Skip to main content

Biotechnological Advances in Rubber Tree (Hevea brasiliensis Muell. Arg.) Breeding

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Industrial and Food Crops

Abstract

The aim of Hevea breeding is to provide new varieties/clones which are genetically superior in terms of yield, disease tolerance, better adaptability to climatic fluctuations and good timber quality. Although traditional breeding strategies could achieve a substantial increase in yield, breaking the current yield plateau is possible only with the aid of nonconventional breeding strategies. In addition to large-scale propagation, tissue culture holds unique advantages for crop improvement and this has been utilized successfully in many crops for specific purposes. Various tissue-culture techniques like somatic embryogenesis, embryo rescue, culture of protoplast, anther, pollen and embryo sac are practiced in Hevea. Interventions were also made in the area of molecular breeding through the development of molecular markers and through Agrobacterium-mediated genetic manipulation. The present chapter gives an overview on the constraints in Hevea breeding and reviews the progress of in vitro techniques comprehensively towards complementing conventional breeding. A road map to effectively combine the traditional and non-traditional methods for future Hevea breeding is presented. This takes on importance in the present scenario of unprecedented climatic vagaries and resource constraints. Progress made in the advancement of biotechnological applications in the natural rubber-producing tree Hevea brasiliensis Muell. Arg. worldwide and its implications in breeding are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akpobome FA, Mensah JK, Omokhafe KO et al (2017) Growth characteristics of in vitro plantlets of Hevea brasiliensis obtained from immature embryo culture. Int J Biosci 11(1):16. https://doi.org/10.12692/ijb/11.1

    Article  Google Scholar 

  • Annamma Y, Marattukalam JG et al (1990) Promising rubber planting materials with special reference to Indian clones. In: Proceedings, planters conference Kottayam, India, pp 62–70

    Google Scholar 

  • Arokiaraj P (2000) Genetic transformation of Hevea Brasiliensis (rubber tree) and its applications towards crop improvement and production of recombinant proteins of commercial value. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, Forestry sciences, vol 66. Springer, Dordrecht, pp 305–325

    Chapter  Google Scholar 

  • Arokiaraj P, Wan Abdul Rahaman WY (1991) Agrobacterium-mediated transformation of Hevea cells derived from in vitro & in vivo seedling cultures. J Nat Rubb Res 6:55–61

    CAS  Google Scholar 

  • Arokiaraj P, Jones H, Cheong KF et al (1994) Gene insertion into Hevea brasiliensis. Plant Cell Rep 13:425–431

    Article  CAS  PubMed  Google Scholar 

  • Arokiaraj P, Jaafar H, Hamzah S et al (1995) Enhancement of Hevea crop potential by genetic transformation: HMGR activity in transformed tissue. Aspects of the breeding of Hevea brasiliensis. In: Proceedings of IRRDB symposium on physiology molecular biology, Penang, Malaysia, pp 74–82

    Google Scholar 

  • Arokiaraj P, Jones H, Jaafar H et al (1996) Agrobacterium-mediated transformation of Hevea anther calli and their regeneration into plantlets. J Nat Rubb Res 11:77–87

    CAS  Google Scholar 

  • Arokiaraj P, Yeang HY, Cheong KF et al (1998) CaMV 35S promoter directs β–glucuronidase expression in the laticiferous system of transgenic Hevea brasiliensis (rubber tree). Plant Cell Rep 17(8):621–625

    Article  CAS  PubMed  Google Scholar 

  • Arokiaraj P, Ruker F, Obermayer E, Yeang HY (2002) Expression of human serum albumin in transgenic Hevea brasiliensis. J Rubb Res 5(3):157–166

    CAS  Google Scholar 

  • Asokan MP, Sobhana P, Sushamakumari S, Sethuraj MR (1988) Tissue culture propagation of rubber (Hevea brasiliensis Wild ex Adr. De Juss. Muell. Arg.) clone GT1. Ind J Nat Rubb Res 1:10–12

    Google Scholar 

  • Atan S, Low FC, Saleh NM (1996) Construction of a microsatellite enriched library from Hevea brasiliensis. J Nat Rubb Res 11:247–255

    CAS  Google Scholar 

  • Atichart P (2013) Polyploid induction by colchicine treatments and plant regeneration of Dendrobium chrysotoxum. Thai J Agricult Sci 46(1):59–63

    Google Scholar 

  • Auboiron E, Carron MP, Michaux-Ferriere N (1990) Influence of atmospheric gases particularly ethylene on somatic embryogenesis of Hevea brasiliensis. Plant Cell Tiss Org Cult 21:31–37

    Article  CAS  Google Scholar 

  • Bardini M, Labra M, Winfield M, Sala F (2003) Antibiotic-induced DNA methylation changes in calluses of Arabidopsis thaliana. Plant Cell Tis Org Cult 72(2):157–162

    Article  CAS  Google Scholar 

  • Baulkwill WJ (1989) The history of natural rubber production. In: Webster CC, Baulkwill WJ (eds) Rubber. Longman, Essex, pp 1–56

    Google Scholar 

  • Baylin SB, Esteller M, Rountree MR et al (2001) Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Gen 10:687–692

    Article  CAS  PubMed  Google Scholar 

  • Bednarek PT, Orłowska R, Koebner RM, Zimny J (2007) Quantification of the tissue-culture induced variation in barley (Hordeum vulgare L.). BMC Plant Biol 7:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besse P, Lebrun P, Seguin LC (1993) DNA fingerprints in Hevea brasiliensis (rubber tree) using human minisatellite probes. Heredity 70:237–244

    Article  CAS  Google Scholar 

  • Besse P, Seguin M, Lebrun P et al (1994) Genetic diversity among wild and cultivated populations of Hevea brasiliensis assessed by nuclear RFLP analysis. Theor Appl Genet 88:199–207

    Article  CAS  PubMed  Google Scholar 

  • Bhojwani SS, Johr BM (1971) Morphogenetic studies on cultured mature endosperm of Croton bonplandianum. New Phytol 70:761–766

    Article  CAS  Google Scholar 

  • Bini K (2013) Development of a genetic linkage map using molecular markers in Para rubber tree (Hevea brasiliensis). University of Kerala, PhD Thesis

    Google Scholar 

  • Blanc G, Michaux-Ferriere N, Teisson C et al (1999) Effects of carbohydrate addition on the induction of somatic embryogenesis in Hevea brasiliensis. Plant Cell Tiss Org Cult 59:103–112

    Article  CAS  Google Scholar 

  • Blanc G, Lardet L, Martin A et al (2002) Differential carbohydrate metabolism conducts morphogenesis in embryogenic callus of Hevea brasiliensis (Muell. Arg.). J Exp Bot 53:1453–1462

    CAS  PubMed  Google Scholar 

  • Blanc G, Baptiste C, Oliver G et al (2006) Efficient Agrobacterium tumefaciens mediated transformation of embryogeneic calli & regeneration of Hevea brasiliensis. Mull Arg Plant Cell Rep 24(12):724–733

    Article  CAS  PubMed  Google Scholar 

  • Bouychou JG (1953) La culture in vitro des tissues d’ Hevea. Proc Rubb Conf Bogor, 1952. Arch Rubber Cultiv 30:50–53

    Google Scholar 

  • Boyko A, Kovalchuk I (2011) Genome instability and epigenetic modification – heritable responses to environmental stress? Curr Opin Plant Biol 14(3):260–266

    Article  PubMed  Google Scholar 

  • Cailloux M, Lleras E (1979) Fusão de protoplastos de Hevea brasiliensis e Hevea pauciflore. Estabelecimento de Tecnica. Acta Amaz 9:9–13

    Article  CAS  Google Scholar 

  • Cailloux F, Julien-Guerrier J, Linossier L, Coudret A (1996) Long-term somatic embryogenesis and maturation of somatic embryos in Hevea brasiliensis. Plant Sci 120(2):185–196

    Article  CAS  Google Scholar 

  • Carron MP (1981) Germination in vitro d’ embryons immatures d’ hevea. Caoutch Plastiq 58(612):4

    Google Scholar 

  • Carron MP, Enjalric F (1982) Studies on vegetative micropagation of Hevea brasiliensis by somatic embryogenesis and in vitro on microcutting. In: Fujiwara A (ed) Proceedings, 5th international congress of plant tissue and cell culture, Tokyo and Lake Yamanake, Japan, July 11–16, 1982, pp 751–752

    Google Scholar 

  • Carron MP, Enjalric E (1983) Prospects for the mocropropagation of Hevea brasiliensis. Rev Gen Caoutch Plastiq 628:65–68

    Google Scholar 

  • Carron MP, Enjalric E (1985) Somatic embryogenesis from inner integument of the seed of Hevea brasiliensis (Muell. Arg.). Comp Rend Acad Sci, Paris, Series III 300:653–658

    Google Scholar 

  • Carron MP, Enjalric E, Lardet L, Deschamps A (1989) Rubber (Hevea brasiliensis Muell. Arg.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Springer, Berlin, pp 222–245

    Google Scholar 

  • Carron MP, Etienne H, Michaux- Ferriere N et al (1995) Somatic embryogenesis in rubber tree (Hevea brasiliensis Muell. Arg.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 30. Springer, Berlin, pp 353–369

    Google Scholar 

  • Carron MP, le Roux Y, Tison J et al (2000) Compared root architectures in seedlings and in vitro plantlets of Hevea brasiliensis in the initial years of growth in the field. Plant Soil 223:73–85

    Article  CAS  Google Scholar 

  • Cazaux E, d’Auzac J (1994) Microcallus formation from Hevea brasiliensis protoplast isolated from embryogenic callus. Plant Cell Rep 13:272–276

    Article  CAS  PubMed  Google Scholar 

  • Cazaux E, d’Auzac J (1995) Explanation for the lack of division of protoplast from stems of rubber tree (Hevea brasiliensis). Plant Cell Tiss Org Cult 41:211–219

    Article  CAS  Google Scholar 

  • Chaicharoen S, Satrabhandhu A, Kruatrachue M (1995) In vitro induction of polyploidy in white mulberry (Morus alba var.S54) by colchicine treatment. J Sci Soc 21:229–242

    Google Scholar 

  • Chandrasekhar TR, Kavitha KM, Alice J et al (1997) Intraclonal variability for yield in rubber (Hevea brasiliensis). Ind J Nat Rubb Res 10:43–47

    Google Scholar 

  • Chandrasekhar TR, Alice J, Gireesh T et al (2004) Observations on pollination, fecundity/siring ability and seed germination in Hevea brasiliensis. J Rubb Res 7:265–280

    Google Scholar 

  • Charrier B, Scollan C, Ross S et al (2000) Co-silencing of homologous transgenes in tobacco. Mol Breed 6:407–419. https://doi.org/10.1023/A:1009672714835

    Article  CAS  Google Scholar 

  • Chen Z (1984) Rubber (Hevea). In: Sharp R, Associates (eds) Handbook of plant cell culture crop species, vol 2. MacMillan Publishers, New York, pp 546–571

    Google Scholar 

  • Chen C, Chen F, Chein C et al (1979) A process of obtaining pollen plants of Hevea brasiliensis Muell. Arg. Scientia Sinica XXII:81–90

    Google Scholar 

  • Chen Z, Qian C, Qin M et al (1981) Relationship between somatic cells and microspores in the process of anther cultu.re of Hevea brasiliensis Muell. Arg. Acta Bot 1:1–7

    Google Scholar 

  • Chen Z, Qian C, Qin M et al (1982) Recent advances in anther culture of Hevea brasiliensis (Muell. Arg.). Theor Appl Genet 62:103–113

    Article  CAS  PubMed  Google Scholar 

  • Chevallier MH (1988) Genetic variability of Hevea brasiliensis germplasm using isozyme markers. J Nat Rubb Res 3:42–53

    Google Scholar 

  • Chin SW, Liou JJ, Shii CT et al (1997) Dominant expression and heat tolerance of Lilium longiflorum germplasm in distant crosses hybridization with Asiatic and oriental lilies. Acta Hort 430:495–501

    Article  Google Scholar 

  • Chua SE (1966) Studies on tissue culture of Hevea brasiliensis: role of osmotic concentration, carbohydrate and pH value in induction of callus growth in plumule tissue from rubber seedling. J Rubb Res 19(5):272–276

    CAS  Google Scholar 

  • Clément-Demange A, Legnate H, Seguin M et al (2001) Rubber tree. In: Charrier A, Jacquot M, Hamon S, Nicolas D (eds) Tropical plant breeding. CIRAD-ORSTOM, Montpellier, pp 455–480

    Google Scholar 

  • Dai XM, Li Z, Hua YW et al (2014) Plant regeneration from protoplast culture of Reyan 8–79 Hevea brasiliensis (Muell. Arg.). J South Agric 45(12):2040–2045

    Google Scholar 

  • Dandekar AM, McGranahan GH, Leslie CA, Uratsu SL (1989) Agrobacterium mediated transformation of somatic embryos as a method for the production of transgenic plants. J Tissue Cult Meth 12:145–150

    Article  Google Scholar 

  • Das K, Dey SK (2009) Isolation of protoplast from leaf mesophyll cells of Hevea brasiliensis. Nat Rubb Res 22(1/2):93–98

    Google Scholar 

  • Das K, Sinha RR, Potty SN, Sethuraj MR (1994) Embryogenesis from anther derived callus of Hevea brasiliensis (Muell. Arg.). Ind J Hill Farm 7:90–95

    Google Scholar 

  • Das G, Raj S, Pothen J et al (1998) Status of free radical and its scavenging system with stimulation in Hevea brasiliensis. Plant Phys Biochem 25:47–50

    Google Scholar 

  • Das K, Das G, Dey SK (2003) In vitro culture of immature embryos of Hevea brasiliensis. Ind J Nat Rubb Res 16:122–126

    CAS  Google Scholar 

  • de Pavia JR, Kageyama PY, Vencovsky R (1993) Outcrossing rates and inbreeding coefficients in rubber tress Hevea brasiliensis (Willd. Ed. Adr. De Juss.) (Muell. Arg.). Rev Brasil Genet 16:1003–1011

    Google Scholar 

  • de Pavia JR, Kageyama PY, Vencovsky R (1994) Genetics of rubber tree (Hevea brasiliensis (Willd. Ex Adr. De Juss.) Muell. Arg.): 2. Mating system. Silvae Genet 43:373–376

    Google Scholar 

  • Dean W (1987) Brasil and the struggle for rubber. Cambridge University Press, Cambridge

    Google Scholar 

  • De-la-Peña C, Nic-Can G, Ojeda G et al (2012) KNOX1 is expressed and epigenetically regulated during in vitro conditions in Agave spp. BMC Plant Biol 12:203. https://doi.org/10.1186/1471-2229-12-203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diallo AM, Nielsen LR et al (2016) Polyploidy can confer superiority to West African Acacia senegal (L.) Willd. Trees Front Plant Sci 7:821

    PubMed  Google Scholar 

  • Dibi K, Boko C, Obouayeba S et al (2010) Field growth and rubber yield of in vitro micropropagated plants of clones PR 107, IRCA 18 and RRIM 600 of Hevea brasiliensis (Muell.Arg.). Agric Biol J N Am 1(6):1291–1298

    Article  Google Scholar 

  • Dijkman MJ (1951) Hevea: thirty years of research in the far East. University Miami Press, Coral Gables

    Google Scholar 

  • Divya UK (2016) Accomplishment of ploidy variation in Hevea brasiliensis for crop improvement. Mahathma Gandhi University, Kottayam, Kerala. PhD Thesis

    Google Scholar 

  • Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509

    CAS  Google Scholar 

  • Duncan RR (1997) Tissue culture-induced variation and crop improvement. Adv Agron 58:201–240

    Article  CAS  Google Scholar 

  • Dupius I, Dumas C (1989) In vitro pollination as a model for studying fertilisation in maize (Zea mays). Sex Plant Reprod 2(4):265–269

    Google Scholar 

  • Durand-Gasselin T, Guen VL, Konan E, Duval Y (1990) Oil palm (Elaeis guineensis Jacq.) Plantations in Côte d’Ivoire obtained through in vitro culture: first results. Oléagin 45:1–11

    Google Scholar 

  • Ebinuma H, Sugitha K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. PNAS 94:2117–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eeckhaut T, Lakshmanan PS, Deryckere D et al (2013) Progress in plant protoplast research. Planta 238(6):991–1003. https://doi.org/10.1007/s00425–013–1936

    Article  CAS  PubMed  Google Scholar 

  • EI Hadrami I, d’Auzac J (1992) Effects of polyamine biosynthetic inhibitors on somatic embryogenesis and cellular polyamines in Hevea brasiliensis. J Plant Physiol 140:33–36

    Article  Google Scholar 

  • EI Hadrami I, Michaux-Ferriere N, Carron MP, d’Auzac J (1989) Polyamines a possible limiting factor in somatic embryogenesis of Hevea brasiliensis. Comp Rend Acad Sci 308:205–211

    Google Scholar 

  • Elhiti M, Stasolla C (2011) The use of zygotic embryos as explants for In Vitro propagation: an overview. In: Thorpe TA, Yeung EC (eds) Plant embryo culture: methods and protocols, Methods in molecular biology. Springer, Dordrecht, pp 229–255

    Chapter  Google Scholar 

  • Elleuch H, Gazeau C, David H, David A (1998) Cryopreservation does not affect the expression of a foreign sam gene in transgenic Papaver somniferum cells. Plant Cell Rep 18:94–98

    Article  CAS  Google Scholar 

  • Engelmann F, Lartaud M, Chabrillange N et al (1997) Cryopreservation of embryogenic callus of two commercial clones of Hevea brasiliensis. Cryo Lett 18:107–116

    Google Scholar 

  • Etienne H, Berger A, Carron MP (1991a) Water status of callus from Hevea brasiliensis during somatic embryogenesis. Phys Plant 82:213–218

    Article  Google Scholar 

  • Etienne H, Montoro P, Carron MP (1991b) Incidence des parameters hydriques sure le development des cals d’ Hevea brasiliensis en culture in vitro. Annal Sci For 48:253–265

    Article  Google Scholar 

  • Etienne H, Montoro P, Michaux-Ferrier N, Carron MP (1993a) Effects of desication, medium osmolarity and abscisic acid on the maturation of Hevea brasiliensis somatic embryos. J Exper Bot 44:1613–1619

    Article  CAS  Google Scholar 

  • Etienne H, Sott B, Montoro P et al (1993b) Relations between exogenous growth regulators and endogenous indole–acetic acid and abscisic acid with expression of somatic embryogenesis in Hevea brasiliensis Muell. Arg. Plant Sci 88:91–96

    Article  CAS  Google Scholar 

  • Etienne H, Lartaud M, Michaux-Ferriere N et al (1997) Improvement of somatic embryogenesis in Hevea brasiliensis (Muell. Arg.) using the temporary immersion technique. In Vitro Cell Dev Biol Plant 33(2):81–87

    Article  Google Scholar 

  • Fagard M, Vaucheret H (2000) Transgene silencing in plants: how many mechanisms? Ann Rev Plant Phys Plant Mol Biol 51:167–194

    Article  CAS  Google Scholar 

  • Feng SP, Li WG, Yu F et al (2010) Construction of genetic linkage map for rubber tree (Hevea brasiliensis) based on SSR markers. Heredity 8:857–863

    Google Scholar 

  • Fernando DD, Owes JN, Von Aderkas P (1998) In vitro fertilisation from co-cultured pollen tubes and female gametophytes of Douglas fir (Pseudotsuga menziesii). Theor Appl Genet 96:1057–1063

    Article  Google Scholar 

  • Finnegan EJ (2002) Epialleles – a source of random variation in times of stress. Curr Opin Plant Biol 5(2):101–106

    Article  CAS  PubMed  Google Scholar 

  • Gandhimathi H, Paranjothy K (1975) Anther culture attempts at induction of haploidy in Hevea and other plants. In: Proceedings of national plant tissue culture symposium, Kuala Lumpur, Malaysia, pp 32–35

    Google Scholar 

  • Georg PJ (2000) Germplasm resources. In: George PJ, Kuruvilla Jacob C (eds) Natural rubber. Agromanagement and crop processing. Rubber Research Institute of India, Rubber Board, Kottayam, pp 47–58

    Google Scholar 

  • Gonçalves P, de S, Paiva JR, Souza RA (1983) Retrospectiva e atualidade do melhoramento genético da seringueira (Hevea spp.) no Brasil e em paises asiáticos. EMBRAPA-CNPSD, Manaus, Brazil

    Google Scholar 

  • Gonzalez AI, Saiz A, Acedo A, Ruiz ML (2013) Analysis of genomic DNA methylation patterns in regenerated and control plants of rye (Secale cereale L.). Plant Growth Regul 70:227–236. https://doi.org/10.1007/s10725–013–9794–7

    Article  CAS  Google Scholar 

  • Gordon-Kamm et al (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618. https://doi.org/10.1105/tpc.2.7.603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham MW, Mudge SR, Sternes PR, Birch RG (2011) Understanding and avoiding transgene silencing. In: Stewart CN, Touraev A, Citopvsky V, Tzfira T (eds) Plant transformation technologies. Blackwell Publishing, Oxford. https://doi.org/10.1002/9780470958988.ch12

    Chapter  Google Scholar 

  • Grant-Downton RT, Dickinson HG (2005) Epigenetics and its implications for plant biology. 1. The epigenetic network in plants. Ann Bot 96(7):1143–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunatilleke ID, Samaranayake G (1988) Shoot tip culture as a method of micropropagation of Hevea. J Rubb Res Inst Sri Lanka 68:33–44

    Google Scholar 

  • Guo G, Jia X, Chen L (1982) Induction of plantlets from ovules in vitro of Hevea brasiliensis. Heredity 4(1):27–28

    Google Scholar 

  • Hao BZ, Wu JL (2000) Laticifer differentiation in Hevea brasiliensis induction by exogenous jasmonic acid and linolenic acid. Ann Bot 85:37–43

    Article  CAS  Google Scholar 

  • Haris Ndarussamin A, Dodd WA (1993) Isolation of rubber tree Hevea brasiliensis (Muell. Arg.) protoplasts from callus and cell suspensions. Menara-Perkebunan 61:25–31

    Google Scholar 

  • Hayashi Y (2009) Production of natural rubber from Para rubber tree. Plant Biotechnol 26:67–70

    Article  CAS  Google Scholar 

  • Hess D, Wagner G (1974) Induction of haploid parthenogenesis in Mimulus luteus by in vitro pollination with foreign pollen. Pflanzenphysiologie 72:466–468

    Article  Google Scholar 

  • Ho MW (2001) Horizontal gene transfer-the hidden hazards of genetic engineering. In: Biotechnology & biosafety series-IV. Third World Network, Penang, pp 1–30

    Google Scholar 

  • Hua YW, Huang TD, Huang HS (2010) Micropropagation of self-rooting juvenile clones by secondary somatic embryogenesis in Hevea brasiliensis. Plant Breed 129:202–207

    Article  CAS  Google Scholar 

  • Hui Z, Ming P, Xu W et al (2009) Micropropagation of rubber tree (Hevea brasiliensis) by employing mature stem as explants. Genom Appl Biol 28(6):1169–1176

    Google Scholar 

  • Ighere Dickson A, Okere A, Elizabeth J et al (2011) In vitro culture of Hevea brasiliensis rubber tree. J Plant Breed Crop Sci 3(9):185–189

    CAS  Google Scholar 

  • IRRDB (1982) Status report of primary nursery. Manaus. In: The 1981 Germplasm Project: Reports from the three centers and on the meeting of Senior Plant Breeders, Brazil, 18th June 1982

    Google Scholar 

  • IRSG (2017) International Rubber Study Group. Rubber Stat Bull 72:1–3

    Google Scholar 

  • Jacob J, Othman R, Mydin KK (2013) International clone exchange and genetic enhancement research in Hevea brasiliensis. Rubb Sci 26(1):1–12

    Google Scholar 

  • Jaligot E, Beulé T, Rival A (2002) Methylation-sensitive RFLPs: characterisation of two oil palm markers showing somaclonal variation-associated polymorphism. Theor Appl Genet 104(8):1263–1269

    Article  CAS  PubMed  Google Scholar 

  • Jaligot E, Beulé T, Baurens FC et al (2004) Search for methylation-sensitive amplification polymorphisms associated with the mantled variant phenotype in oil palm (Elaeis guineensis Jacq). Genome 47:224–228

    Article  CAS  PubMed  Google Scholar 

  • Jayashree R, Rekha K, Venkatachalam P et al (2003) Genetic transformation & regeneration of rubber tree (Hevea brasiliensis Muell. Arg) transgenic plants with a constitutive version of an anti-oxidative stress superoxide dismutase gene. Plant Cell Rep 22:201–209

    Article  CAS  PubMed  Google Scholar 

  • Jayashree R, Rekha K, Sushamakumari S et al (2005) Establishment of callus cultures from isolated microspores of Hevea brasiliensis. In: Paper presented at ICAR National Symposium on Biotechnological Interventions for Improvement of Horticultural Crops, Issues and Strategies, Trichur, India, pp 385–390

    Google Scholar 

  • Jayashree R, Sobha S, Rekha K et al (2011) Over expression of MnSOD and drought related traits in MnSOD transgenic Hevea brasiliensis. Nat Rubb Res 24(1):18–27

    CAS  Google Scholar 

  • Jayashree R, Nazeem PA, Venkatachalam P et al (2014) Integration and expression of hmgr1 gene in the transgenic plants of Hevea brasiliensis (clone RRII 105). In: International symposium on plantation crops, Kozhikode, Kerala, India

    Google Scholar 

  • Jayashree R, Nazeem PA, Rekha K et al (2018) Over-expression of 3-hydroxy-3- methyl glutaryl-coenzyme A reductase 1 (hmgr1) gene under super-promoter for enhanced latex biosynthesis in rubber tree (Hevea brasiliensis Muell. Arg.). Plant Phys Biochem 127:414–442

    Article  CAS  Google Scholar 

  • Johnson A, Veilleux R (2001) Somatic hybridization and application in plant breeding. In: Janick J (ed) Plant Breeding Rev 20. John Wiley, New York, pp 167–225

    Google Scholar 

  • Kaeppler SM, Phillips RL (1993) Tissue culture-induced DNA methylation variation in maize. Proc Natl Acad Sci USA 90:8773–8776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kala RG, Asokan MP, Jayasree PK et al (2002) Optimization of conditions for in vitro micrografting in rubber (Hevea brasiliensis). Ind J Nat Rubb Res 15(2):165–171

    Google Scholar 

  • Kala RG, Jayasree PK, Sobha S et al (2003) Introduction of the gene coding for isopentenyl transferase into Hevea brasiliensis: effect on plant regeneration. In: 10th congress of FAOBMB, Bangalore, India

    Google Scholar 

  • Kala RG, Anu KS, Manesh K et al (2006) Agrobacterium mediated genetic transformation in Hevea brasiliensis for recombinant protein production. J Plant Crops 34(3):582–586

    Google Scholar 

  • Kala RG, Kumari Jayasree P, Sushamakumari S et al (2007) In vitro regeneration of Hevea brasiliensis from leaf explants. In: Raghunatha K, Associates (eds) Recent trends in horticultural biotechnology. New India Publishing Agencies, New Delhi, pp 223–228

    Google Scholar 

  • Kala RG, Kuruvilla L, Kumari Jayasree P et al (2008) Secondary somatic embryogenesis and plant regeneration from leaf derived somatic embryos of Hevea brasiliensis. J Plant Crops 36(3):218–222

    Google Scholar 

  • Kala RG, Gimisha GC, Kumari Jayasree P et al (2009) Somatic embryogenesis in leaf cultures of Hevea brasiliensis: effect of explant source plant. Nat Rubb Res 22(1&2):117–126

    Google Scholar 

  • Kala RG, Supriya R, Sunie AM et al (2012) Chlorophyll A/B binding protein gene expression in juvenile and mature leaf explants and its relationship with in vitro culture response in Hevea brasiliensis. In: Paper presented at International Rubber Conference, Kovalam, Kerala, India

    Google Scholar 

  • Kala RG, Reshmi J, Sobha S et al (2014) Genetic transformation of Hevea brasiliensis using intact explants as target tissues for Agrobacterium infection. J Trop Agric 52(1):21–30

    CAS  Google Scholar 

  • Kala RG, Tisha LT, Sobha S et al (2015) Somatic embryo germination in Hevea brasiliensis. Effect of embryo desiccation, phytohormones and phloroglucinol. Rubb Sci 28(1):52–61

    Google Scholar 

  • Kalawong S, Srichuay W, Sirisom Y, Te-chato S (2014) The establishment of Agrobacterium-mediated gene transformation in rubber tree through organized explants. J Agric Tech 10(2):493–503

    CAS  Google Scholar 

  • Kavitha KM, Nazeer MA, Licy J et al (1989) Studies on improving fruit set following hand pollination in Hevea brasiliensis (Willd. ex Adr. de Juss.) Muell Arg. Ind J Nat Rubb Res 2:61–67

    Google Scholar 

  • Ke D, Mateos M, Siriphanich J et al (1993) Carbon dioxide action on metabolism of organic and amino acids in crisp head lettuce. Post Harv Biol Tech 3:235–247

    Article  CAS  Google Scholar 

  • Khoo SK, Yoon PK, Meignanaratnam K (1982) Early results of mother tree (ortet) selection. Plant Bull 171(6):33–49

    Google Scholar 

  • Koepke T, Dhingra A (2013) Rootstock scion somatogenetic interactions in perennial composite plants. Plant Cell Rep 32:1321–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouassi K, Koffi KE, Gnagne YM et al (2008) Production of Hevea brasiliensis embryos from in vitro culture of unpollinated ovules. Biotechnology 7(4):793–797

    Article  CAS  Google Scholar 

  • Kubis SE, Castilho AM, Vershinin AV, Heslop-Harrison JS (2003) Retroelements, transposons and methylation status in the genome of oil palm (Elaeis guineensis) and the relationship to somaclonal variation. Plant Mol Biol 52:69–79

    Article  CAS  PubMed  Google Scholar 

  • Kumari Jayasree P, Thulaseedharan A (2004) Initiation and maintenance of long term somatic embryogenesis in Hevea brasiliensis. In: Paper presented at IRRDB Biotechnology Workshop, Kuala Lumpur, Malaysia, p 56

    Google Scholar 

  • Kumari Jayasree P, Asokan MP, Sobha S et al (1999) Somatic embryogenesis & plant regeneration from immature anthers of Hevea brasiliensis (Muell. Arg.). Curr Sci 76:1242–1245

    Google Scholar 

  • Kumari Jayasree P, Reghu CP, Kala RG, Thulaseedharan A (2012a) Histochemical changes in embryogenic and non-embryogenic calli of Hevea brasiliensis. Nat Rubb Res 25(1):86–90

    Google Scholar 

  • Kumari Jayasree P, Sajeevan RS, Thulaseedharan A (2012b) Changes in protein profile during different developmental stages of somatic embryogenesis in Hevea brasiliensis. Rubb Sci 25(2):183–188

    Google Scholar 

  • Kumari Jayasree P, Divya S, Supriya R, Thulaseedharan A (2015) Agrobacterium-mediated transformation of Hevea brasiliensis with apple cDNA encoding sorbitol-6- phosphate dehydrogenase. Rubb Sci 28(1):31–39

    Google Scholar 

  • Lardet L, Piombo G, Orioi F et al (1999) Relations between biochemical characteristics and conversion ability in Hevea brasiliensis zygotic and somatic embryos. Can J Bot 77:1168–1177

    CAS  Google Scholar 

  • Lardet L, Martin F, Dessailly F et al (2007) Effect of exogenous calcium on post-thaw growth recovery and subsequent plant regeneration of cryopreserved embryogenic calli of Hevea brasiliensis (Muell. Arg.). Plant Cell Rep 26:559–569

    Article  CAS  PubMed  Google Scholar 

  • Lardet L, Dessailly F, Carron MP et al (2008a) Secondary somatic embryogenesis in Hevea brasiliensis (Muell. Arg.): an alternative process for long term somatic embryogenesis. J Rubb Res 12(4):215–228

    Google Scholar 

  • Lardet L, Dessailly F, Carron MP et al (2008b) Influences of aging and cloning methods on the capacity for somatic embryogenesis of a mature Hevea brasiliensis genotype. Tree Physiol 29:291–298

    Article  PubMed  Google Scholar 

  • Leclercq J, Martin FS, Sanier C et al (2012) Overexpression of a cytosolic isoform of the Hb CuZnSOD gene in Hevea brasiliensis changes its response to a water deficit. Plant Mol Biol 80(3):255–272

    Article  CAS  PubMed  Google Scholar 

  • Leconte A, Nouy B, Nicolas D (1984) Rate success of hand pollination and effects of some growth regulators on fruit set in Hevea. In: Compte-Rendu du Colloque Exploitation- Physiologie et Amélioration de l’Hevea. Montpellier, France, pp 519–525

    Google Scholar 

  • Lee T, Zhai J, Meyers BC (2010) Conservation and divergence in eukaryotic DNA methylation. Proc Nat Acad Sci USA 107:9027–9028

    Article  PubMed  PubMed Central  Google Scholar 

  • Lekawipat NK, Teerawatannasuk M, Rodier-Goud M et al (2003) Genetic diversity analysis of wild germplasm and cultivated clones of Hevea brasiliensis Muell. Arg. by using microsatellite markers. J Rubb Res 6:36–47

    CAS  Google Scholar 

  • Lespinasse D, Rodier-Goud M, Grivet L et al (2000) A saturated genetic linkage map of rubber tree (Hevea spp.) based on RFLP, AFLP, microsatellite and isozyme markers. Theor Appl Genet 100:127–138

    Article  CAS  Google Scholar 

  • Lestari M, Rio F, Martin JL et al (2017) Establishment of Hevea brasiliensis lines overexpressing genes involved in ethylene signalling pathway. Menara Perkebunan 84(1):41–46

    Google Scholar 

  • Li D, Zeng R, Li Y et al (2016) Gene expression analysis and SNP/InDel discovery to investigate yield heterosis of two rubber tree F1 hybrids. Sci Rep. https://doi.org/10.1038/srep24984

  • Licy J, Panikkar AON, Premakumari D et al (1998) Genetic parameters and heterosis in rubber (Hevea brasiliensis) Muell. Arg: early versus mature performance of hybrid clones. In: Mathew NM, Jacob CK (eds) Development in plantation crops research. Allied Publishers Limited, New Delhi, pp 9–15

    Google Scholar 

  • Linossier L, Veisseire P, Cailloux F, Coudret A (1997) Effect of abscisic acid and high concentration of PEG on Hevea brasiliensis somatic embryos development. Plant Sci 124:183–191

    Article  CAS  Google Scholar 

  • Lippman Z, Anne VG, Michael B et al (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476

    Article  CAS  PubMed  Google Scholar 

  • López CMR, Wilkinson MJ (2015) Epi-fingerprinting and epi-interventions for improved crop production and food quality. Front Plant Sci 6:1–14

    Article  Google Scholar 

  • Low FC, Atan S, Jaafar H, Tan H (1996) Recent advances in the development of molecular markers for Hevea studies. J Nat Rubb Res 11:32–44

    CAS  Google Scholar 

  • Luo H, Boutry M (1995) Phylogenetic relationships within Hevea brasiliensis as deduced from a polymorphic mitochondrial DNA region. Theor Appl Genet 91:876–884

    Article  CAS  PubMed  Google Scholar 

  • Lynen F (1969) Biochemical problems of rubber synthesis. J Rubb Res Inst Malays 21:389–406

    CAS  Google Scholar 

  • Ma JKC, Chikwamba R, Sparrow P et al (2005) Plant-derived pharmaceuticals-the road forward. Trends Plant Sci 10(12):580–585

    Article  CAS  PubMed  Google Scholar 

  • Majumder SK (1964) Chromosome studies in some species of Hevea. J Rubb Res Inst Malaya 18:269

    Google Scholar 

  • Mantello CC, Suzuki FI, Souza LM et al (2012) Microsatellite marker development for the rubber tree (Hevea brasiliensis): characterization and cross-amplification in wild Hevea species. BMC Res Notes. https://doi.org/10.1186/1756–0500–5–329

  • Mantello CC, Cardoso-Silva CB, da Silva CC et al (2014) De Novo assembly and transcriptome analysis of the rubber tree (Hevea brasiliensis) and SNP markers development for rubber biosynthesis pathways. PLoS One. https://doi.org/10.1371/journal.pone.0102665

  • Markose VC (1975) Colchyploidy in Hevea brasiliensis (Muell. Arg.). Rubb Board Bull 12(1):3–5

    Google Scholar 

  • Martre P, Lacan D, Just D, Teisson C (2001) Physiological effects of temporary immersion on Hevea brasiliensis callus. Plant Cell Tiss Org Cult 67:25–35

    Article  CAS  Google Scholar 

  • Matthes M, Singh R, Cheah S-C, Karp A (2001) Variation in oil palm (Elaeis guineensis Jacq.) tissue culture-derived regenerants revealed by AFLPs with methylation-sensitive enzymes. Theor Appl Genet 102:971–979

    Article  CAS  Google Scholar 

  • Meijón M, Feito I, Valledor L et al (2010) Dynamics of DNA methylation and Histone H4 acetylation during floral bud differentiation in azalea. BMC Plant Biol 10:10. https://doi.org/10.1186/1471–2229–10–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendanha ABL, de Almeida TRA, de Barros FA (1998) Micropropagation of rubber tree (Hevea brasiliensis Muell. Arg.). Genet Mol Biol 21:1415

    Article  Google Scholar 

  • Mendes LOT, Mendes AJ (1963) Poliploidia artificial em seringueria (Hevea brasiliensis Muell. Arg.). Bragantia 22:383–392

    Article  Google Scholar 

  • Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62:3713–3725

    Article  CAS  PubMed  Google Scholar 

  • Miki D, Shimamoto K (2008) De novo DNA methylation induced by siRNA targeted to endogenous transcribed sequences is gene–specific and OsMet1–independent in rice. Plant J 56:539–549

    Article  CAS  PubMed  Google Scholar 

  • Montoro P, Etienne H, Carron MP (1993) Callus friability and somatic embryogenesis in Hevea brasiliensis. Plant Cell Tiss Org Cult 33:331–338

    Article  CAS  Google Scholar 

  • Montoro P, Etienne H, Carron MP (1995) Effect of calcium on callus friability and somatic embryogenesis in Hevea brasiliensis (Muell. Arg.): relations with callus mineral nutrition, nitrogen metabolism and water parameters. J Exp Bot 46:255–261

    Article  CAS  Google Scholar 

  • Montoro P, Teinseree N, Rattana W et al (2000) Effect of exogenous calcium on Agrobacterium tumefaciens-mediated gene transfer in Hevea brasiliensis (rubber tree) friable calli. Plant Cell Rep 19:851–855

