Skip to main content

Beneficial and Detrimental Effects of Antioxidants in Allergic Contact Dermatitis

  • Living reference work entry
  • First Online:
Plant Antioxidants and Health

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 38 Accesses

Abstract

Free radicals play a relevant role in the pathogenesis of allergic contact dermatitis (ACD). With this regard, antioxidants emerge as a promising option in the prevention and therapy of ACD. We discuss possible targets for antioxidants in counteracting the induction and pathogenesis of ACD. In the scientific literature, we have found 28 animal and 5 human studies suggesting beneficial effects of antioxidants in ACD. On the other hand, cases of contact allergy to antioxidants have also been reported, including 931 patients with ACD to tocopherol (vitamin E). We conclude therefore that more clinical studies are necessary in order to assess the risk-benefit ratio and to select antioxidants best suited for the prevention or treatment of ACD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Korkina L, De Luca C, Pastore S (2012) Plant polyphenols and human skin: friends or foes. Ann N Y Acad Sci 1259:77–86

    Article  CAS  PubMed  Google Scholar 

  2. Bjelakovic G, Nikolova D, Gluud C (2014) Antioxidant supplements and mortality. Curr Opin Clin Nutr Metab Care 17:40–44

    CAS  PubMed  Google Scholar 

  3. Yagami A, Suzuki K, Morita Y, Iwata Y, Sano A, Matsunaga K (2014) Allergic contact dermatitis caused by 3-o-ethyl-L-ascorbic acid (vitamin C ethyl). Contact Dermatitis 70:376–377

    Article  CAS  PubMed  Google Scholar 

  4. Aptula AO, Roberts DW, Pease CK (2007) Haptens, prohaptens and prehaptens, or electrophiles and proelectrophiles. Contact Dermatitis 56:54–56

    Article  PubMed  Google Scholar 

  5. Spiewak R (2012) Contact dermatitis in atopic individuals. Curr Opin Allergy Clin Immunol 12:491–497

    Article  PubMed  Google Scholar 

  6. Villani AP, Gamradt P, Nosbaum A, Laoubi L, Jullien D, Nicolas JF et al (2018) Immune-mediated skin diseases induced by chemicals and drugs. Curr Opin Toxicol 10:111–116

    Article  Google Scholar 

  7. Nassau S, Fonacier L (2020) Allergic contact dermatitis. Med Clin North Am 104:61–76

    Article  PubMed  Google Scholar 

  8. Martin SF, Rustemeyer T, Thyssen JP (2018) Recent advances in understanding and managing contact dermatitis. F1000Res 7:810

    Google Scholar 

  9. Silvestre MC, Sato MN, Reis V (2018) Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis. An Bras Dermatol 93:242–250

    Article  PubMed  PubMed Central  Google Scholar 

  10. Karlberg AT, Borje A, Duus Johansen J, Liden C, Rastogi S, Roberts D et al (2013) Activation of non-sensitizing or low-sensitizing fragrance substances into potent sensitizers - prehaptens and prohaptens. Contact Dermatitis 69:323–334

    Article  CAS  PubMed  Google Scholar 

  11. Johansson S, Redeby T, Altamore TM, Nilsson U, Borje A (2009) Mechanistic proposal for the formation of specific immunogenic complexes via a radical pathway: a key step in allergic contact dermatitis to olefinic hydroperoxides. Chem Res Toxicol 22:1774–1781

    Article  CAS  PubMed  Google Scholar 

  12. Matura M, Skold M, Borje A, Andersen KE, Bruze M, Frosch P et al (2005) Selected oxidized fragrance terpenes are common contact allergens. Contact Dermatitis 52:320–328

    Article  CAS  PubMed  Google Scholar 

  13. Wilkinson M, Goncalo M, Aerts O, Badulici S, Bennike NH, Bruynzeel D et al (2019) The European baseline series and recommended additions: 2019. Contact Dermatitis 80:1–4

    Article  PubMed  Google Scholar 

  14. Matura M, Bodin A, Skare L, Nyren M, Hovmark A, Lindberg M et al (2004) Multicentre patch test study of air-oxidized ethoxylated surfactants. Contact Dermatitis 51:180–188

    Article  CAS  PubMed  Google Scholar 

  15. Cheung C, Hotchkiss SA, Pease CK (2003) Cinnamic compound metabolism in human skin and the role metabolism may play in determining relative sensitisation potency. J Dermatol Sci 31:9–19

    Article  CAS  PubMed  Google Scholar 

  16. Peiyuan H, Zhiping H, Chengjun S, Chunqing W, Bingqing L, Imam MU (2017) Resveratrol ameliorates experimental alcoholic liver disease by modulating oxidative stress. Evid Based Complement Alternat Med 2017:4287890

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nan B, Yang C, Li L, Ye H, Yan H, Wang M et al (2020) Allicin alleviated acrylamide-induced NLRP3 inflammasome activation via oxidative stress and endoplasmic reticulum stress in Kupffer cells and SD rats liver. Food Chem Toxicol 148:111937

    Article  PubMed  Google Scholar 

  18. Corsini E, Galbiati V, Nikitovic D, Tsatsakis AM (2013) Role of oxidative stress in chemical allergens induced skin cells activation. Food Chem Toxicol 61:74–81

    Article  CAS  PubMed  Google Scholar 

  19. Kim DH, Byamba D, Wu WH, Kim TG, Lee MG (2012) Different characteristics of reactive oxygen species production by human keratinocyte cell line cells in response to allergens and irritants. Exp Dermatol 21:99–103

    Article  CAS  PubMed  Google Scholar 

  20. Tan PH, Sagoo P, Chan C, Yates JB, Campbell J, Beutelspacher SC et al (2005) Inhibition of NF-kappa B and oxidative pathways in human dendritic cells by antioxidative vitamins generates regulatory T cells. J Immunol 174:7633–7644

    Article  CAS  PubMed  Google Scholar 

  21. Sasaki Y, Aiba S (2007) Dendritic cells and contact dermatitis. Clin Rev Allergy Immunol 33:27–34

    Article  CAS  PubMed  Google Scholar 

  22. Williams MS, Henkart PA (2005) Do cytotoxic lymphocytes kill via reactive oxygen species? Immunity 22:272–274

    Article  CAS  PubMed  Google Scholar 

  23. Goebeler M, Gillitzer R, Kilian K, Utzel K, Brocker EB, Rapp UR, Ludwig S (2001) Multiple signaling pathways regulate NF-kappaB-dependent transcription of the monocyte chemoattractant protein-1 gene in primary endothelial cells. Blood 97:46–55

    Article  CAS  PubMed  Google Scholar 

  24. Herb M, Schramm M (2021) Functions of ROS in macrophages and antimicrobial immunity. Antioxidants (Basel) 10:313

    Article  CAS  Google Scholar 

  25. Nosal R, Perecko T, Jancinova V, Drabikova K, Harmatha J, Svitekova K (2010) Suppression of oxidative burst in human neutrophils with the naturally occurring serotonin derivative isomer from Leuzea carthamoides. Neuro Endocrinol Lett 31(Suppl 2):69–72

    CAS  PubMed  Google Scholar 

  26. Awad F, Assrawi E, Louvrier C, Jumeau C, Georgin-Lavialle S, Grateau G, Amselem S, Giurgea I, Karabina SA (2018) Inflammasome biology, molecular pathology and therapeutic implications. Pharmacol Ther 187:133–149

    Article  CAS  PubMed  Google Scholar 

  27. Ravipati AS, Zhang L, Koyyalamudi SR et al (2012) Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. BMC Complement Altern Med 12:173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ghosh S, Banerjee S, Sil PC (2015) The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: a recent update. Food Chem Toxicol 83:111–124

    Article  CAS  PubMed  Google Scholar 

  29. Arulselvan P, Fard MT, Tan WS et al (2016) Role of antioxidants and natural products in inflammation. Oxidative Med Cell Longev 2016:5276130

