci (Camb) 125:79–85

    Article  Google Scholar 

  • O’Connell MA, Medina AL, Sanchez Pena Pand Trevino MB (2007) Molecular genetics of drought resistance response in tomato and related species. In: Razdan MK, Mattoo AK (eds) Genetic improvement of Solanaceous crops, Tomato, vol 2. Science Publishers, Enfield, pp 261–283

    Google Scholar 

  • O’Toole JC, Moya TB (1978) Genotypic variation in maintenance of leaf water potential in rice. Crop Sci 18:873–876

    Article  Google Scholar 

  • Obidiegwu JE, Bryan GJ, Jones HG, Prashar A (2015) Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Front Plant Sci 6:542. https://doi.org/10.3389/fpls.2015.00542

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Kim NYK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada M, Ozawa K, Hamasaki T (1992) A use of TRC technique for an analysis of crop responses to temperature. Agric Meteorol Tohoku 37:23–25. [in Japanese with English abstract]

    Google Scholar 

  • Opena RT, Lo SH (1981) Breeding for heat tolerance in heading Chinese cabbage. In: Talekar NS, Griggs TD (eds) Proceedings of the 1st international symposium on Chinese cabbage. AVRDC, Shanhua

    Google Scholar 

  • Opena RT, Chen JT, Kuo CG, Chen HM (1992) Genetic and physiological aspects of tropical adaptation in tomato. In: Kuo CG (ed) Adaptation of food crops to temperature and water stress. AVRDC, Shanhua, pp 321–334

    Google Scholar 

  • Palada MC, Wu DL (2008) Evaluation of chili rootstocks for grafted sweet pepper production during the hot-wet and hot-dry seasons in Taiwan. Acta Hortic 767:167–174

    Google Scholar 

  • Pandey, S., Ansari, W.A., Jha, A., Bhatt, K.V. and Singh, B. (2011). Evaluations of melons and indigenous Cucumis spp. genotypes for drought tolerance, 2nd internatioanal symposium on underutilized plant species, 27th June–1st July, The Royal Chaulan Kuala Lumpur, Malaysis, (A-61), 95pp

    Google Scholar 

  • Pandey S, Ansari WA, Atri N, Singh B (2016) Standardization of screening technique and evaluation of muskmelon genotypes for drought tolerance. Plant Genetic Resour. https://doi.org/10.1017/S1479262116000253

  • Pangga IB, Hannan J, Chakraborty S (2011) Pathogen dynamics in a crop canopy and their evolution under changing climate. Plant Pathol 60:70–81

    Article  Google Scholar 

  • Pani RK (2008) Climate change hits vegetable crop. Indian Express. Available from: http://www.expressbuzz.com

  • Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirschi KD, Gaxiola RA (2005) Up-regulation of a H+- pyrophosphatase (H+- PPase) as a strategy to engineer drought resistant crop plants. Proc Natl Acad Sci USA 102:18830–18835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peet MM, Wolf DW (2000) Crop ecosystem responses to climatic change vegetable crops. In: Reddy KR, Hodges HF (eds) Climate change and global crop productivity. CABI, Wallingford, pp 213–244

    Chapter  Google Scholar 

  • Peet MM, Willits DH, Gardner R (1997) Response of ovule development and post pollen production processes in male-sterile tomatoes to chronic, sub-acute high temperature stress. J Exp Bot 48(306):101–111

    Article  CAS  Google Scholar 

  • Peet MM, Sato S, Gardner R (1998) Comparing heat stress on male-fertile and male sterile tomatoes. Plant, Cell and Environment 21:225–231

    Article  Google Scholar 

  • Pope KS (2012) Climate change adaptation: temperate perennial crops. Presented at the California Department of Food and Agriculture Climate Change Adaptation Consortium, November 28, Modesto, CA

    Google Scholar 

  • Porter JR, Semenov MA (2005) Crop responses to climatic variation. Philos Trans R Soc Biol Sci 360:2021–2035

    Article  Google Scholar 

  • Quizenberry JE (1982) Breeding for drought resistance and plant use efficiency. In: Christianses MN, Lewis CF (eds) Breeding plants for less favourable environments, pp 193–212

    Google Scholar 

  • Rai N, Rai M (2006) Heterosis breeding in vegetable crops. In: Solanaceous crops, tomato. New India Pulishing Agency, New Delhi, pp 259–260

    Google Scholar 

  • Rai N, Yadav DS (2005) Advances in vegetable production. Researchco Book Centre, New Delhi, India

    Google Scholar 

  • Rai M, Pandey S, Kumar S (2008) Cucurbitaceae: proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. In: Pitrat M (ed) INRA, Avignon (France), May 21–24th, 285–293pp

    Google Scholar 

  • Rai N, Tiwari SK, KumarR, Singh M, Bharadwaj DR (2011) Genetic resources of solanaceous vegetables in India. National symposium on vegetable biodiversity. Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, M.P. April, 4–5, 91–103 pp

    Google Scholar 

  • Rai GK, Rai NP, Rathaur S, Kumar S, Singh M (2013) Expression of rd29A::AtDREB1A/CBF3 in tomato alleviates drought-induced oxidative stress by regulating key enzymatic and non-enzymatic antioxidants. Plant Physiol Biochem 69:90–100. https://doi.org/10.1016/j.plaphy.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  • Rajcan I, Tollenaar M (1999) Source-sink ratio and leaf senescence in maize. I. Dry matter accumulation and partitioning during the grain-filling period. Field Crop Res 90:245–253

    Article  Google Scholar 

  • Ram HH (2005) Vegetable breeding: principles and practices. Kalyani Publishers, New Delhi

    Google Scholar 

  • Ramanjulu S, Bartels D (2002) Drought and desiccation induced modulation of gene expression in plants. Plant Cell Environ 25:141–151

    Article  CAS  PubMed  Google Scholar 

  • Ramos B, Miller FA, Brandão TRS, Teixeira P, Silva CLM (2013) Fresh fruits and vegetables – an overview on applied methodologies to improve its quality and safety. Innov Food Sci Emerg Technol 20:1–15

    Google Scholar 

  • Rana MK, Kalloo G (1989) Morphological attributes associated with the adaptation under water deficit conditions in tomato (L. esculentum Mill.). 12th Eucarpia Congress, Vortrage Pflanzenzucht, 23–27 pp

    Google Scholar 

  • Rao GGSN, Rao AVMS, Rao VUM (2009) Trends in rainfall and temperature in rainfed India in previous century. In: Aggarwal PK (ed) Global climate change and Indian Agriculture case studies from ICAR network project. ICAR Publication, New Delhi, pp 71–73

    Google Scholar 

  • Rawson HM, Gifford RM, Condon BN (1995) Temperature gradient chambers for research on global environment change. I Portable chambers for research on short-stature vegetation. Plant Cell Environ 18(9):1048–1054

    Article  Google Scholar 

  • Razdan Maharaj K, Mattoo AK (2007) Genetic improvement of Solanaceous crops: tomato, vol 2. Science Publishers, p 47

    Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Richards RA (2006) Physiological traits used in the breeding of new cultivars for water-scarce environments. Agric Water Manage 80:197–211

    Article  Google Scholar 

  • Rick CM (1973) Potential genetic resources in tomato species: clues from observation in native habitats. In: Srb AM (ed) Genes, enzymes and populations. Plenum Press, New York, pp 255–269

    Chapter  Google Scholar 

  • Rivero RM, Ruiz JM, Romero L (2003a) Can grafting in tomato plants strengthen resistance to thermal stress? J Sci Food Agr 83:1315–1319

    Article  CAS  Google Scholar 

  • Rivero RM, Ruiz JM, Sanchez E, Romero L (2003b) Role of grafting in horticultural plants under stress conditions. Food Agric Environ 1:70–74

    Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104:19631–19636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson BM, Hall AE, Foster KW (1985) A field technique for screening for genotypic differences in root growth. Crop Sci 25:1084–1090

    Article  Google Scholar 

  • Romero L, Belakbir A, Ragala L, Ruiz MJ (1997) Response of plant yield and leaf pigments to saline conditions effectiveness of different rootstocks in melon plant (Cucumis melo L). Soil Sci Plant Nutr 3:855–862

    Article  Google Scholar 

  • Ross H (1986) Potato breeding: problems and perspectives. J Plant Breed (Suppl.) 13:1–132. Berlin

    Google Scholar 

  • Rouphael Y, Cardarelli M, Colla G, Rea E (2008) Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. HortScience 43(3):730–736

    Article  Google Scholar 

  • Sage RF, Kubien D (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106

    Article  CAS  PubMed  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+ − dependent protein kinase confers both cold and salt/ drought tolerance on rice plants. Plant J 23:319–327

    Article  CAS  PubMed  Google Scholar 

  • Sánchez Peña P (1999) Leaf water potentials in tomato (L. esculentum Mill.) L chilense Dun. and their interspecific F1. M. Sc. thesis, New Mexico State University, Las Cruces, NM, USA

    Google Scholar 

  • Sánchez-Rodríguez E, Moreno DA, Ferreres F, Rubio-Wilhelmi M, Manuel RJ (2011) Differential responses of five cherry tomato varieties to water stress: changes on phenolic metabolites and related enzymes. Phytochemistry 72:723–729

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Kamiyama M, Iwata T, Makita N, Furukawa H, Ikeda H (2006) Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann Bot 97:731–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz D, Rouphael Y, Colla G, Venema JH (2010) Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Sci Hortic 127:162–171

    Article  CAS  Google Scholar 

  • Selvakumar R (2014) A text book of glaustas olericulture. New Vishal Publications, New Delhi, pp 1–1143

    Google Scholar 

  • Serraj R, Sinclair TR (1996) Processes contributing to N2-fixation insensitivity to drought in the soybean cultivar Jackson. Crop Sci 36:961–968

    Article  Google Scholar 

  • Shannon MC (1996) New insights in plant breeding efforts for improved salt tolerance. HortTechnology 6:96–99

    Article  Google Scholar 

  • Shannon MC, Grieve CM (1999) Tolerance of vegetable crops to salinity. Sci Hortic 78:5–38

    Article  CAS  Google Scholar 

  • Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen T (2004) Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55:2343–2351

    Article  CAS  PubMed  Google Scholar 

  • Shibuya T, Tokuda A, Terakura R, Shimizu-Maruo K, Sugiwaki H, Kitaya Y, Kiyota M (2007) Short-term bottom-heat treatment during low-air-temperature storage improves rooting in squash (Cucurbita moschata Duch.) cuttings used for rootstock of cucumber (Cucumis sativus L.). J Japn Soc Hortic Sci 76(2):139–143

    Article  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Shirsath PB, Aggarwal PK, Thornton PK, Dunnett A (2016) Prioritizing climate-smart agricultural land use options at a regional scale. Agric Syst. https://doi.org/10.1016/j.agsy.2016.09.018

  • Singh, H.P. (2010). Ongoing research in abiotic stress due to climate change in horticulture, curtain raiser meet on research needs arising due to abiotic stresses in agriculture management in India under global climate change scenario, Baramati, Maharashtra, October 29–30. 1–23 pp. http://www.niam.res.in/pdfs/DDG-Hort-lecture.pdf

  • Singh NN, Sarkar KR (1991) Physiological, genetical basis of drought tolerance in maize. In: Proceedings of the golden jubilee symposium. Genetic research and education. Indian Society of Genetics and Plant Breeding, New Delhi

    Google Scholar 

  • Singh C.S., Anima, K., Kumar, B. and Gautam (2014). Disatrous challenge due to climate change in Bihar, developing state of India. Int J Sci Eng Res, 5 (6): 1038-1041

    Google Scholar 

  • Slafer GA, Araus JL, Royo C, Del Moral LFG (2005) Promising ecophysiological traits for genetic improvement of cereal yields in Mediterranean environments. Ann Appl Biol 146:61–70

    Article  Google Scholar 

  • Solankey SS, Singh RK, Baranwal DK, Singh DK (2015) Genetic expression of tomato for heat and drought stress tolerance: an overview. Int J Veg Sci 21(5):496–515. https://doi.org/10.1080/19315260.2014.902414

    Article  Google Scholar 

  • Spaldon S, Samnotra RK, Chopra S (2015) Climate resilient technologies to meet the challenges in vegetable production. Int J Curr Res Acad Rev 3(2):28–47

    CAS  Google Scholar 

  • Springate DA, Kover PX (2013) Plant responses to elevated temperatures: a field. Glob Chang Biol. https://doi.org/10.1111/gcb.12430

  • Stevens MA, Rudich J (1978) Genetic potential for overcoming physiological limitations on adaptability, yield, and quality in tomato. Hortic Sci 13:673–678

    CAS  Google Scholar 

  • Stoner AK (1972) Merit, Red Rock and Potomac-tomato varieties adapted to mechanical harvesting. USDA Prod. Res. Rep

    Google Scholar 

  • Swarup V (2006) Vegetable science and technology in India. Kalyani Publishers, New Delhi, pp 1–656

    Google Scholar 

  • Symonds RC, Kadirvel P, Yen J, Lin J, Peña RDL (2010) Genetic, physiological and molecular approaches to improve drought tolerance in tropical tomato. Proceedings SOL2010, 42 pp.

    Google Scholar 

  • Szabolcs I (1992) Salinisation of soils and water and its relation to desertification. In: Razdan MK, Mattoo AK (eds) Genetic improvement of Solanaceous crop, Beltsville, pp 521–590

    Google Scholar 

  • Tirado MC, Clarke R, Jaykus LA, McQuatters-Gollop A, Frank JM (2010) Climate change and food safety: a review. Food Res Int 43(1745):65

    Google Scholar 

  • Toppino L, Acciarri N, Mennella G, Lo Scalzo R, Rotino GL (2009) Introgression breeding in eggplant (Solanum melongena L.) by combining biotechnological and conventional approaches. Proceedings of the 53rd Italian Society of Agricultural Genetics Annual Congress Torino, Italy, 16/19 Sept

    Google Scholar 

  • Aazami MA, Torabi M, Jalili E (2010) In vitro response of promising tomato genotypes for tolerance to osmotic stress. Afr J Biotechnol 9(26):4014–4017

    CAS  Google Scholar 

  • Turner, N.C. (1979). Stress Physiology in Crop Plants. In: Mussell H, Staples RC (eds). Wiley, New York, 343–372 pp

    Google Scholar 

  • Turner NC (1986) Crop water deficits: a decade of progress. Adv Agron 39:1051

    Google Scholar 

  • Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25:173–194

    Article  CAS  PubMed  Google Scholar 

  • Ugherughe PO (1986) Drought and tropical pasture management. J Agron Crop Sci-Zeitschrift Für Acker Und Pflanzenbau 157:13–23

    Article  Google Scholar 

  • Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189–195

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Walter A, Shurr U (2005) Dynamics of leaf and root growth: endogenous control versus environmental impact. Ann Bot 95:891–900

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Ying J, Kuzma M, Chalifoux M, Sample A, McArthur C, Uchacz T, Sarvas C, Wan J, Tennis DT, McCourt P, Huang Y (2005) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43:413–424

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Yang R, Cheng J, Zhao J (2007) Effect of rootstocks on the tolerance to high temperature of eggplants under solar greenhouse during summer season. Acta Hortic 761:357–360

    Article  Google Scholar 

  • Weiss J, Egea-Cortines M (2010) Transcriptomic analysis of cold response in tomato fruits identifies dehydrin as a marker of cold stress. J Appl Genet 50(4):311–319

    Article  Google Scholar 

  • Went FW (1953) The effect of temperature on plant growth. Annu Rev Plant Physiol 4:347–362

    Article  Google Scholar 

  • Wurr DCE, Fellows JR, Phelps K (1996) Investigating trends in vegetable crop response to increasing temperature associated with climate change. Sci Hortic 66:255–263

    Article  Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35–46

    Article  CAS  PubMed  Google Scholar 

  • Yan J, He C, Wang J, Mao Z, Holaday SA, Allen RD, Zhang H (2004) Overexpression of the Arabidopsis 14-3-3 protein GF14 lambda in cotton leads to a “stay-green” phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol 45:1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Yildirim E, Guvenc I (2006) Salt tolerance of pepper cultivars during germination and seedling growth. Turk J Agric For 30:347–353

    CAS  Google Scholar 

  • Zhu BC, Su J, Chan MC, Verma DPS, Fan YL, Wu R (1998) Over expression of a d-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-stress and salt stress in transgenic rice. Plant Sci 139:41–48

    Article  CAS  Google Scholar 

  • Zhu M, Chen G, Zhang J, Zhang Y, Xie Q, Zhao Z, Pan Y, Hu Z (2014) The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Rep 33(11):1851–1863. https://doi.org/10.1007/s00299-014-1662-z

    Article  CAS  PubMed  Google Scholar 

  • Źróbek-Sokolnik A (2012) Temperature stress and responses of plants. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 113–134

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Solankey, S.S., Kumari, M., Akhtar, S., Singh, H.K., Ray, P.K. (2021). Challenges and Opportunities in Vegetable Production in Changing Climate: Mitigation and Adaptation Strategies. In: Solankey, S.S., Kumari, M., Kumar, M. (eds) Advances in Research on Vegetable Production Under a Changing Climate Vol. 1. Advances in Olericulture. Springer, Cham. https://doi.org/10.1007/978-3-030-63497-1_2

Download citation

Publish with us

Policies and ethics