    Article  CAS  PubMed  Google Scholar 

  • Montoro P, Rattana W, Pujade-Renaud V et al (2003) Production of Hevea brasiliensis transgenic embryogenic callus lines by Agrobacterium tumefaciens: roles of calcium. Plant Cell Rep 21:1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Montoro P, Carron MP, Granet F et al (2012) Development of new varietal types based on rejuvenation by somatic embryogenesis and propagation by conventional budding or microcutting in Hevea brasiliensis. In: Geelan D (ed) Proceedings of Seventh International Symposium on In Vitro Cuturae and Horticultural Breeding, Ghent, Belgium, pp 2–25

    Google Scholar 

  • Murashige T, Bitters WP, Rengan TS et al (1972) A technique of shoot apex grafting and its utilisation towards recovering virus free citrus clones. Hort Sci 7:118–119

    Google Scholar 

  • Musial K, Przywara L (1998) Influence of irradiated pollen on embryo and endosperm development in kiwifruit. Ann Bot 82(6):747–756

    Article  Google Scholar 

  • Muzik TJ (1956) Studies on the development of the embryo and seed of Hevea brasiliensis in culture. Lloydia 19:86–91

    Google Scholar 

  • Muzik TJ, Cruzada HZ (1958) Transmission of juvenile rooting ability from seedlings to adults of Hevea brasiliensis. Nature 101:1288

    Article  Google Scholar 

  • Mydin KK (2011) Polycross breeding towards evolving genetically diverse Hevea clones for sustainability. In: IRRDB International Rubber Conference 15–16 December 2011 in Chiang Mai, Thailand, pp 1–10

    Google Scholar 

  • Mydin KK (2012) Juvenile mature correlations and associations among rubber yield and yield attributes in Hevea brasiliensis. Nat Rubb Res 25:1–12

    Google Scholar 

  • Mydin KK (2014) Genetic improvement of Hevea brasiliensis: 60 years of breeding efforts in India. Rubb Sci 27(2):153–181

    Google Scholar 

  • Mydin KK, Gireesh T (2016) Diversity and heterosis by recombination breeding of Hevea brasiliensis in India. Rubb Sci 29(1):20–35

    Google Scholar 

  • Mydin KK, Jacob J, Reghu CP et al (2011) Conservation, characterization, evaluation and utilization of the 1981 IRRDB wild Hevea germplasm collection in India. In: IRRDB International Workshop on Tree Breeding, Michelin Plantations, Bahia, Brasil, 4th–7th April 2011

    Google Scholar 

  • Nair PKP (2010) The agronomy and economy of important tree crops of the developing world. Elsevier, Amsterdam

    Google Scholar 

  • Nair NU, Kurup PA (1990) Possible application of the ratio of HMG CoA to mevalonate in the bark of Hevea brasiliensis as an indicator of rubber yield. Physiology and Exploitation of Hevea brasiliensis. In: Proceedings of IRRDB Symposium, Kunming, China

    Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayanakantha NMC, Seneviratne P (2007) Tissue culture of rubber: past, present and future prospects. Ceylon J Sci 36(2):116–125

    Google Scholar 

  • Nazeer MA, Saraswathyamma CK (1987) Spontaneous triploidy in Hevea brasiliensis (Wild. ex. Adr.de.juss.) Muell. Arg. J Plant Crops 15:69–71

    Google Scholar 

  • Nic-Can GI, López-Torres A, Barredo-Pool F et al (2013) New insights into somatic embryogenesis: leafy cotyledon1, baby boom1 and WUSCHEL-related homeobox4 are epigenetically regulated in Coffea canephora. PLoS One. 8(8):e72160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nor Mayati CH, Jamnah AR (2014) Induction of shoots and roots from vegetative tissue culture of Hevea brasiliensis RRIM 2020. J Trop Plant Phys 6:1–9

    Google Scholar 

  • Normah MN, Chin HF, Hor YL (1986) Desiccation and cryopreservation of embryogenic axes of Hevea brasiliensis Muell. Arg. Pertanika 9:299–303

    Google Scholar 

  • Novalina N, Sagala AD (2013) Construction of Hevea brasiliensis genetic linkage map and identification of quantitative trait loci using RAPD markers. Int J Adv Sci Eng Info Tech 3:71–75

    Article  Google Scholar 

  • Nuntanuwat W (2006) Relationship between the expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (hmgr-1) & rubber content in Hevea brasiliensis (Willd. ex A. Juss.) Muell.Arg. cultivars RRIM 600, BPM24 & PB235. An Abstract presented to the Thaksin University

    Google Scholar 

  • Ozzamback E, Schimdt H (1991) In vitro and in vivo micrografting of cherry (Prunus avium L.). Gartenbauwissenschaft 56:221–223

    Google Scholar 

  • Paranjothi K, Ghandimathi H (1976) Tissue and organ culture of Hevea. Proc Int Rubb Conf, Kuala Lumpur 1975 II:59–84

    Google Scholar 

  • Paranjothy K, Rohani O (1978) Embryoid and plantlet development from cell culture of Hevea. In: 4th International Congress Plant Tissue Cell Culture, University Calgary, Abstract 134

    Google Scholar 

  • Paranjothy K, Lim TM, Rohani O et al (1979) Transfer of Hevea seed germplasm. IRRDB Meet Technical Experts, Kuala Lumpur

    Google Scholar 

  • Pardekooper EC (1989) Exploitation of the rubber tree. In: Webster CC, Baulkwill WL (eds) Rubber. Longman Scientific & Technical, Singapore, pp 349–414

    Google Scholar 

  • Perrin Y, Lardet L, Enjalric F, Carron MP (1994) Rajeunissement de clones matures d’Hevea brasiliensis (Muell, Arg.) par microgreffage in vitro. Can J Plant Sci 74:623–630

    Article  Google Scholar 

  • Piyatrakul P, Putranto RA, Martin F et al (2012) Some ethylene biosynthesis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis. BMC Plant Biol 12:244. https://doi.org/10.1186/1471-2229-12-244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pootakham W, Chanprasert J, Jomchai N et al (2011) Single nucleotide polymorphism marker development in the rubber tree, Hevea brasiliensis (Euphorbiaceae). Am J Bot 98:337–338

    Article  Google Scholar 

  • Pootakham W, Ruang-Areerate P, Jomchai N et al (2015) Construction of a high-density integrated genetic linkage map of rubber tree (Hevea Brasiliensis) using genotyping-by-sequencing (GBS). Front Plant Sci 6:367. https://doi.org/10.3389/fpls.2015.00367

    Article  PubMed  PubMed Central  Google Scholar 

  • Pradhan S, Adams RL (1995) Distinct CG and CNG DNA methyltransferases in Pisum sativum. Plant J 3:471–481

    Article  Google Scholar 

  • Priyadarshan PM (2003) Breeding Hevea brasiliensis for environmental constraints. Adv Agron 79:351–400

    Article  Google Scholar 

  • Priyadarshan PM (ed) (2017) Biology of Hevea Rubber. Springer, Dordrecht. 251 p

    Google Scholar 

  • Priyadarshan PM, Clément-Demange A (2004) Breeding Hevea rubber: formal and molecular genetics. Adv Genet 52:51–115

    Article  CAS  PubMed  Google Scholar 

  • Priyadarshan PM, Goncalves P (2003) Hevea genepool for breeding. Genet Resour Crop Evol 50:101–114

    Article  CAS  Google Scholar 

  • Priyadarshan PM, Gonçalves P, Omokhaf KO (2009) Breeding Hevea rubber. In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: tropical species. Springer, Dordrecht, pp 469–522

    Chapter  Google Scholar 

  • Rahman MM, Mahmood M, Abdullah N et al (2017) Somatic embryogenesis and subsequent plant regeneration from zygotic embryo derived callus of rubber (Hevea brasiliensis Muell. Arg). Plant Tissue Cult Biotech 27(1):51–61

    Article  Google Scholar 

  • Ramaer H (1935) Cytology of Hevea. Genetica 17:193–194

    Article  Google Scholar 

  • Rangaswami NS, Shivanna KR (1967) Induction of gamete compatibility and seed formation in axenic cultures of a diploid self-incompatible species of petunia. Nature 216:937–939

    Article  Google Scholar 

  • Rao V, Donough CR (1990) Preliminary evidence of a genetic cause for the floral abnormalities in some oil palm ramets. Elaeis 2:199–207

    Google Scholar 

  • Ratnaparkhe MB, Tekeoglu M, Muehlbauer FJ (1998) Intersimple-sequence-repeat (ISSR) polymorphisms are useful for finding markers associated with disease resistance gene clusters. Theor Appl Genet 97:515–519

    Article  CAS  Google Scholar 

  • Rekha K (2013) Agrobacterium mediated molecular breeding in Hevea brasiliensis for crop improvement. MG University, Kerala, PhD Thesis

    Google Scholar 

  • Rekha K, Jayashree R, Thomas V et al (2002) In vitro fertilization in Hevea brasiliensis: a preliminary investigation. In: Proceedings of PLACRYOSYM XV, December 2002, pp 239–245

    Google Scholar 

  • Rekha K, Jayashree R, Kumari Jayasree P et al (2006) An efficient protocol for Agrobacterium mediated genetic transformation in rubber tree (Hevea brasiliensis). Plant Cell Biotechnol Molec Biol 7:155–158

    Google Scholar 

  • Rekha K, Jayashree R, Sushamakumari S et al (2007) Endosperm culture in Hevea brasiliensis. In: Keshavachandran R, Nazeem PA, Girija D et al (eds) Recent trends in horticultural biotechnology. New India Publishers, New Delhi, pp 111–116

    Google Scholar 

  • Rekha K, Jayashree R, Gireesh T et al (2010) Embryo rescue and plant regeneration in Hevea brasiliensis. Nat Rubb Res 23(1/2):47–54

    Google Scholar 

  • Rekha, K., Jayashree, R., Sushamakumari et al (2011) Exploitation of in vitro induced zygotic polyembryony for genetic transformation in Hevea brasiliensis. In: IRRDB International Rubber Conference December 15–16, Chiang Mai, Thailand

    Google Scholar 

  • Rekha K, Jayashree R, Sushamakumari S et al (2013) Integration and expression of osmotin gene in Hevea brasiliensis via. Agrobacterium mediated transformation. J Plant Crops 40(1):80–85

    Google Scholar 

  • Rekha K, Nazeem PA, Venkatachalam P et al (2014) Development of osmotin transgenics in Hevea brasiliensis Muell. Arg. using explants of zygotic origin. J Trop Agric 52(1):7–20

    CAS  Google Scholar 

  • Rekha K, Thomas KU, Sobha S et al (2015) Genetic and epigenetic uniformity of polyembryony derived multiple seedlings of Hevea brasiliensis. Protoplasma 252:783–796

    Article  CAS  Google Scholar 

  • Rekha K, Nazeem PA, Venkatachalam P et al (2016) Expression of stress tolerance in transgenic cell lines. Rubb Sci 29(2):40–55

    Google Scholar 

  • Richardson FVM, Saoir SMA, Harvey BMR (1996) A study of the graft union in in vitro micrografted apple. Plant Growth Reg 20:17–23

    Article  CAS  Google Scholar 

  • Rodríguez López CM, Wetten AC, Wilkinson MJ (2010) Progressive erosion of genetic and epigenetic variation in callus-derived cocoa (Theobroma cacao) plants. New Phytol 186:856–868

    Article  CAS  PubMed  Google Scholar 

  • Rohani O, Paranjothi K (1980) Isolation of Hevea protoplasts. J Rubb Res Inst Malaysia 28:61–66

    Google Scholar 

  • Roistacher CN, Kitto SL (1977) Elimination of additional citrus viruses by shoot tip grafting in vitro. Plant Dis Rep 617(7):594–596

    Google Scholar 

  • Roy CB, Nazeer MA, Saha T (2004) Identification of simple sequence repeats in rubber (Hevea brasiliensis). Curr Sci 87:807–811

    Google Scholar 

  • RRIM (1959) Development in the propagation of Hevea. Planters Bull (Rubber Research Institute of Malaysia) 45:143–146

    Google Scholar 

  • RRIM (1962) Propagation of Hevea cuttings. Planters Bull (Rubber Research Institute of Malaysia) 63:161–163

    Google Scholar 

  • Sachuthananthavale R (1973) Hevea tissue culture. Q J Rubb Res Inst Ceylon 50:91–97

    Google Scholar 

  • Sachuthananthavale R, Irugalbandra ZE (1972) Propagation of callus from Hevea anthers. Q J Rubb Res Inst Ceylon 49:65–68

    Google Scholar 

  • Saha T, Priyadarshan PM (2012) Genomics of Hevea rubber. In: Schnell RJ, Priyadarshan PM (eds) Genomics of tree crops. Springer, New York, pp 261–298

    Chapter  Google Scholar 

  • Saha T, Roy CB, Nazeer MA (2005) Microsatellite variability and its use in the characterization of cultivated clones of Hevea brasiliensis. Plant Breed 124:86–92

    Article  CAS  Google Scholar 

  • Salgado LR, Koop DM, Pinheiro DG et al (2014) De novo transcriptome analysis of Hevea brasiliensis tissues by RNA-seq and screening for molecular markers. BMC Genom 15:236. https://doi.org/10.1186/1471-2164-15-236

    Article  CAS  Google Scholar 

  • Saraswathyamma CK, Panikkar AON (1988) Cytomixis in Hevea brasiliensis Muell. Arg. Ind J Nat Rubb Res 1(2):82–83

    Google Scholar 

  • Saraswathyamma CK, Markose VC, Licy J et al (1984) Cytomorphological studies in an induced polyploidy of Hevea brasiliensis (Muell. Arg.). Cytologia 49:725–729

    Article  Google Scholar 

  • Schellenbaum P, Mohler V, Wenzel G, Walter B (2008) Variation in DNA methylation patterns of grapevine somaclones (Vitis vinifera L.). BMC Plant Biol 8:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultes RE (1977) Wild hevea: an untapped source of germplasm. J Rubb Res Inst Sri Lanka 54:227–257

    Google Scholar 

  • Schultes RE (1984) The tree that changed the world in one century. Arnoldia 44:2–16

    Google Scholar 

  • Schultes RE (1990) A brief taxonomic view of the genus Hevea monograph No. 14. Malasyan Rubber Research and Development Board, Kulalampur

    Google Scholar 

  • Senanayake YDA, Wijewantha RT (1968) Synthesis of Hevea cultivars: a new approach. Q J Rubb Res Inst Ceylon 44:16–26

    Google Scholar 

  • Seneviratne P (1991) Micropropagation of juvenile and mature Hevea brasiliensis., University of Bath, UK, PhD Thesis

    Google Scholar 

  • Seneviratne P, Flagmann A (1996) The effect of thidiazuron on axillary shoot proliferation of Hevea brasiliensis in vitro. J Rubb Res Inst Sri Lanka 77:1–14

    Google Scholar 

  • Sethuraj MR, Jacob J (2012) Thrust area of future research in natural rubber cultivation. Rubb Sci 25(2):123–138

    Google Scholar 

  • Shearman JR, Sangsrakru D, Jomchai N et al (2015) SNP identification from RNA sequencing and linkage map construction of rubber tree for anchoring the draft genome. PLoS One. https://doi.org/10.1371/journal.pone.0121961

  • Shepherd R (1969) Induction of polyploids in Hevea brasiliensis. Preliminary observations on trials conducted at Prang Besar rubber research station. Plant Bull Rubb Res Inst Malaysia 104:248–256

    Google Scholar 

  • Shrawat AK, Becker D, Lorz H (2007) Agrobacterium tumefaciens-mediated genetic transformation of barley (Hordeum vulgare L). Plant Sci 172:281–290

    Article  CAS  Google Scholar 

  • Simmonds NW (1989) Rubber breeding. In: Webster CC, Baulkwill WJ (eds) Rubber. Longman, New York, pp 85–124

    Google Scholar 

  • Sirisom Y, Te-Chato S (2012) The effect of peptone and silver nitrate on in vitro shoot formation in Hevea brasiliensis Muell. Arg J Agric Tech 8(4):1509–1516

    Google Scholar 

  • Sobha S, Sushamakumari S, Thanseem I et al (2003a) Abiotic stress induced over-expression of superoxide dismutase enzyme in transgenic Hevea brasiliensis. Ind J Nat Rubb Res 16:45–52

    CAS  Google Scholar 

  • Sobha S, Sushamakumari S, Thanseem I et al (2003b) Genetic transformation of Hevea brasiliensis with the gene coding for superoxide dismutase with FMV 34S promoter. Curr Sci 85:1767–1773

    CAS  Google Scholar 

  • Sobha S, Rekha K, Sushamakumari S et al (2014) Agrobacterium mediated multiple gene integration in Hevea brasiliensis. J Trop Agric 52(1):31–38

    Google Scholar 

  • Sobha S, Thulaseedharan A, Nandy S, Srivastava V (2015) Towards the development of marker-free transgenic rubber tree by synthesizing a “Clean Vector” utilizing heat-inducible Cre-loxP system. In: Krishnan S, Rodrigues BF (eds) Advances in plant sciences & biotechnology. Goa University Library, R. A. Prints, Panaji, pp 198–210

    Google Scholar 

  • Sobhana P, Rajagopal R, Sethuraj MR, Vijayakumar KR (1995) A note on vegetative propagation of Hevea brasiliensis by air-layering. Ind J Nat Rubb Res 8(1):70–72

    Google Scholar 

  • Soman TA, Saraswathyamma CK (1999) Root trainer nursery for Hevea. Ind J Nat Rubb Res 12:17–22

    Google Scholar 

  • Soman TA, Mydin KK, Jacob J (2013) Root trainer planting technique for Hevea – a review. Rubb Sci 26(2):175–187

    Google Scholar 

  • Souza LM, Gazaffi R, Mantello CC et al (2013) QTL mapping of growth–related traits in a full-sib family of rubber tree (Hevea brasiliensis) evaluated in a sub-tropical climate. PLoS One. https://doi.org/10.1371/journal.pone.0061238

  • Srichuay W, Kalawong S, Sirisom Y (2014) Callus induction and somatic embryogenesis from anther cultures of Hevea brasiliensis (Muell. Arg.). Kasetsart J Nat Sci 48:364–375

    CAS  Google Scholar 

  • Steward N, Ito M, Yamaguchi Y et al (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277(40):37741–37746

    Article  CAS  PubMed  Google Scholar 

  • Stroud H, Ding B, Simon SA et al (2013) Plants regenerated from tissue culture contain stable epigenome changes in rice. ELife 2:e00354

    Article  PubMed  PubMed Central  Google Scholar 

  • Sumesh KV, Satheesh PR, Sreelatha S et al (2014) Drought tolerance in MnSOD transgenic Hevea brasiliensis in a dry sub-humid environment. J Plant Crops 42(1):70–77

    Google Scholar 

  • Sun Q, Sun H, Li L, Bell RL (2009) In vitro induced polyploidy plantlet production and regeneration from leaf explants of the diploid pear (Pyrus communis L) cultivar, fertility. J Hort Sci Biotechnol 84(5):548–552

    Article  CAS  Google Scholar 

  • Sunderasan E, Shuhada SS, Badaruddin BE et al (2010) Hevea gentic transformation for enhanced recombinant pharmasuitical production by the use of Hevein promotr. In: Malaysia conference, Kuala Lumpur May 2010, p 36

    Google Scholar 

  • Sunderasan E, Badaruddin BE, Azharuddin A, Arokiaraj P (2012) Genetic transformation of Hevea brasiliensis with human atrial natriuretic factor. J Rubb Res 15(4):255–264

    CAS  Google Scholar 

  • Sushamakumari S, Rekha K, Thomas V et al (1999) Multiple shoot formation from somatic embryos of Hevea brasiliensis (Muell. Arg.). Ind J Nat Rubb Res 12:23–28

    CAS  Google Scholar 

  • Sushamakumari S, Sobha S, Rekha K, Jayashree R (2000a) Influence of growth regulators and sucrose on somatic embryogenesis from immature inflorescence of Hevea brasiliensis (Muell. Arg.). Ind J Nat Rubb Res 13:19–29

    CAS  Google Scholar 

  • Sushamakumari S, Asokan MP, Antony P et al (2000b) Plant regeneration from embryogenic suspension derived protoplast of rubber (Hevea brasiliensis). Plant Cell Tiss Org Cult 61:81–85

    Article  CAS  Google Scholar 

  • Sushamakumari S, Joseph S, Sobha S et al (2012) Effect of nurse culture on inducing division of isolated pollen protoplast of Hevea brasiliensis. In: IRC 2012, India

    Google Scholar 

  • Sushamakumari S, Rekha K, Sobha S, Divya UK (2014) Plant regeneration via somatic embryogenesis from root explants in Hevea brasiliensis. Rubb Sci 27(1):45–53

    CAS  Google Scholar 

  • Suwanmanee P, Sirinupong N, Nunthanuwat W et al (2007) Expression of HMG-CoA synthase (hmgs) & HMG-CoA reductase-1 (hmgr-1) reveal coordinated regulation of rubber biosynthesis in Hevea brasiliensis (B.H.K.) Mull. Arg. TERPNET 30, Strasbourg

    Google Scholar 

  • Tan H (1987) Strategies in rubber tree breeding. In: Abbott AJ, Atkin RK (eds) Improving vegetatively propagated crops. Academic Press, London, pp 28–54

    Google Scholar 

  • Tan H, Subramaniam S (1976) A five-parent diallel cross analysis of certain characters of young Hevea seedlings. Proc Int Rubber Conf (1976) Kuala Lumpur 2:13–26

    Google Scholar 

  • Tan D, Sun X, Zhang J (2011) Histochemical and immune histochemical identification of laticifer cells in callus cultures derived from anthers of Hevea brasiliensis. Plant Cell Rep 30:1117–1124

    Article  CAS  PubMed  Google Scholar 

  • Te-Chato S, Muangkaewngam A (1992) Tissue culture of rubber I: In vitro micropropagation of rubber. Songklankarin J Sci Tech 14:123–132

    Google Scholar 

  • Thomas TD, Bhatnagar AK, Bhojwani SS (2000) Production of triploid plants of mulberry (Morus alba L.) by endosperm culture. Plant Cell Rep 19:395–399

    Article  CAS  PubMed  Google Scholar 

  • Thomson LC, Calendar R, Ow DW (2001) Gene insertion and replacement in Sachizo–saccharomyces pombe mediated by the Streptomyces bacteriophage phiC31 site–specific recombination system. Mol Genet Genom 265:1031–1038

    Article  Google Scholar 

  • Thulaseedharan A, Venkatachalam P, Jayashree R et al (2009) Rubber tree. Compendium of transgenic crop plants: transgenic plantation crops. Blackwell Publishing, Oxford, p 153

    Google Scholar 

  • Thulaseedharan A, Kala RG, Jayashree R et al (2017) Rubber. In: Chowdappa P, Karun A, Rajesh MK, Ramesh SV (eds) Biotechnology of plantation crops. Daya Publishing House, Astral International Pvt. Ltd., New Delhi, pp 525–553

    Google Scholar 

  • Toruan NL, Suryatmana N (1977) Kultur jaringan Hevea brasiliensis Muell. Arg. Menara Perkebunan 45:17–21

    CAS  Google Scholar 

  • Tremblay R, Wang D, Jevnikar AM, Ma S (2010) Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol Adv 28:214–221

    Article  CAS  PubMed  Google Scholar 

  • Valsala PA, Nair GS, Nazeem PA (1996) Seed set in ginger (Zingiber officinale Rose) through in vitro pollination. J Trop Agric 34(2):81–84

    Google Scholar 

  • Varghese YA, Mydin KK (2000) Genetic improvement. In: George PJ, Jacob CK (eds) Natural rubber, agromanagement & crop processing. Rubber Res Inst India, Kottayam, pp 36–46

    Google Scholar 

  • Varghese YA, Licy J, John A, Panikkar AON (1989) An incision method for early selection of Hevea seedlings. Ind J Nat Rubb Res 2(2):112–117

    Google Scholar 

  • Varghese YA, John A, Premakumari D et al (1993) Early evaluation in Hevea: Growth and yield at the juvenile phase. Ind J Nat Rubb Res 6(1/2):19–23

    Google Scholar 

  • Varghese YA, Knaak C, Sethuraj MR, Ecke W (1997) Evaluation of random amplified polymorphic DNA (RAPD) markers in Hevea brasiliensis. Plant Breed 116:47–52

    Article  Google Scholar 

  • Veisseire P, Guerrier J, Courdet A (1993) Cryopreservation of embryogenic cell suspension of Hevea brasiliensis. Cryo Lett 14:295–302

    Google Scholar 

  • Veisseire P, Cailloux F, Courdet A (1994a) Effect of conditional media on the somatic embryogenesis of Hevea brasiliensis. Plant Physiol Biochem 32:571–576

    Google Scholar 

  • Veisseire P, Linossier L, Coudret A (1994b) Effect of abscisic acid and cytokinins on the development of somatic embryos in Hevea brasiliensis. Plant Cell Tiss Org Cult 39:219–223

    Article  CAS  Google Scholar 

  • Venkatachalam P, Sailasree R, Priya P et al (2001) Identification of a DNA marker associated with dwarf trait in Hevea brasiliensis Muell. Arg. through random amplified polymorphic DNA analysis. In: Sainte–Beuve J (ed) Annual IRRDB meeting 2001. CIRAD, Montpellier

    Google Scholar 

  • Venkatachalam P, Thomas S, Priya P et al (2002) Identification of DNA polymorphism with the cultivated clones of rubber tree (Hevea brasiliensis Muell. Arg.). Ind J Nat Rubb Res 15:172–181

    CAS  Google Scholar 

  • Venkatachalam P, Jayasree PK, Sushamakumari S et al (2007) Current Perspectives on Application of Biotechnology to Assist the Genetic Improvement of Rubber Tree (Hevea brasiliensis Muell. Arg.): an overview. Funct Plant Sci Biotechnol 1:1–17

    Google Scholar 

  • Wang ZY, Chen XT (1995) Effect of temperature on stamen culture and somatic plant regeneration in rubber. Acta Agron Sincia 21:723–726

    Google Scholar 

  • Wang Z, Zeng X, Chen C et al (1980) Induction of rubber plantlets from anther of Hevea brasiliensis Muell. Arg. in vitro. Chin J Trop Crops 1:25–26

    Google Scholar 

  • Wang Z, Wu H, Zeng X et al (1984) Embryogeny and origin of anther plantlets of Hevea brasiliensis. Chin J Trop Crops 5:9–13

    CAS  Google Scholar 

  • Wang ZY, Wu HD, Chen XT (1998) Effects of altered temperature on plant regeneration frequencies in stamen culture of rubber trees. J Trop Subtrop Bot 6:166–168

    Google Scholar 

  • Wang Y, Chen X, Peng S, Wu K, Hong L (2013) Genetic transformation and regeneration of Hevea brasiliensis transgenic plant with GAI gene by microparticle bombardment. Roman Biotech Lett, University of Bucharest 18(1):7912

    Google Scholar 

  • Webster CC, Paaradkooper EC (1989) The botany of the rubber tree. In: Webster CC, Baulkwill WJ (eds) Rubber. Longman Scientific and Technical, Essex, pp 572–584

    Google Scholar 

  • Weinhold A, Kallenbach M, Baldwin IT (2013) Progressive 35S promoter methylation increases rapidly during vegetative development in transgenic Nicotiana attenuata plants. BMC Plant Biol 13:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson ZA, Power JB (1989) Elimination of systemic contamination in explants and protoplast cultures of rubber (Hevea brasiliensis) Muell. Arg Plant Cell Rep 7:622–625

    CAS  PubMed  Google Scholar 

  • Wilson HM, Street HE (1975) The growth, anatomy and morphogenetic potential of callus and cell suspension cultures of Hevea brasiliensis. Phys Planta 36:399–402

    Article  Google Scholar 

  • Wycherley PR (1968) Introduction of Hevea to the orient. Planter 4:1–11

    Google Scholar 

  • Wycherley PR (1992) The genus Hevea: botanical aspects. In: Sethuraj MR, Mathew NM (eds) Natural rubber; biology, cultivation and technology. Elsevier, Amsterdam, pp 50–66

    Chapter  Google Scholar 

  • Xia G (2009) Progress of chromosome engineering mediated by asymmetric somatic hybridization. J Genet Genom 36:547–556

    Article  CAS  Google Scholar 

  • Xu M, Li X, Korban SS (2004) DNA-methylation alterations and exchanges during in vitro cellular differentiation in rose (Rosa hybrida L.). Theor Appl Genet 109(5):899–910

    Article  CAS  PubMed  Google Scholar 

  • Yeang HY, Arokiara JP, Jaafar H et al (1998) Rubber latex as an expression system for high-value proteins. In: Shewry PR, Napier JA, Davis PJ (eds) Engineering crop plants for industrial end uses. Portland Press, London, pp 55–64

    Google Scholar 

  • Yeang HY, Arokiara JP, Jaafar H et al (2002) Expression of a functional recombinant antibody fragment in the latex of transgenic Hevea brasiliensis. J Rubb Res 5(4):215–225

    CAS  Google Scholar 

  • Zenktler M (1980) Intraovarian and in vitro pollination. In: Vasil IK (ed) Perspectives in plant cell and tissue culture. In: Inter Rev Cytol, Suppl II B. Academic Press, New York, pp 137–156

    Google Scholar 

  • Zhou QN, Jiang ZH, Huang TD et al (2010) Plant regeneration via somatic embryogenesis from root explants of Hevea brasiliensis. Afric J Biotech 9(48):8168–8173

    Article  CAS  Google Scholar 

  • Zhou QN, Sun AH, Li Z (2012) Cryopreservation and plant regeneration of anther callus in Hevea by vitrification. Afric J Biotech 11(28):7212–7217

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. James Jacob (Director of Research) for the encouragement and advice, Dr. P. Kumari Jayasree for providing literature support, Dr. T. Meenakumari and Dr. Deepthy Antony for their critical comments during the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankaran Sobha .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix 1 Research Institutes Actively Involved in Rubber Tree Research

Institutes involved in rubber research

Area of specialization and research activities

Contact information

Rubber Research Institute of India (RRII)

Rubber Research Institute of India (RRII)

Rubber Board, Kottayam-686009, Kerala, India rrii@rubberboard.org.in

The major areas of research in the following disciplines: Agronomy and Soils; Biotechnology and Genome Analysis, Botany and Germplasm conservation , Plant Pathology, Plant Physiology and exploitation, Rubber Technology and Agricultural Economics. Involved in the improvement in production and productivity through conventional and molecular approaches. Devising integrated approaches to reduce cost of production and improve quality to combat against diseases. Studies on modification of NR and on polymer blends.

Malaysian Rubber Board (MRB)

Agronomy, exploitation techniques, integrated farming, agroforestry, Crop protection, Biotechnology. To develop technologies to achieve sustainable production of rubber, crop improvement by Hevea tissue culture and genetic transformation, molecular markers and genetics, physiology, biochemistry and molecular biology, transcriptomics and latex allergy, develops methods and procedures to manage every economically important disease of rubber.

RRIM Research Station, 47000 Sungai Buloh, Selangor, Malaysia irpecm@lgm.gov.my

The Tun Abdul Razak Research Centre (TARRC) MRB

Genomics of rubber, scientific research into natural rubber, technological developments in the compounding and processing of rubbers, the design of rubber products and the improvement of service lifetime of rubber products. Development of new polymer materials with enhanced properties, genomics and proteomics of natural rubber, development of molecular markers that can be used to enable the rapid identification of rubber tree clones in the field, key areas: i) diagnostics for latex allergens and, ii) comprehensive characterization of foreign proteins in transgenic rubber trees.

Brickendonbury, Hertford, United Kingdom, SG13 8NL, T: + 44 (0)1992 584966 F: +44 (0)1992 554837 general@tarrc.co.uk

CIRAD

Agro-industrial cropping systems; Socioeconomic analyses; assessment of carbon balances and fluxes on a plantation ecosystem scale; micropropagation: cloning of whole plants and rootstocks; soil analyses; analyses of natural rubber structure and quality; analyses of genome and transcroptome of rubber. Development of planting material suited to growing conditions, appropriate crop management sequences; Adapting rubber growing to future climate change; Proposing disease control methods; Determining the qualities of natural rubbers suited to different uses (tires, industrial rubber, health, aeronautics).

Avenue Agropolis, 34398 Montpellier Cedex 5, France jerome.sainte-beuve@cirad.fr

Rubber Research Institute of Sri Lanka

Specializes in rubber research, both in the biology of the crop and the chemistry of the natural rubber and technology of the product. Research and development on all aspects of rubber cultivation and processing for the benefit of the rubber industry.

Dartonfield, Agalawatta, Sri Lanka, 12200 dirrri@sltnet.lk

Rubber Research Institute of Vietnam

Agronomy, exploitation techniques, integrated farming, agroforestry, crop protection, crop improvement. Breeding and selection of elite rubber clones, cultivation practices for rubber planting sectors, studying the characteristics, fertilizer application. Studies on latex diagnosis and tapping systems for mature rubber plantations.

177, Hai ba trung st., District 3, Hochiminh – Viet Nam rriv@hcm.vnn.vn

The Rubber Authority of Thailand (RAOT)

Enhancing the production capacity, from plantation, harvest, primary and secondary processing to produce industrial rubber products. Engaged in breeding for crop improvement.

67/25 Bang Khun Non Road, Bang Khun Non sub-district, Bang Kok Noi district, Bangkok province 10700 orf2008@rubber.mail.go.th

Rubber Research Institute of Cambodia

Breeding for crop improvement.

09, Street 289 , Beung Kak 1, Tuol Kork, P.O. Box 1337, Phnom Penh, Cambodia. RRICAM@Bigpond.com.kh

Rubber Research Institute, CATAS

Research and development on all aspects of rubber cultivation.

No.4, Xueyuan Road, Longhua District, Haikou, Hainan Province, Chinahttp://www.catas.cnEmail:catasgjhzc@126.com

1.2 Appendix 2 A Few Popular Hevea Clones

Clone

Parentage

Country

Characters

RRII105

Tjir1 X Gl 1

India

Branching good with strong unions, canopy dense, foliage dark green, leaflets long and glossy. Wintering and refoliation are early and partial. High yielder.

PB 260

PB 5/51 X PB 49

Malaysia

Trees have tall and straight trunk, branching light and balanced with strong union. Canopy dense, foliage pale green. Vigor before initiation of tapping high and after tapping average. Thickness of virgin bark and renewed bark below average. The clone has moderate tolerance to pink, powdery mildew and abnormal leaf fall. High incidence of tapping panel dryness. Wind damage below average.

RRII414

RRII 105 X RRIC 100

India

Trunk is tall, straight and cylindrical with open, broad canopy of heavy dark green leaves, restricted to the top. Girth, at opening is high and girth increment on tapping, average. Moderately tolerant to Pink disease and abnormal leaf fall. Incidence of Corynespora leaf fall is low and powdery mildew is high.

RRII430

RRII 105 X RRIC 100

India

Canopy is open, broad and heavy with broad glossy leaves. Thickness of virgin hark is average and renewed hark is high. Maintains better yield than RRII 105 in the on farm trial also. Tolerant to pink disease, abnormal leaf fall and Corynespora leaf fall, but susceptible to powdery mildew.

RRII417

RRII 105 X RRIC 100

India

Canopy is broad, open and heavy with semi glossy leaves. Girth at opening is above average. Thickness of virgin bark is average and of renewed bark is high. This clone has above average tolerance to wind. Susceptible to powdery mildew and moderately tolerant to pink disease, abnormal leaf fall and Corynespora leaf fall.

RRII422

RRII 105 X RRIC 100

India

Stem is crooked with high branching. Canopy is open narrow with dark green glossy leaves. Girth at opening is above average. Tolerant to pink disease and abnormal leaf fall, but susceptible to powdery mildew. Moderately tolerant to Corynespora leaf fall.

RRIM600

Tjir 1 X PB 86

Malaysia

Tall, straight trunk, moderate to fairly heavy branching and branch unions rather weak. Young plants show spindly growth and late branching with occasional leaning. Narrow, broom shaped crown, foliage sparse with small yellowish green leaves, normal wintering and refoliation. Highly susceptible to diseases caused by Phytophthora. Incidence of pink disease mild to severe. Requires effective control measures when planted in areas where these diseases are prevalent. Incidence of powdery mildew is mild.

GT1

Primary clone

Indonesia

Trunk upright hut slightly kinked. Variable branching habit. Main branches long and acute angled, secondary branches light. Narrow globular crown, dense dark green glossy foliage. Wintering and refoliation late and often partial. Girth at opening medium to high. Girth increment on tapping medium. Virgin and renewed bark thickness medium. Fairly wind fast. Occurrence of tapping panel dryness and incidence of pink disease mild. Abnormal leaf fall mild to medium and powdery mildew medium to severe.

RRIM703

RRIM 600 X RRIM 500.

Malaysia

It has an upright hut slightly kinked trunk with a few heavy branches. The canopy is open and narrow. Wintering and refoliation occur early in the season. Girth at opening is high to average and girth increment on tapping low. Virgin bark thickness is high and renewed bark thickness average to high. Wind damage as well as tapping panel dryness high. Abnormal leaf fall is severe in India though reported to be only mild in Malaysia. Occurrence of powdery mildew is mild. The clone is susceptible to pink disease.

RRll 429

RRII 105 X RRIC 100

India

This clone with tall, straight and cylindrical trunk has a dense, heavy canopy with dark green leaves. Girth at opening is high and girth increment on tapping average. Occurrence of TPD is above average. The incidence of Corynespora leaf fall and abnormal leaf fall are low. The clone is highly susceptible to pink disease.

IRCA130

PB5/51X IR22

Côte d’Ivoire

Tall and straight with strong union, Above average vigor, moderately heavy branching, and small canopy with foliage confined to the top, moderate tolerance to powdery mildew, leaf spot and high yielding.

IRCA111

PB 5/51 X RRIM 600

Côte d’Ivoire

This clone shows a very good vegetative vigor in immature period and an average annual increase after opening. It has a sensitivity to tapping panel dryness that increases with the latex harvest period.

RRIM 2020

PB 5/51 X IAN 873

Malaysia

Dense and high set crown. Open and balanced canopy. Persistent main leader but with moderate branchlets on main and secondary branching. Color of latex appeared to be cream in color.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sobha, S., Rekha, K., Uthup, T.K. (2019). Biotechnological Advances in Rubber Tree (Hevea brasiliensis Muell. Arg.) Breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Industrial and Food Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-23265-8_7

Download citation

Publish with us

Policies and ethics