    Article  Google Scholar 

  30. Alamdari DH, Aghasizadeh-Sharbaf M, Mohadjerani M, Ferns GA, Avan A (2018) Prooxidant-antioxidant balance and antioxidant properties of Thuja orientalis L: a potential therapeutic approach for diabetes mellitus. Curr Mol Pharmacol 11:109–112

    Article  CAS  PubMed  Google Scholar 

  31. Murata M (2018) Inflammation and cancer. Environ Health Prev Med 23:50

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ellulu MS (2017) Obesity, cardiovascular disease, and role of vitamin C on inflammation: a review of facts and underlying mechanisms. Inflammopharmacology 25:313–328

    Article  CAS  PubMed  Google Scholar 

  33. Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L (2017) Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxidative Med Cell Longev 2017:2525967

    Article  Google Scholar 

  34. Garcia-Diaz DF, Lopez-Legarrea P, Quintero P, Martinez JA (2014) Vitamin C in the treatment and/or prevention of obesity. J Nutr Sci Vitaminol (Tokyo) 60:367–379

    Article  CAS  Google Scholar 

  35. Calle MC, Fernandez ML (2012) Inflammation and type 2 diabetes. Diabetes Metab 38:183–191

    Article  CAS  PubMed  Google Scholar 

  36. Lorz LR, Kim MY, Cho JY (2020) Medicinal potential of Panax ginseng and its ginsenosides in atopic dermatitis treatment. J Ginseng Res 44:8–13

    Article  PubMed  Google Scholar 

  37. Hou JH, Shin H, Jang KH et al (2019) Anti-acne properties of hydrophobic fraction of red ginseng (Panax ginseng C.A. Meyer) and its active components. Phytother Res 33:584–590

    Article  CAS  PubMed  Google Scholar 

  38. Pigatto PD, Diani M (2018) Beneficial effects of antioxidant furfuryl palmitate in non-pharmacologic treatments (prescription emollient devices, PEDs) for atopic dermatitis and related skin disorders. Dermatol Ther (Heidelb) 8:339–347

    Article  Google Scholar 

  39. Pullar JM, Carr AC, Vissers MCM (2017) The roles of vitamin C in skin health. Nutrients 9:866

    Article  PubMed Central  Google Scholar 

  40. Wang K, Jiang H, Li W, Qiang M, Dong T, Li H (2018) Role of vitamin C in skin diseases. Front Physiol 9:819

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vollbracht C, Raithel M, Krick B, Kraft K, Hagel AF (2018) Intravenous vitamin C in the treatment of allergies: an interim subgroup analysis of a long-term observational study. J Int Med Res 46:3640–3655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Basketter DA, White IR, Kullavanijaya P, Tresukosol P, Wichaidit M, McFadden JP (2016) Influence of vitamin C on the elicitation of allergic contact dermatitis to p-phenylenediamine. Contact Dermatitis 74:368–372

    Article  CAS  PubMed  Google Scholar 

  43. Coenraads PJ, Vogel TA, Blömeke B, Goebel C, Roggeband R, Schuttelaar ML (2016) The role of the antioxidant ascorbic acid in the elicitation of contact allergic reactions to p-phenylenediamine. Contact Dermatitis 74:267–272

    Article  CAS  PubMed  Google Scholar 

  44. Kim HK, Choi SY, Chang HK et al (2012) Human skin safety test of green tea cell extracts in condition of allergic contact dermatitis. Toxicol Res 28:113–116

    Article  PubMed  PubMed Central  Google Scholar 

  45. Magrone T, Jirillo E, Magrone M, Russo MA, Romita P, Massari F, Foti C (2021) Red grape polyphenol oral administration improves immune response in women affected by nickel-mediated allergic contact dermatitis. Endocr Metab Immune Disord Drug Targets 21:374–384

    Article  CAS  PubMed  Google Scholar 

  46. Wallengren J (2011) Tea tree oil attenuates experimental contact dermatitis. Arch Dermatol Res 303:333–338

    Article  CAS  PubMed  Google Scholar 

  47. Stover K, Fukuyama T, Young AT et al (2016) Topically applied manganese-porphyrins BMX-001 and BMX-010 display a significant anti-inflammatory response in a mouse model of allergic dermatitis. Arch Dermatol Res 308:711–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang X, Hu C, Wu X et al (2016) Roseotoxin B improves allergic contact dermatitis through a unique anti-inflammatory mechanism involving excessive activation of autophagy in activated T lymphocytes. J Invest Dermatol 136:1636–1646

    Article  CAS  PubMed  Google Scholar 

  49. Wang BJ, Chiu HW, Lee YL, Li CY, Wang YJ, Lee YH (2018) Pterostilbene attenuates hexavalent chromium-induced allergic contact dermatitis by preventing cell apoptosis and inhibiting IL-1β-related NLRP3 Inflammasome activation. J Clin Med 7:489

    Article  PubMed Central  Google Scholar 

  50. Xu X, Xiao W, Zhang Z et al (2018) Anti-pruritic and anti-inflammatory effects of oxymatrine in a mouse model of allergic contact dermatitis. J Dermatol Sci S0923-1811(18):30165–30168

    Google Scholar 

  51. Bae MJ, Shin HS, Choi DW, Shon DH (2012) Antiallergic effect of Trigonella foenum-graecum L. extracts on allergic skin inflammation induced by trimellitic anhydride in BALB/c mice. J Ethnopharmacol 144:514–522

    Article  CAS  PubMed  Google Scholar 

  52. Sun G, Zhang Y, Takuma D et al (2007) Effect of orally administered Eriobotrya japonica seed extract on allergic contact dermatitis in rats. J Pharm Pharmacol 59:1405–1412

    Article  CAS  PubMed  Google Scholar 

  53. Wang C, Yuan J, Wu HX et al (2013) Paeoniflorin inhibits inflammatory responses in mice with allergic contact dermatitis by regulating the balance between inflammatory and anti-inflammatory cytokines. Inflamm Res 62:1035–1044

    Article  CAS  PubMed  Google Scholar 

  54. Shi D, Li X, Li D et al (2015) Oral administration of paeoniflorin attenuates allergic contact dermatitis by inhibiting dendritic cell migration and Th1 and Th17 differentiation in a mouse model. Int Immunopharmacol 25:432–439

    Article  CAS  PubMed  Google Scholar 

  55. Wang C, Yuan J, Wu HX et al (2015) Total glucosides of paeony inhibit the inflammatory responses of mice with allergic contact dermatitis by restoring the balanced secretion of pro−/anti-inflammatory cytokines. Int Immunopharmacol 24:325–334

    Article  CAS  PubMed  Google Scholar 

  56. Zhou P, Yang X, Jia X et al (2016) Effect of 6′-acetylpaeoniflorin on dinitrochlorobenzene-induced allergic contact dermatitis in BALB/c mice. Immunol Res 64:857–868

    Article  CAS  PubMed  Google Scholar 

  57. Craig W (1993) Relevance of animal models for clinical treatment. Eur J Clin Microbiol Infect Dis 12(Suppl 1):S55–S57

    Article  PubMed  Google Scholar 

  58. Berbegal L, DeLeon FJ, Silvestre JF (2015) Corticosteroid hypersensitivity studies in a skin allergy clinic. Actas Dermosifiliogr 106:816–822

    Article  CAS  PubMed  Google Scholar 

  59. Zirwas MJ, Stechschulte SA (2008) Moisturizer allergy: diagnosis and management. J Clin Aesthet Dermatol 1:38–44

    PubMed  PubMed Central  Google Scholar 

  60. Kosari P, Alikhan A, Sockolov M, Feldman SR (2010) Vitamin E and allergic contact dermatitis. Dermatitis 21:148–153

    Article  CAS  PubMed  Google Scholar 

  61. Shanks N, Greek R, Greek J (2009) Are animal models predictive for humans? Philos Ethics Humanit Med 4:2

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yuan XY, Liu W, Zhang P, Wang RY, Guo JY (2010) Effects and mechanisms of aloperine on 2, 4-dinitrofluorobenzene-induced allergic contact dermatitis in BALB/c mice. Eur J Pharmacol 629:147–152

    Article  CAS  PubMed  Google Scholar 

  63. Nakano E, Kamei D, Murase R et al (2019) Anti-inflammatory effects of new catechin derivatives in a hapten-induced mouse contact dermatitis model. Eur J Pharmacol 845:40–47

    Article  CAS  PubMed  Google Scholar 

  64. Thitilertdecha P, Pluangnooch P, Timalsena S, Soontrapa K (2019) Immunosuppressive effect of hispidulin in allergic contact dermatitis. BMC Complement Altern Med 19:268

    Article  PubMed  PubMed Central  Google Scholar 

  65. Choi JK, Oh HM, Lee S et al (2013) Oleanolic acid acetate inhibits atopic dermatitis and allergic contact dermatitis in a murine model. Toxicol Appl Pharmacol 269:72–80

    Article  CAS  PubMed  Google Scholar 

  66. Choi JK, Kim SH (2013) Rutin suppresses atopic dermatitis and allergic contact dermatitis. Exp Biol Med (Maywood) 238:410–417

    Article  Google Scholar 

  67. Kuriyama K, Shimizu T, Horiguchi T, Watabe M, Abe Y (2002) Vitamin E ointment at high dose levels suppresses contact dermatitis in rats by stabilizing keratinocytes. Inflamm Res 51:483–489

    Article  CAS  PubMed  Google Scholar 

  68. Aye A, Song YJ, Jeon YD, Jin JS (2020) Xanthone suppresses allergic contact dermatitis in vitro and in vivo. Int Immunopharmacol 78:106061

    Article  CAS  PubMed  Google Scholar 

  69. Yin J, Yoon SH, Ahn HS, Lee MW (2018) Inhibitory activity of allergic contact dermatitis and atopic dermatitis-like skin in BALB/c mouse through oral administration of fermented barks of Alnus sibirica. Molecules 23:450

    Article  PubMed Central  Google Scholar 

  70. Kwon HK, Song MJ, Lee HJ, Park TS, Kim MI, Park HJ (2018) Pediococcus pentosaceus-fermented Cordyceps militaris inhibits inflammatory reactions and alleviates contact dermatitis. Int J Mol Sci 19:3504

    Article  PubMed Central  Google Scholar 

  71. Gordon WC, López VG, Bhattacharjee S et al (2018) A nonsteroidal novel formulation targeting inflammatory and pruritus-related mediators modulates experimental allergic contact dermatitis. Dermatol Ther (Heidelb) 8:111–126

    Article  Google Scholar 

  72. Kim H, Kim M, Kim H, Lee GS, An WG, Cho SI (2013) Anti-inflammatory activities of Dictamnus dasycarpus Turcz., root bark on allergic contact dermatitis induced by dinitrofluorobenzene in mice. J Ethnopharmacol 149:471–477

    Article  PubMed  Google Scholar 

  73. Chen F, Ye X, Yang Y et al (2015) Proanthocyanidins from the bark of Metasequoia glyptostroboides ameliorate allergic contact dermatitis through directly inhibiting T cells activation and Th1/Th17 responses. Phytomedicine 22:510–515

    Article  CAS  PubMed  Google Scholar 

  74. Nagano T, Ito H (2019) Diets containing pomegranate polyphenol and soy isoflavone attenuate contact hypersensitivity in mice. Biosci Biotechnol Biochem 83:525–530

    Article  CAS  PubMed  Google Scholar 

  75. Park DK, Lee YG, Park HJ (2013) Extract of Rhus verniciflua bark suppresses 2,4-dinitrofluorobenzene-induced allergic contact dermatitis. Evid Based Complement Alternat Med 2013:879696

    Article  PubMed  PubMed Central  Google Scholar 

  76. Fu R, Zhang Y, Peng T, Guo Y, Chen F (2015) Phenolic composition and effects on allergic contact dermatitis of phenolic extracts Sapium sebiferum (L.) Roxb. Leaves. J Ethnopharmacol 162:176–180

    Article  CAS  PubMed  Google Scholar 

  77. Lim D, Kim MK, Jang YP, Kim J (2015) Sceptridium ternatum attenuates allergic contact dermatitis-like skin lesions by inhibiting T helper 2-type immune responses and inflammatory responses in a mouse model. J Dermatol Sci 79:288–297

    Article  PubMed  Google Scholar 

  78. Kim H, Lee MR, Lee GS, An WG, Cho SI (2012) Effect of Sophora flavescens Aiton extract on degranulation of mast cells and contact dermatitis induced by dinitrofluorobenzene in mice. J Ethnopharmacol 142:253–258

    Article  PubMed  Google Scholar 

  79. Li Y, Li LF (2013) Topical application of a Chinese medicine, Qingpeng ointment, ameliorates 2, 4-dinitrofluorobenzene-induced allergic contact dermatitis in BALB/c mice. Eur J Dermatol 23:803–806

    Article  PubMed  Google Scholar 

  80. Belhadjali H, Giordano-Labadie F, Bazex J (2001) Contact dermatitis from vitamin C in a cosmetic anti-aging cream. Contact Dermatitis 45:317

    Article  CAS  PubMed  Google Scholar 

  81. Swinnen I, Goossens A (2011) Allergic contact dermatitis caused by ascorbyl tetraisopalmitate. Contact Dermatitis 64:241–242

    Article  PubMed  Google Scholar 

  82. Victoria-Martinez AM, Mercader-Garcia P (2017) Allergic contact dermatitis to 3-o-ethyl-l-ascorbic acid in skin-lightening cosmetics. Dermatitis 28:89

    Article  PubMed  Google Scholar 

  83. Mamodaly M, Dereure O, Raison-Peyron N (2019) A new case of allergic contact dermatitis caused by 3-o-ethyl ascorbic acid in facial antiageing cosmetics. Contact Dermatitis 81:315–316

    Article  PubMed  Google Scholar 

  84. Gallo R, Viglizzo G, Vecchio F, Parodi A (2003) Allergic contact dermatitis from pentylene glycol in an emollient cream, with possible co-sensitization to resveratrol. Contact Dermatitis 48:176–177

    Article  CAS  PubMed  Google Scholar 

  85. Gallo R, Pastorino C, Gasparini G, Ciccarese G, Parodi A (2016) Scutellaria baicalensis extract: a novel botanical allergen in cosmetic products? Contact Dermatitis 75:387–388

    Article  CAS  PubMed  Google Scholar 

  86. Degraeuwe A, Jacobs MC, Herman A (2020) Allergic contact dermatitis caused by resveratrol in a cosmetic cream. Contact Dermatitis 82:412–413

    Article  PubMed  Google Scholar 

  87. Manzano D, Aguirre A, Gardeazabal J, Eizaguirre X, Diaz Perez JL (1994) Allergic contact dermatitis from tocopheryl acetate (vitamin E) and retinol palmitate (vitamin A) in a moisturizing cream. Contact Dermatitis 31:324

    Article  CAS  PubMed  Google Scholar 

  88. Bazzano C, de Angeles S, Kleist G, Macedo N (1996) Allergic contact dermatitis from topical vitamins A and E. Contact Dermatitis 35:261–262

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was a part of the research project N42/DBS/000108 of the Jagiellonian University Medical College. We cordially thank dr Dorota Zelaszczyk for drawing the chemical structures used in this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Spiewak, R., Plichta, D. (2021). Beneficial and Detrimental Effects of Antioxidants in Allergic Contact Dermatitis. In: Ekiert, H.M., Ramawat, K.G., Arora, J. (eds) Plant Antioxidants and Health. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-45299-5_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45299-5_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45299-5

  • Online ISBN: 978-3-030-45299-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics