Skip to main content

Potential Genetic Resources in Tomato Species: Clues from Observations in Native Habitats

  • Chapter
Genes, Enzymes, and Populations

Part of the book series: Basic Life Sciences ((BLSC,volume 2))

Abstract

Interspecific hybridization is playing an increasingly important role in the breeding of improved cultivars of higher plants. Lycopersicon is a good example of a genus in which the cultivated species (L. esculentum Mill.) is being improved in this fashion. The advantages offered by the tomato species for this purpose are:

  1. a.

    All species can be readily grown for experimental purposes, and L. esculentum is widely cultivated under a wide range of environmental conditions.

  2. b.

    Excellent sources of germ plasm now exist in the wild species as well as in modern and primitive cultivars of L. esculentum.

  3. c.

    All of the wild species can be hybridized with L. esculentumn, albeit requiring special aids in certain combinations; fertility and viability of the hybrid generations permit the intended gene transfers. All species have 12 pairs of chromosomes, which are essentially homologous.

  4. d.

    The cultivated species is well known genetically; its chromosomes have been mapped cytologically and genetically; it behaves as a basic diploid (27, 28).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, L. J. (1963). Transfer of a dominant type of resistance to the four known Ohio pathogenic strains of TMV from Lycopersicon peruvianum to L. esculentum. Phytopathology 53: 869.

    Google Scholar 

  2. Andrus, C. F., and Reynard, G. B. (1945). Resistance to Septoria leaf spot and its inheritance in tomatoes. Phytopathology 35: 16–24.

    Google Scholar 

  3. Bohn, G. W., and Tucker, C. M. (1940). Studies on Fusarium wilt of the tomato. I. Immunity in Lycopersicon pimpinellifolium Mill. and its inheritance in hybrids. Mis. Agr. Expt. Sta. Res. Bull. 311: 1–82.

    Google Scholar 

  4. Chmielewski, T. (1962). Cytological and taxonomical studies on a new tomato form. I. Genet. Polon. 3: 253–264.

    Google Scholar 

  5. Chmielewski, T. (1968). New dominant factor with recessive lethal effect in tomato. Genet. Polon. 9: 39–48.

    Google Scholar 

  6. Chimielewsld, T. (1968). Cytogenetical and taxonomical studies on a new tomato form. II. Genet. Polon. 9: 97–124.

    Google Scholar 

  7. Denna, D. W. (1971). The potential use of self-incompatibility for breeding F, hybrids of naturally self-pollinating vegetable crops. Euphytica 20: 542–548.

    Google Scholar 

  8. Downton, W. J. S. (1971). Adaptive and evolutionary aspects of C. photosynthesis. In Hatch, M. D., Osmond, G. B., and Slatyer, R. A. (eds.), Photosynthesis and Photorespiration, Symposium Proceedings, Interscience, New York, pp. 3–17.

    Google Scholar 

  9. Gentile, A. G., and Stoner, A. K. (1968). Resistance in Lycopersicon and Solanum species to the potato aphid. J. Econ. Entomol. 61: 1152–1154.

    Google Scholar 

  10. Gentile, A. G., and Stoner, A. K. (1968). Resistance in Lycopersicon spp. to the tobacco flea beetle. J. Econ. Entomol. 61: 1347–1349.

    Google Scholar 

  11. Gentile, A. G., Webb, R. E., and Stoner, A. K. (1968). Resistance in Lycopersicon and Solanum to greenhouse whiteflies. J. Econ. Entomol. 61: 1355–1357.

    Google Scholar 

  12. Gentile, A. G., Webb, R. E., and Stoner, A. K. (1969). Lycopersicon and Solanum spp. resistant to the carmine and two-spotted spider mite. J. Econ. Entomol. 62: 834–836.

    Google Scholar 

  13. Gilbert, J. C., and McGuire, D. C. (1956). Inheritance of resistance to severe root-knot from Meloidogyne incognita in commercial-type tomatoes. Proc. Am. Soc. Hort. Sci. 68: 437–442.

    Google Scholar 

  14. Hardon, J. J. (1967). Unilateral incompatibility between Solanum pennellii and Lycopersicon esculentum. Genetics 57: 795–808.

    PubMed  CAS  Google Scholar 

  15. Hendrix, J. W., and Frazier, W. A. (1949). Studies on the inheritance of Stemphyllium resistance in tomatoes. Hawaii Agr. Expt. Sta. Bull. 8: 1–24.

    Google Scholar 

  16. Hogenboom, N. G. (1968). Self-compatibility in Lycopersicum peruvianum (L.) Mill. Euphytica 17: 220–223.

    Google Scholar 

  17. Hunter, J. W., Laude, H. H., and Brunson, A. M. (1936). A method for studying resistance to drought injury in inbred lines of maize. J. Am. Soc. Agron. 20: 694–698.

    Article  Google Scholar 

  18. Kerr, E. A., and Bailey, D. L. (1964). Resistance to Cladosporium fulvum Cke. obtained from wild species of tomato. Can. J. Bot. 42: 1541–1554.

    Article  Google Scholar 

  19. Martin, F. W. (1961). The inheritance of self-incompatibility in hybrids of Lycopersicon esculentum Mill. X L. chilense Dun. Genetics 46: 1443–1454.

    PubMed  CAS  Google Scholar 

  20. Martin, F. W. (1963). Distribution and interrelationships of incompatibility barriers in the Lycopersicon hirsutum Humb. and Bonpi. complex. Evolution 17: 519–528.

    Article  Google Scholar 

  21. Martin, F. W. (1968). The behavior of Lycopersicon incompatibility alleles in an alien genetic milieu. Genetics 60: 101–109.

    PubMed  CAS  Google Scholar 

  22. Mather, K. (1943). Specific differences in Petunia. I. Incompatibility. J. Genet. 45: 215–235.

    Article  Google Scholar 

  23. Ranson, S. L., and Thomas, M. (1960). Crassulacean acid metabolism. Ann. Rev. Plant Phys. 11: 81–110.

    Article  CAS  Google Scholar 

  24. Rick, C. M. (1950). Pollination relations of Lycopersicon esculentum in native and foreign regions. Evolution 4: 110–122.

    Article  Google Scholar 

  25. Rick, C. M. (1958). The role of natural hybridization in the derivation of cultivated tomatoes in western South America. Econ. Bot. 12: 346–367.

    Article  Google Scholar 

  26. Rick, C. M. (1963). Barriers to interbreeding in Lycopersicon peruvianum. Evolution 17: 216–232.

    Article  Google Scholar 

  27. Rick, C. M. (1971). Some cytogenetic features of the genome in diploid plant species. Stadler Symp. 2: 153–174.

    Google Scholar 

  28. Rick, C. M., and Khush, G. S. (1969). Cytogenetic explorations in the tomato genome. Genet. Lect. 1: 45–68.

    Google Scholar 

  29. Rick, C. M., and Lamm, R. (1955). Biosystematic studies on the status of Lycopersicon chilense. Am. J. Bot. 42: 663–675.

    Article  Google Scholar 

  30. Rick, C. M., and Smith, P. G. (1952). Novel variations in tomato species hybrids. Am. Naturalist 87: 359–373.

    Google Scholar 

  31. Schaible, L., Cannon, O. S., and Waddoups, V. (1951). Inheritance of resistance to Verticillium wilt in a tomato cross. Phytopathology 41: 986–990.

    Google Scholar 

  32. Skrdla, W. H., Alexander, L. J., Oakes, G., and Dodge, A. F. (1968). Horticultural characters and reaction to two diseases of the world collection of the genus Lycopersicon. Ohio Agr. Res. Sta. Res. Bull. 1009: 1–110.

    Google Scholar 

  33. Stoner, A. K., and Gentile, A. G. (1968). Resistance of Lycopersicon species to the carmine spider mite, U.S.D.A. A.R.S. Prod. Res. Rept. No. 102, pp. 1–9.

    Google Scholar 

  34. Stoner, A. K., and Stringfellow, T. (1967). Resistance of tomato varieties to spider mites. Proc. Am. Soc. Hort. Sci. 90: 324–329.

    Google Scholar 

  35. Stoner, A. K., Webb, R. E., and Gentile, A. G. (1968). Reaction of tomato varieties and breeding lines to aphids. HortScience 3: 77.

    Google Scholar 

  36. Tal, M. (1971). Salt tolerance in the wild relatives of the cultivated tomato: responses of Lycopersicon esculentum, L. peruvianum and L. esculentum minor to sodium chloride solution. Austral. J. Agr. Res. 22: 631–638.

    Article  CAS  Google Scholar 

  37. Webb, R. E., Stoner, A. K., and Gentile, A. G. (1971). Resistance to leaf miners in Lycopersicon accessions. J. Am. Soc. Hort. Sci. 96: 65–67.

    Google Scholar 

  38. Wiggins, I. L., and Porter, D. M. (1971). Flora of the Galhpagos Islands, Stanford University Press, Stanford, Calif., 998 pp.

    Google Scholar 

  39. Yu, A. T. T. (1972). The genetics and physiology of water usage in Solanum pennellii Corr. and its hybrids with Lycopersicon esculentum Mill. Ph.D. thesis, University of California, Davis.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Rick, C.M. (1973). Potential Genetic Resources in Tomato Species: Clues from Observations in Native Habitats. In: Srb, A.M. (eds) Genes, Enzymes, and Populations. Basic Life Sciences, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2880-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2880-3_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2882-7

  • Online ISBN: 978-1-4684-2880-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics