Skip to main content

Sample Treatment for Saliva Proteomics

  • Chapter
  • First Online:
Emerging Sample Treatments in Proteomics

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1073))

Abstract

The preanalytical phase of saliva proteomics/peptidomics, which includes sample collection, handling, and storage, represents a major challenge for any researcher that envisions sensitive and high-throughput analyses, coupled to well-controlled study design. The methodology used to collect saliva determines the contribution of each salivary gland to saliva composition with impact on data retrieved from proteomics/peptidomics. The awareness of the importance of this step in the analysis of saliva has prompted the proposal of several collection strategies. Moreover, numerous commercial devices are available in an attempt to routine the procedures. However, whatever the chosen method, procedures should be kept simple, standardized to get better reproducibility and repeatability on saliva proteomics analysis. Sample preservation is also a key step in saliva proteomics/peptidomics, and the implemented lab procedures should avoid posttranslational modifications such as proteolysis, as well as protein precipitation.

In this chapter, we provide recommendations for saliva sampling and preservation, envisaging to standardize procedures that facilitate the use of saliva in clinical applications and the translation of proteomics data to diagnosis and/or definition of therapeutic targets.

“Saliva

doesn’t have the drama of blood,

it doesn’t have the integrity of sweat and

it doesn’t have the emotional appeal of tears.”

—Irwin Mandel (professor emeritus, Columbia University)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akintoye SO, Dasso M, Hay DI, Ganeshkumar N, Spielman AI (2002) Partial characterization of a human submandibular/sublingual salivary adhesion-promoting protein. Arch Oral Biol 47(5):337–345

    Article  CAS  PubMed  Google Scholar 

  2. Aliko A, Wolff A, Dawes C, Aframian D, Proctor G, Ekstro MJ (2015) World Workshop on Oral Medicine VI: clinical implications of medication-induced salivary gland dysfunction. Oral Surg Oral Med Oral Pathol Oral Radiol 120:185–206

    Article  PubMed  Google Scholar 

  3. Amado FM, Vitorino RM, Domingues PM, Lobo MJ, Duarte JA (2005) Analysis of the human saliva proteome. Expert Rev Proteomics 2(4):521–539. Review

    Article  CAS  PubMed  Google Scholar 

  4. Amado F, Lobo MJ, Domingues P, Duarte JA, Vitorino R (2010) Salivary peptidomics. Expert Rev Proteomics 7(5):709–721. https://doi.org/10.1586/epr.10.48. Review

    Article  CAS  PubMed  Google Scholar 

  5. Amado FM, Ferreira RP, Vitorino R (2013) One decade of salivary proteomics: current approaches and outstanding challenges. Clin Biochem 46:506–517

    Article  CAS  PubMed  Google Scholar 

  6. Amaechi BT, Higham SM, Edgar WM, Milosevic A (1999) Thickness of acquired salivary pellicle as a determinant of the sites of dental erosion. J Dent Res 78(12):1821–1828

    Article  CAS  PubMed  Google Scholar 

  7. Aro K, Wei F, Wong DT, Tu M (2017) Saliva liquid biopsy for point-of-care applications. Front Public Health 5:77. https://doi.org/10.3389/fpubh.2017.00077. eCollection 2017

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ash A, Ridout MJ, Parker R, Mackie AR, Burnett GR, Wilde PJ (2013) Effect of calcium ions on in vitro pellicle formation from parotid and whole saliva. Colloids Surf B Biointerfaces 102:546–553

    Article  CAS  PubMed  Google Scholar 

  9. Atkinson JC (1993) The role of salivary measurements in the diagnosis of salivary autoimmune diseases. Ann N Y Acad Sci 694:238–251

    Article  CAS  PubMed  Google Scholar 

  10. Barshir R, Shwartz O, Smoly IY, Yeger-Lotem E (2014) Comparative analysis of human tissue interactomes reveals factors leading to tissue-specific manifestation of hereditary diseases. PLoS Comput Biol 10(6):e1003632. https://doi.org/10.1371/journal.pcbi.1003632. eCollection 2014 Jun

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baumann T, Bereiter R, Lussi A, Carvalho TS (2017) The effect of different salivary calcium concentrations on the erosion protection conferred by the salivary pellicle. Sci Rep 7(1):12999. https://doi.org/10.1038/s41598-017-13367-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Block PL, Brottman BS (1962) A method of submaxillary saliva collection without cannulation. NY State Dent J 28:116–118

    Google Scholar 

  13. Boros I, Keszler P, Zelles T (1999) Study of saliva secretion and the salivary fluoride concentration of the human minor labial glands by a new method. Arch Oral Biol 44(Suppl 1):S59–S62

    Article  CAS  PubMed  Google Scholar 

  14. Carlén A, Börjesson AC, Nikdel K, Olsson J (1998) Composition of pellicles formed in vivo on tooth surfaces in different parts of the dentition, and in vitro on hydroxyapatite. Caries Res 32(6):447–455

    Article  PubMed  Google Scholar 

  15. Carlson AJ, Crittenden AL (1910) The relationship of ptyalin concentration to the diet and the rate of secretion of saliva. Am J Phys 26:169–177

    Article  Google Scholar 

  16. Carpenter GH (2013) The secretion, components, and properties of saliva. Annu Rev Food Sci Technol 4:267–276. https://doi.org/10.1146/annurev-food-030212-182700

    Article  CAS  PubMed  Google Scholar 

  17. Carpenter G, Cotroneo E, Moazzez R, Rojas-Serrano M, Donaldson N, Austin R, Zaidel L, Bartlett D, Proctor G (2014) Composition of enamel pellicle from dental erosion patients. Caries Res 48(5):361–367. https://doi.org/10.1159/000356973. Epub 2014 Mar 6

    Article  CAS  PubMed  Google Scholar 

  18. Caseiro A, Vitorino R, Barros AS, Ferreira R, Calheiros-Lobo MJ, Carvalho D, Duarte JA, Amado F (2012) Salivary peptidome in type 1 diabetes mellitus. Biomed Chromatogr 26(5):571–582. https://doi.org/10.1002/bmc.1677. Epub 2011 Sep 6

    Article  CAS  PubMed  Google Scholar 

  19. Caseiro A, Ferreira R, Padrão A, Quintaneiro C, Pereira A, Marinheiro R, Vitorino R, Amado F (2013) Salivary proteome and peptidome profiling in type 1 diabetes mellitus using a quantitative approach. J Proteome Res 12(4):1700–1709. https://doi.org/10.1021/pr3010343. Epub 2013 Feb 25

    Article  CAS  PubMed  Google Scholar 

  20. Castagnola M, Picciotti PM, Messana I, Fanali C, Fiorita A, Cabras T, Calò L, Pisano E, Passali GC, Iavarone F, Paludetti G, Scarano E (2011) Potential applications of human saliva as diagnostic fluid. Acta Otorhinolaryngol Ital 31(6):347–357

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Challacombe SJ, Percival RS, Marsh PD (1995) Age-related changes in immunoglobulin isotypes in whole and parotid saliva and serum in healthy individuals. Oral Microbiol Immunol 10(4):202–207

    Article  CAS  PubMed  Google Scholar 

  22. Chen DX, Schwartz PE, Li FQ (1990) Saliva and serum CA 125 assays for detecting malignant ovarian tumors. Obstet Gynecol 75(4):701–704

    CAS  PubMed  Google Scholar 

  23. Chiappin S, Antonelli G, Gatti R, De Palo EF (2007) Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clin Chim Acta 383(1–2):30–40. Epub 2007 Apr 25

    Article  CAS  PubMed  Google Scholar 

  24. Ching KH, Burbelo PD, Gonzalez-Begne M, Roberts ME, Coca A, Sanz I, Iadarola MJ (2011) Salivary anti-Ro60 and anti-Ro52 antibody profiles to diagnose Sjogren’s Syndrome. J Dent Res 90(4):445–449. https://doi.org/10.1177/0022034510390811. Epub 2011 Jan 6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cho HR, Kim HS, Park JS, Park SC, Kim KP, Wood TD, Choi YS (2017) Construction and characterization of the Korean whole saliva proteome to determine ethnic differences in human saliva proteome. PLoS One 12(7):e0181765. https://doi.org/10.1371/journal.pone.0181765. eCollection 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chojnowska S, Baran T, Wilińska I, Sienicka P, Cabaj-Wiater I, Knaś M (2017) Human saliva as a diagnostic material. Adv Med Sci 63(1):185–191. https://doi.org/10.1016/j.advms.2017.11.002. Review

    Article  PubMed  Google Scholar 

  27. Crouch DJ, Walsh JM, Flegel R, Cangianelli L, Baudys J, Atkins R (2005) An evaluation of selected oral fluid point-of-collection drug-testing devices. J Anal Toxicol 29(4):244–248

    Article  PubMed  Google Scholar 

  28. Dawes C (1972) Circadian rhythms in human salivary flow rate and composition. J Physiol 220(3):529–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dawes C, Wood CM (1973) The contribution of oral minor mucous gland secretions to the volume of whole saliva in man. Arch Oral Biol 18(3):337–342

    Article  CAS  PubMed  Google Scholar 

  30. de Jong EP, van Riper SK, Koopmeiners JS, Carlis JV, Griffin TJ (2011) Sample collection and handling considerations for peptidomic studies in whole saliva; implications for biomarker discovery. Clin Chim Acta 412(23–24):2284–2288. https://doi.org/10.1016/j.cca.2011.08.023. Epub 2011 Aug 24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Delaleu N, Mydel P, Kwee I, Brun JG, Jonsson MV, Jonsson R (2015) High fidelity between saliva proteomics and the biologic state of salivary glands defines biomarker signatures for primary Sjögren’s syndrome. Arthritis Rheumatol 67(4):1084–1095. https://doi.org/10.1002/art.39015

    Article  CAS  PubMed  Google Scholar 

  32. Delius J, Trautmann S, Médard G, Kuster B, Hannig M, Hofmann T (2017) Label-free quantitative proteome analysis of the surface-bound salivary pellicle. Colloids Surf B Biointerfaces 152:68–76. https://doi.org/10.1016/j.colsurfb.2017.01.005. Epub 2017 Jan 6

    Article  CAS  PubMed  Google Scholar 

  33. Deutsch O, Fleissig Y, Zaks B, Krief G, Aframian DJ, Palmon A (2008) An approach to remove alpha amylase for proteomic analysis of low abundance biomarkers in human saliva. Electrophoresis 29(20):4150–4157. https://doi.org/10.1002/elps.200800207

    Article  CAS  PubMed  Google Scholar 

  34. Dodds MW, Johnson DA, Yeh CK (2005) Health benefits of saliva: a review. J Dent 33(3):223–233. Epub 2004 Dec 19

    Article  PubMed  Google Scholar 

  35. Dominy SS, Brown JN, Ryder MI, Gritsenko M, Jacobs JM, Smith RD (2014) Proteomic analysis of saliva in HIV-positive heroin addicts reveals proteins correlated with cognition. PLoS One 9(4):e89366. https://doi.org/10.1371/journal.pone.0089366. eCollection 2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eliasson L, Carlén A (2010) An update on minor salivary gland secretions. Eur J Oral Sci 118(5):435–442. https://doi.org/10.1111/j.1600-0722.2010.00766.x. Epub 2010 Aug 24

    Article  PubMed  Google Scholar 

  37. Elzek MA, Rodland KD (2015) Proteomics of ovarian cancer: functional insights and clinical applications. Cancer Metastasis Rev 34(1):83–96. https://doi.org/10.1007/s10555-014-9547-8. Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Erde J, Loo RR, Loo JA (2014) Enhanced FASP (eFASP) to increase proteome coverage and sample recovery for quantitative proteomic experiments. J Proteome Res 13(4):1885–1895. https://doi.org/10.1021/pr4010019. Epub 2014 Mar 6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Esser D, Alvarez-Llamas G, de Vries MP, Weening D, Vonk RJ, Roelofsen H (2008) Sample stability and protein composition of saliva: implications for its use as a diagnostic fluid. Biomark Insights 3:25–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eviö S, Tarkkila L, Sorsa T, Furuholm J, Välimäki MJ, Ylikorkala O, Tiitinen A, Meurman JH (2006) Effects of alendronate and hormone replacement therapy, alone and in combination, on saliva, periodontal conditions and gingival crevicular fluid matrix metalloproteinase-8 levels in women with osteoporosis. Oral Dis 12(2):187–193

    Article  PubMed  Google Scholar 

  41. Fábián TK, Fejérdy P, Csermely P (2008) Salivary genomics, Transcriptomics and proteomics: the emerging concept of the Oral ecosystem and their use in the early diagnosis of cancer and other diseases. Curr Genomics 9(1):11–21. https://doi.org/10.2174/138920208783884900

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ferreira JA, Daniel-da-Silva AL, Alves RM, Duarte D, Vieira I, Santos LL, Vitorino R, Amado F (2011) Synthesis and optimization of lectin functionalized nanoprobes for the selective recovery of glycoproteins from human body fluids. Anal Chem 83(18):7035–7043. https://doi.org/10.1021/ac200916j. Epub 2011 Aug 26

    Article  CAS  PubMed  Google Scholar 

  43. Fleissig Y, Reichenberg E, Redlich M, Zaks B, Deutsch O, Aframian DJ, Palmon A (2010) Comparative proteomic analysis of human oral fluids according to gender and age. Oral Dis 16(8):831–838. https://doi.org/10.1111/j.1601-0825.2010.01696.x

    Article  CAS  PubMed  Google Scholar 

  44. Fox PC, van der Ven PF, Sonies BC, Weiffenbach JM, Baum BJ (1985) Xerostomia: evaluation of a symptom with increasing significance. J Am Dent Assoc 110(4):519–525

    Article  CAS  PubMed  Google Scholar 

  45. Gibbins HL, Yakubov GE, Proctor GB, Wilson S, Carpenter GH (2014) What interactions drive the salivary mucosal pellicle formation? Colloids Surf B Biointerfaces 120:184–192. https://doi.org/10.1016/j.colsurfb.2014.05.020. Epub 2014 May 23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gonzalez-Begne M, Lu B, Han X, Hagen FK, Hand AR, Melvin JE, Yates JR (2009) Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J Proteome Res 8(3):1304–1314. https://doi.org/10.1021/pr800658c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gonzalez-Begne M, Lu B, Liao L, Xu T, Bedi G, Melvin JE, Yates JR 3rd. (2011) Characterization of the human submandibular/sublingual saliva glycoproteome using lectin affinity chromatography coupled to multidimensional protein identification technology. J Proteome Res 10(11):5031–5046. https://doi.org/10.1021/pr200505t. Epub 2011 Oct 13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Granger DA, KivlighaEn KT, el-Sheikh M, Gordis EB, Stroud LR (2007) Salivary alpha-amylase in biobehavioral research: recent developments and applications. Ann N Y Acad Sci 1098:122–144. Epub 2007 Mar 1

    Article  CAS  PubMed  Google Scholar 

  49. Gröschl M, Rauh M (2006) Influence of commercial collection devices for saliva on the reliability of salivary steroids analysis. Steroids 71:1097–1100

    Article  PubMed  CAS  Google Scholar 

  50. Guzman YA, Sakellari D, Arsenakis M, Floudas CA (2014) Proteomics for the discovery of biomarkers and diagnosis of periodontitis: a critical review. Expert Rev Proteomics 11(1):31–41. https://doi.org/10.1586/14789450.2014.864953. Epub 2013 Nov 26. Review

    Article  CAS  PubMed  Google Scholar 

  51. Hannig M (1999) Ultrastructural investigation of pellicle morphogenesis at two different intraoral sites during a 24-h period. Clin Oral Investig 3(2):88–95

    Article  CAS  PubMed  Google Scholar 

  52. Hannig C, Hannig M (2009) The oral cavity--a key system to understand substratum-dependent bioadhesion on solid surfaces in man. Clin Oral Investig 13(2):123–139. https://doi.org/10.1007/s00784-008-0243-3. Epub 2009 Jan 10

    Article  PubMed  Google Scholar 

  53. Hannig M, Hannig C (2014) The pellicle and erosion. Monogr Oral Sci 25:206–214

    Article  PubMed  Google Scholar 

  54. Hannig M, Hess NJ, Hoth-Hannig W, De Vrese M (2003) Influence of salivary pellicle formation time on enamel demineralization--an in situ pilot study. Clin Oral Investig 7(3):158–161. Epub 2003 Jul 26

    Article  CAS  PubMed  Google Scholar 

  55. Hannig C, Hannig M, Kensche A, Carpenter G (2017) The mucosal pellicle - an underestimated factor in oral physiology. Arch Oral Biol 80:144–152. https://doi.org/10.1016/j.archoralbio.2017.04.001. Epub 2017 Apr 8

    Article  CAS  PubMed  Google Scholar 

  56. Henriques BI, Chauncey HH (1961) A modified method for the collection of human submaxillary and sublingual saliva. Oral Surg Oral Med Oral Pathol 14:1124–1129

    Article  CAS  PubMed  Google Scholar 

  57. Henson BS, Wong DT (2010) Collection, storage, and processing of saliva samples for downstream molecular applications. Methods Mol Biol 666:21–30. https://doi.org/10.1007/978-1-60761-820-1_2

    Article  PubMed  Google Scholar 

  58. Hu S, Wang J, Meijer J, Ieong S, Xie Y, Yu T, Zhou H, Henry S, Vissink A, Pijpe J, Kallenberg C, Elashoff D, Loo JA, Wong DT (2007) Salivary proteomic and genomic biomarkers for primary Sjögren’s syndrome. Arthritis Rheum 56(11):3588–3600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hu S, Arellano M, Boontheung P et al (2008) Salivary proteomics for oral cancer biomarker discovery. Clin Cancer Res 14(19):6246–6252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Il S, Jr P, Chauncey H (1962) Modified Carlson-Crittenden device for the collection of parotid fluid. J Dent Res 41:778–783

    Article  Google Scholar 

  61. Isabel Padrão A, Ferreira R, Vitorino R, Amado F (2012) Proteome-base biomarkers in diabetes mellitus: progress on biofluids’ protein profiling using mass spectrometry. Proteomics Clin Appl 6(9–10):447–466. https://doi.org/10.1002/prca.201200044

    Article  CAS  PubMed  Google Scholar 

  62. Iwai K, Minamisawa T, Suga K, Yajima Y, Shiba K (2016) Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations. J Extracell Vesicles 5:30829. https://doi.org/10.3402/jev.v5.30829. eCollection 2016

    Article  CAS  PubMed  Google Scholar 

  63. Jasim H, Olausson P, Hedenberg-Magnusson B, Ernberg M, Ghafouri B (2016) The proteomic profile of whole and glandular saliva in healthy pain-free subjects. Sci Rep 6:39073. https://doi.org/10.1038/srep39073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jenzano JW, Hogan SL, Lundblad RL (1992) The influence of age, sex and race on salivary kallikrein levels in human mixed saliva. Agents Actions 35(1–2):29–33

    Article  CAS  PubMed  Google Scholar 

  65. Johnson DA, Yeh CK, Dodds MW (2000) Effect of donor age on the concentrations of histatins in human parotid and submandibular/sublingual saliva. Arch Oral Biol 45(9):731–740

    Article  CAS  PubMed  Google Scholar 

  66. Johnsson M, Levine MJ, Nancollas GH (1993) Hydroxyapatite binding domains in salivary proteins. Crit Rev Oral Biol Med 4(3–4):371–378

    Article  CAS  PubMed  Google Scholar 

  67. Kalipatnapu P, Kelly RH, Rao KN, van Thiel DH (1983) Salivary composition: effects of age and sex. Acta Medica Port 4(7–8):327–330

    CAS  Google Scholar 

  68. Kalk WW, Vissink A, Spijkervet FK, Bootsma H, Kallenberg CG, Nieuw Amerongen AV (2001) Sialometry and sialochemistry: diagnostic tools for Sjögren’s syndrome. Ann Rheum Dis 60(12):1110–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kalra H, Adda CG, Liem M, Ang CS, Mechler A, Simpson RJ, Hulett MD, Mathivanan S (2013) Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics 13(22):3354–3364. https://doi.org/10.1002/pmic.201300282. Epub 2013 Oct 18

    Article  CAS  PubMed  Google Scholar 

  70. Kariyawasam AP, Dawes C (2005) A circannual rhythm in unstimulated salivary flow rate when the ambient temperature varies by only about 2 degrees C. Arch Oral Biol 50(10):919–922. Epub 2005 Apr 7

    Article  CAS  PubMed  Google Scholar 

  71. Kaufman E, Lamster IB (2002) The diagnostic applications of saliva--a review. Crit Rev Oral Biol Med 13(2):197–212

    Article  PubMed  Google Scholar 

  72. Keller S, Ridinger J, Rupp AK, Janssen JW, Altevogt P (2011) Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med 9:86. https://doi.org/10.1186/1479-5876-9-86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Konttinen YT, Stegaev V, Mackiewicz Z, Porola P, Hänninen A, Szodoray P (2010) Salivary glands - “an unisex organ”? Oral Dis 16(7):577–585. https://doi.org/10.1111/j.1601-0825.2010.01669.x

    Article  CAS  PubMed  Google Scholar 

  74. Kozak RP, Urbanowicz PA, Punyadeera C, Reiding KR, Jansen BC, Royle L, Spencer DI, Fernandes DL, Wuhrer M (2016) Variation of human salivary O-Glycome. PLoS One 11(9):e0162824. https://doi.org/10.1371/journal.pone.0162824. eCollection 2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kutscher AH, Mandel ID, Zegarelli EV, Denning C, Eriv A, Ruiz L, Ellegood K, Phalen J (1967) A technique for collecting the secretion of minor salivary glands: I. use of capillary tubes. J Oral Ther Pharmacol 3(5):391–392

    CAS  PubMed  Google Scholar 

  76. Lashley KS (1916) The human salivary reflex and its use in psychology. Psychol Rev 23:446–464

    Article  Google Scholar 

  77. Lau C, Kim Y, Chia D, Spielmann N, Eibl G, Elashoff D, Wei F, Lin YL, Moro A, Grogan T, Chiang S, Feinstein E, Schafer C, Farrell J, Wong DT (2013) Role of pancreatic cancer-derived exosomes in salivary biomarker development. J Biol Chem 288(37):26888–26897. https://doi.org/10.1074/jbc.M113.452458. Epub 2013 Jul 23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee YH, Zimmerman JN, Custodio W, Xiao Y, Basiri T, Hatibovic-Kofman S, Siqueira WL (2013) Proteomic evaluation of acquired enamel pellicle during in vivo formation. PLoS One 8(7):e67919. https://doi.org/10.1371/journal.pone.0067919. Print 2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li-Hui W, Chuan-Quan L, Long Y, Ru-Liu L, Long-Hui C, Wei-Wen C (2016) Gender differences in the saliva of young healthy subjects before and after citric acid stimulation. Clin Chim Acta 460:142–145. https://doi.org/10.1016/j.cca.2016.06.040. Epub 2016 Jun 30

    Article  CAS  PubMed  Google Scholar 

  80. Maier H, Menstell S (1986) Influence of sex and age on kallikrein excretion in stimulated human parotid saliva. Arch Otorhinolaryngol 243(2):138–140

    Article  CAS  PubMed  Google Scholar 

  81. Maier H, Geissler M, Heidland A, Schindler JG, Wigand ME (1979) [The influence of menstruation cycle on human parotid saliva composition (author’s transl)].[Article in German] Laryngol Rhinol Otol (Stuttg) 58(9):706–710

    Google Scholar 

  82. Malamud D, Rodriguez-Chavez IR (2011) Saliva as a diagnostic fluid. Dent Clin N Am 55(1):159–178

    Article  PubMed  Google Scholar 

  83. Manconi B, Liori B, Cabras T, Iavarone F, Manni A, Messana I, Castagnola M, Olianas A (2017) Top-down HPLC-ESI-MS proteomic analysis of saliva of edentulous subjects evidenced high levels of cystatin A, cystatin B and SPRR3. Arch Oral Biol 77:68–74. https://doi.org/10.1016/j.archoralbio.2017.01.021. Epub 2017 Jan 31

    Article  CAS  PubMed  Google Scholar 

  84. Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteome 73(10):1907–1920. doi: https://doi.org/10.1016/j.jprot.2010.06.006. Epub 2010 Jul 1. Review

    Article  CAS  PubMed  Google Scholar 

  85. Michalke B, Rossbach B, Göen T, Schäferhenrich A, Scherer G (2015) Saliva as a matrix for human biomonitoring in occupational and environmental medicine. Int Arch Occup Environ Health 88(1):1–44. https://doi.org/10.1007/s00420-014-0938-5. Epub 2014 Mar 12

    Article  CAS  PubMed  Google Scholar 

  86. Michels LFE (1991) In: Graamans K, van den Akker HP (eds) Diagnosis of salivary gland disorders. Kluwer Academic Publishers, the Netherlands, pp 139–161

    Chapter  Google Scholar 

  87. Michishige F, Kanno K, Yoshinaga S, Hinode D, Takehisa Y, Yasuoka S (2006) Effect of saliva collection method on the concentration of protein components in saliva. J Med Investig 53(1–2):140–146

    Article  Google Scholar 

  88. Milioli HH, Santos Sousa K, Kaviski R, Dos Santos Oliveira NC, De Andrade UC, De Lima RS, Cavalli IJ, De Souza Fonseca Ribeiro EM (2015) Comparative proteomics of primary breast carcinomas and lymph node metastases outlining markers of tumor invasion. Cancer Genomics Proteomics 12(2):89–101

    CAS  PubMed  Google Scholar 

  89. Miller CS, Foley JD, Bailey AL, Campell CL, Humphries RL, Christodoulides N, Floriano PN, Simmons G, Bhagwandin B, Jacobson JW, Redding SW, Ebersole JL, McDevitt JT (2010) Current developments in salivary diagnostics. Biomark Med 4(1):171–189

    Article  PubMed  Google Scholar 

  90. Muddugangadhar BC, Sangur R, Rudraprasad IV, Nandeeshwar DB, Kumar BH (2015) A clinical study to compare between resting and stimulated whole salivary flow rate and pH before and after complete denture placement in different age groups. J Indian Prosthodont Soc 15(4):356–366. https://doi.org/10.4103/0972-4052.164907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mueller SK, Nocera AL, Bleier BS (2017) Exosome function in aerodigestive mucosa. Nanomedicine 14(2):269–277. https://doi.org/10.1016/j.nano.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  92. Murr A, Pink C, Hammer E, Michalik S, Dhople VM, Holtfreter B, Völker U, Kocher T, Gesell SM (2017) Cross-sectional Association of Salivary Proteins with age, sex, body mass index, smoking, and education. J Proteome Res 16(6):2273–2281. https://doi.org/10.1021/acs.jproteome.7b00133. Epub 2017 May 18

    Article  CAS  PubMed  Google Scholar 

  93. Navazesh M, Christensen CM (1982) A comparison of whole mouth resting and stimulated salivary measurement procedures. J Dent Res 61(10):1158–1162

    Article  CAS  PubMed  Google Scholar 

  94. Nederfors T, Dahlöf C (1993) A modified device for collection and flow-rate measurement of submandibular-sublingual saliva. Scand J Dent Res 101(4):210–214

    CAS  PubMed  Google Scholar 

  95. Nunes LA, Mussavira S, Bindhu OS (2015) Clinical and diagnostic utility of saliva as a non-invasive diagnostic fluid: a systematic review. Biochem Med (Zagreb) 25(2):177–192. https://doi.org/10.11613/BM.2015.018. eCollection 2015. Review

    Article  Google Scholar 

  96. Ogawa Y, Miura Y, Harazono A, Kanai-Azuma M, Akimoto Y, Kawakami H, Yamaguchi T, Toda T, Endo T, Tsubuki M, Yanoshita R (2011) Proteomic analysis of two types of exosomes in human whole saliva. Biol Pharm Bull 34(1):13–23

    Article  CAS  PubMed  Google Scholar 

  97. Ogawa Y, Tsujimoto M, Yanoshita R (2016) Next-generation sequencing of protein-coding and Long non-protein-coding RNAs in two types of Exosomes derived from human whole saliva. Biol Pharm Bull 39(9):1496–1507. https://doi.org/10.1248/bpb.b16-00297

    Article  CAS  PubMed  Google Scholar 

  98. Ohyama K, Baba M, Tamai M, Aibara N, Ichinose K, Kishikawa N, Kawakami A, Kuroda N (2015) Proteomic profiling of antigens in circulating immune complexes associated with each of seven autoimmune diseases. Clin Biochem 48(3):181–185. https://doi.org/10.1016/j.clinbiochem.2014.11.008. Epub 2014 Nov 29

    Article  CAS  PubMed  Google Scholar 

  99. Pajukoski H, Meurman JH, Snellman-Gröhn S, Keinänen S, Sulkava R (1997) Salivary flow and composition in elderly patients referred to an acute care geriatric ward. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 84(3):265–271

    Article  CAS  PubMed  Google Scholar 

  100. Palanisamy V, Sharma S, Deshpande A, Zhou H, Gimzewski J, Wong DT (2010) Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS One 5(1):e8577. https://doi.org/10.1371/journal.pone.0008577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Parr GR, Bustos-Valdes SE (1984) A modified segregator for collection of human submandibular and sublingual saliva. Arch Oral Biol 29(1):69–71

    Article  CAS  PubMed  Google Scholar 

  102. Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101(36):13368–13373. Epub 2004 Aug 23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pisitkun T, Johnstone R, Knepper MA (2006) Discovery of urinary biomarkers. Mol Cell Proteomics 5(10):1760–1771. Epub 2006 Jul 12. Review

    Article  CAS  PubMed  Google Scholar 

  104. Principe S, Hui AB, Bruce J, Sinha A, Liu FF, Kislinger T (2013) Tumor-derived exosomes and microvesicles in head and neck cancer: implications for tumor biology and biomarker discovery. Proteomics 13(10–11):1608–1623. https://doi.org/10.1002/pmic.201200533

    Article  CAS  PubMed  Google Scholar 

  105. Proctor GB (2016) The physiology of salivary secretion. Periodontol 2000 70(1):11–25. https://doi.org/10.1111/prd.12116

    Article  PubMed  Google Scholar 

  106. Prodan A, Brand HS, Ligtenberg AJ, Imangaliyev S, Tsivtsivadze E, van der Weijden F, Crielaard W, Keijser BJ, Veerman EC (2015) Interindividual variation, correlations, and sex-related differences in the salivary biochemistry of young healthy adults. Eur J Oral Sci 123(3):149–157. https://doi.org/10.1111/eos.12182. Epub 2015 Mar 23

    Article  CAS  PubMed  Google Scholar 

  107. Psoter WJ, Spielman AL, Gebrian B, St Jean R, Katz RV (2008) Effect of childhood malnutrition on salivary flow and pH. Arch Oral Biol 53(3):231–237. Epub 2007 Nov 5

    Article  CAS  PubMed  Google Scholar 

  108. Rantonen PJ, Meurman JH (2000) Correlations between total protein, lysozyme, immunoglobulins, amylase, and albumin in stimulated whole saliva during daytime. Acta Odontol Scand 58(4):160–165

    Article  CAS  PubMed  Google Scholar 

  109. Rao PV, Reddy AP, Lu X et al (2009) Proteomic identification of salivary biomarkers of type-2 diabetes. J Proteome Res 8(1):239–245

    Article  CAS  PubMed  Google Scholar 

  110. Robinson S, Niles RK, Witkowska HE, Rittenbach KJ, Nichols RJ, Sargent JA, Dixon SE, Prakobphol A, Hall SC, Fisher SJ, Hardt M (2008) A mass spectrometry-based strategy for detecting and characterizing endogenous proteinase activities in complex biological samples. Proteomics 8(3):435–445. https://doi.org/10.1002/pmic.200700680

    Article  CAS  PubMed  Google Scholar 

  111. Rosa N, Marques J, Esteves E, Fernandes M, Mendes VM, Afonso A, Dias S, Pereira JP, Manadas B, Correia MJ, Barros M (2016) Protein quality assessment on saliva samples for biobanking purposes. Biopreserv Biobank 14(4):289–297. https://doi.org/10.1089/bio.2015.0054. Epub 2016 Mar 3

    Article  CAS  PubMed  Google Scholar 

  112. Satou R, Sato M, Kimura M, Ishizuka Y, Tazaki M, Sugihara N, Shibukawa Y (2017) Temporal expression patterns of clock genes and aquaporin 5/Anoctamin 1 in rat submandibular gland cells. Front Physiol 8:320. https://doi.org/10.3389/fphys.2017.00320. eCollection 2017

    Article  PubMed  PubMed Central  Google Scholar 

  113. Schipper R, Loof A, de Groot J, Harthoorn L, Dransfield E, van Heerde W (2007) SELDI-TOF-MS of saliva: methodology and pre-treatment effects. J Chromatogr B Analyt Technol Biomed Life Sci 847(1):45–53. Epub 2006 Oct 27

    Article  CAS  PubMed  Google Scholar 

  114. Schneyer LH (1955) Method for the collection of separate submaxillary and sublingual Salivas in man. J Dent Res 34(2):257–261

    Article  CAS  PubMed  Google Scholar 

  115. Schulz BL, Cooper-White J, Punyadeera CK (2013) Saliva proteome research: current status and future outlook. Crit Rev Biotechnol 33(3):246–259. https://doi.org/10.3109/07388551.2012.687361. Epub 2012 May 21

    Article  CAS  PubMed  Google Scholar 

  116. Shah P, Wang X, Yang W, Toghi Eshghi S, Sun S, Hoti N, Chen L, Yang S, Pasay J, Rubin A, Zhang H (2015) Integrated proteomic and Glycoproteomic analyses of prostate Cancer cells reveal glycoprotein alteration in protein abundance and glycosylation. Mol Cell Proteomics 14(10):2753–2763. https://doi.org/10.1074/mcp.M115.047928. Epub 2015 Aug 9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sharma S, Gillespie BM, Palanisamy V, Gimzewski JK (2011) Quantitative nanostructural and single-molecule force spectroscopy biomolecular analysis of human-saliva-derived exosomes. Langmuir 27(23):14394–14400. https://doi.org/10.1021/la2038763. Epub 2011 Nov 9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Siqueira WL, Zhang W, Helmerhorst EJ, Gygi SP, Oppenheim FG (2007) Identification of protein components in in vivo human acquired enamel pellicle using LC-ESI-MS/MS. J Proteome Res 6(6):2152–2160. Epub 2007 Apr 21

    Article  CAS  PubMed  Google Scholar 

  119. Siqueira WL, Bakkal M, Xiao Y, Sutton JN, Mendes FM (2012) Quantitative proteomic analysis of the effect of fluoride on the acquired enamel pellicle. PLoS One 7(8):e42204. https://doi.org/10.1371/journal.pone.0042204. Epub 2012 Aug 1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Slowey PD (2013) Commercial saliva collections tools. J Calif Dent Assoc 41(2):97–99, 102-5

    PubMed  Google Scholar 

  121. Slowey PD (2015) Saliva collection devices and diagnostic platforms. In: Streckfus C (ed) Advances in salivary diagnostics. Springer-Verlag, Heidelberg

    Google Scholar 

  122. Sondej M, Denny PA, Xie Y, Ramachandran P, Si Y, Takashima J, Shi W, Wong DT, Loo JA, Denny PC (2009) Glycoprofiling of the human salivary proteome. Clin Proteomics 5(1):52–68

    Article  CAS  PubMed  Google Scholar 

  123. Sonesson M, Hamberg K, Wallengren ML, Matsson L, Ericson D (2011) Salivary IgA in minor-gland saliva of children, adolescents, and young adults. Eur J Oral Sci 119(1):15–20. https://doi.org/10.1111/j.1600-0722.2010.00794.x

    Article  PubMed  Google Scholar 

  124. Stokes JR, Davies GA (2007) Viscoelasticity of human whole saliva collected after acid and mechanical stimulation. Biorheology 44(3):141–160

    CAS  PubMed  Google Scholar 

  125. Stone MD, Chen X, McGowan T, Bandhakavi S, Cheng B, Rhodus NL, Griffin TJ (2011) Large-scale phosphoproteomics analysis of whole saliva reveals a distinct phosphorylation pattern. J Proteome Res 10(4):1728–1736. https://doi.org/10.1021/pr1010247. Epub 2011 Mar 1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Streckfus C, Bigler L (2005) The use of soluble, salivary c-erbB-2 for the detection and post-operative follow-up of breast cancer in women: the results of a five-year translational research study. Adv Dent Res 18(1):17–24. [PubMed]

    Article  CAS  PubMed  Google Scholar 

  127. Streckfus C, Bigler L, Tucci M, Thigpen JT (2000) A preliminary study of CA15-3, c-erbB-2, epidermal growth factor receptor, cathepsin-D, and p53 in saliva among women with breast carcinoma. Cancer Investig 18(2):101–109. [PubMed]

    Article  CAS  Google Scholar 

  128. Stremersch S, De Smedt SC, Raemdonck K (2016) Therapeutic and diagnostic applications of extracellular vesicles. J Control Release 244(Pt B):167–183. https://doi.org/10.1016/j.jconrel.2016.07.054. Epub 2016 Aug 2

    Article  CAS  PubMed  Google Scholar 

  129. Stuani VT, Rubira CM, Sant’Ana AC, Santos PS (2017) Salivary biomarkers as tools for oral squamous cell carcinoma diagnosis: a systematic review. Head Neck 39(4):797–811. https://doi.org/10.1002/hed.24650. Epub 2016 Nov 29

    Article  PubMed  Google Scholar 

  130. Sun S, Zhao F, Wang Q, Zhong Y, Cai T, Wu P, Yang F, Li Z (2014) Analysis of age and gender associated N-glycoproteome in human whole saliva. Clin Proteomics 11(1):25. https://doi.org/10.1186/1559-0275-11-25. eCollection 2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sun Y, Liu S, Qiao Z, Shang Z, Xia Z, Niu X, Qian L, Zhang Y, Fan L, Cao CX, Xiao H (2017) Systematic comparison of exosomal proteomes from human saliva and serum for the detection of lung cancer. Anal Chim Acta 982:84–95. https://doi.org/10.1016/j.aca.2017.06.005. Epub 2017 Jun 17

    Article  CAS  PubMed  Google Scholar 

  132. ten Cate JM, Featherstone JD (1991) Mechanistic aspects of the interactions between fluoride and dental enamel. Crit Rev Oral Biol Med 2(3):283–296. Review

    Article  PubMed  Google Scholar 

  133. Trindade F, Amado F, Oliveira-Silva RP, Daniel-da-Silva AL, Ferreira R, Klein J, Faria-Almeida R, Gomes PS, Vitorino R (2015) Toward the definition of a peptidome signature and protease profile in chronic periodontitis. Proteomics Clin Appl 9(9–10):917–927. https://doi.org/10.1002/prca.201400191. Epub 2015 May 8

    Article  CAS  PubMed  Google Scholar 

  134. Trindade F, Amado F, Gomes PS, Vitorino R (2015) endoProteoFASP: a novel FASP approach to profile salivary peptidome and disclose salivary proteases. Talanta 132:486–493

    Article  CAS  PubMed  Google Scholar 

  135. Trindade F, Amado F, Pinto da Costa J, Ferreira R, Maia C, Henriques I, Colaço B, Vitorino R (2015) Salivary peptidomic as a tool to disclose new potential antimicrobial peptides. J Proteome 115:49–57. https://doi.org/10.1016/j.jprot.2014.12.004. Epub 2014 Dec 20

    Article  CAS  Google Scholar 

  136. Tylenda CA, Ship JA, Fox PC, Baum BJ (1988) Evaluation of submandibular salivary flow rate in different age groups. J Dent Res 67(9):1225–1228

    Article  CAS  PubMed  Google Scholar 

  137. Ventura TMDS, Cassiano LPS, Souza E, Silva CM, Taira EA, Leite AL, Rios D, Buzalaf MAR (2017) The proteomic profile of the acquired enamel pellicle according to its location in the dental arches. Arch Oral Biol 79:20–29. https://doi.org/10.1016/j.archoralbio.2017.03.001. Epub 2017 Mar 3

    Article  CAS  PubMed  Google Scholar 

  138. Villa A, Wolff A, Narayana N, Dawes C, Aframian DJ, Lynge Pedersen AM et al (2016) World workshop on Oral medicine VI: a systematic review of medication-induced salivary gland dysfunction. Oral Dis 22:365–382

    Article  CAS  PubMed  Google Scholar 

  139. Vitorino R (2018) Digging deep into peptidomics applied to body fluids. Proteomics 18(2). https://doi.org/10.1002/pmic.201700401. Review

    Article  CAS  Google Scholar 

  140. Vitorino R, Lobo MJ, Duarte J, Ferrer-Correia AJ, Tomer KB, Dubin JR, Domingues PM, Amado FM (2004) In vitro hydroxyapatite adsorbed salivary proteins. Biochem Biophys Res Commun 320(2):342–346

    Article  CAS  PubMed  Google Scholar 

  141. Vitorino R, Lobo MJ, Duarte JR, Ferrer-Correia AJ, Domingues PM, Amado FM (2005) The role of salivary peptides in dental caries. Biomed Chromatogr 19(3):214–222

    Article  CAS  PubMed  Google Scholar 

  142. Vitorino R, de Morais GS, Ferreira R, Lobo MJ, Duarte J, Ferrer-Correia AJ, Tomer KB, Domingues PM, Amado FM (2006) Two-dimensional electrophoresis study of in vitro pellicle formation and dental caries susceptibility. Eur J Oral Sci 114(2):147–153

    Article  CAS  PubMed  Google Scholar 

  143. Vitorino R, Calheiros-Lobo MJ, Williams J, Ferrer-Correia AJ, Tomer KB, Duarte JA, Domingues PM, Amado FM (2007) Peptidomic analysis of human acquired enamel pellicle. Biomed Chromatogr 21(11):1107–1117

    Article  CAS  PubMed  Google Scholar 

  144. Vitorino R, Calheiros-Lobo MJ, Duarte JA, Domingues PM, Amado FM (2008) Peptide profile of human acquired enamel pellicle using MALDI tandem MS. J Sep Sci 31:523–537

    Article  CAS  PubMed  Google Scholar 

  145. Vitorino R, Barros A, Caseiro A, Domingues P, Duarte J, Amado F (2009) Towards defining the whole salivary peptidome. Prot Clin Appl 3:528–540. https://doi.org/10.1002/prca.200800183

    Article  CAS  Google Scholar 

  146. Vitorino R, Guedes S, Manadas B, Ferreira R, Amado F (2012) Toward a standardized saliva proteome analysis methodology. J Proteome 75(17):5140–5165. https://doi.org/10.1016/j.jprot.2012.05.045. Epub 2012 Jul 15

    Article  CAS  Google Scholar 

  147. Vitorino R, Barros AS, Caseiro A, Ferreira R, Amado F (2012) Evaluation of different extraction procedures for salivary peptide analysis. Talanta 94:209–215. https://doi.org/10.1016/j.talanta.2012.03.023. Epub 2012 Mar 30

    Article  CAS  PubMed  Google Scholar 

  148. Vlassov AV, Magdaleno S, Setterquist R, Conrad R (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 1820(7):940–948. https://doi.org/10.1016/j.bbagen.2012.03.017. Epub 2012 Apr 1

    Article  CAS  PubMed  Google Scholar 

  149. Vukosavljevic D, Custodio W, Buzalaf MA, Hara AT, Siqueira WL (2014) Acquired pellicle as a modulator for dental erosion. Arch Oral Biol 59(6):631–638. https://doi.org/10.1016/j.archoralbio.2014.02.002. Epub 2014 Feb 10

    Article  CAS  PubMed  Google Scholar 

  150. Wainwright WW (1934) Human saliva II.A technical procedure for calcium analysis. J Dent Res 14:425–434

    Article  Google Scholar 

  151. WHO/IARC (2007) Common Minimum Technical Standards and Protocols for Biological Resource Centres Dedicated to Cancer Research, WorkGroup Report 2, Caboux E, Plymoth A and Hainaut P, Editors, IARC.

    Google Scholar 

  152. Wolff A, Davis RL (1991) Universal collector for submandibular-sublingual saliva. U.S. Pat. N° 5.050.616

    Google Scholar 

  153. Wolff A, Begleiter A, Moskona D (1997) A novel system of human submandibular/sublingual saliva collection. J Dent Res 76(11):1782–1786

    Article  CAS  PubMed  Google Scholar 

  154. Wolff A, Joshi RK, Ekström J, Aframian D, Pedersen AM, Proctor G, Narayana N, Villa A, Sia YW, Aliko A, McGowan R, Kerr AR, Jensen SB, Vissink A, Dawes C (2017) A guide to medications inducing salivary gland dysfunction, Xerostomia, and subjective Sialorrhea: a systematic review sponsored by the world workshop on Oral medicine VI. Drugs R D 17(1):1–28. https://doi.org/10.1007/s40268-016-0153-9

    Article  CAS  PubMed  Google Scholar 

  155. Xiao H, Wong DT (2012) Proteomic analysis of microvesicles in human saliva by gel electrophoresis with liquid chromatography-mass spectrometry. Anal Chim Acta 723:61–67. https://doi.org/10.1016/j.aca.2012.02.018. Epub 2012 Feb 19. uvwxyz

    Article  CAS  PubMed  Google Scholar 

  156. Xiao X, Liu Y, Guo Z, Liu X, Sun H, Li Q, Sun W (2017) Comparative proteomic analysis of the influence of gender and acid stimulation on normal human saliva using LC/MS/MS. Proteomics Clin Appl 11(7–8). https://doi.org/10.1002/prca.201600142. Epub 2017 Mar 21

    Article  CAS  Google Scholar 

  157. Yan W, Apweiler R, Balgley BM, Boontheung P, Bundy JL, Cargile BJ, Cole S, Fang X, Gonzalez-Begne M, Griffin TJ, Hagen F, Hu S, Wolinsky LE, Lee CS, Malamud D, Melvin JE, Menon R, Mueller M, Qiao R, Rhodus NL, Sevinsky JR, States D, Stephenson JL, Than S, Yates JR, Yu W, Xie H, Xie Y, Omenn GS, Loo JA, Wong DT (2009) Systematic comparison of the human saliva and plasma proteomes. Proteomics Clin Appl 3(1):116–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Yang J, Wei F, Schafer C, Wong DT (2014) Detection of tumor cell-specific mRNA and protein in exosome-like microvesicles from blood and saliva. PLoS One 9(11):e110641. https://doi.org/10.1371/journal.pone.0110641. eCollection 2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yao Y, Grogan J, Zehnder M, Lendenmann U, Nam B, Wu Z, Costello CE, Oppenheim FG (2001) Compositional analysis of human acquired enamel pellicle by mass spectrometry. Arch Oral Biol 46:293–303

    Article  CAS  PubMed  Google Scholar 

  160. Yao Y, Berg EA, Costello CE, Troxler RF, Oppenheim FG (2003) Identification of protein components in human acquired enamel pellicle and whole saliva using novel proteomics approaches. J Biol Chem 278:5300–5308

    Article  CAS  PubMed  Google Scholar 

  161. Zhang J, Zhong LJ, Wang Y, Liu LM, Cong X, Xiang RL, Wu LL, Yu GY, Zhang Y (2017) Proteomic analysis reveals an impaired Ca2+/AQP5 pathway in the submandibular gland in hypertension. Sci Rep 7(1):14524. https://doi.org/10.1038/s41598-017-15211-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zheng X, Chen F, Zhang J, Zhang Q, Lin J (2014) Exosome analysis: a promising biomarker system with special attention to saliva. J Membr Biol 247(11):1129–1136. https://doi.org/10.1007/s00232-014-9717-1. Epub 2014 Aug 19

    Article  CAS  PubMed  Google Scholar 

  163. Zheng X, Chen F, Zhang Q, Liu Y, You P, Sun S, Lin J, Chen N (2017) Salivary exosomal PSMA7: a promising biomarker of inflammatory bowel disease. Protein Cell 8(9):686–695. https://doi.org/10.1007/s13238-017-0413-7. Epub 2017 May 18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zimmerman JN, Custodio W, Hatibovic-Kofman S, Lee YH, Xiao Y, Siqueira WL (2013) Proteome and peptidome of human acquired enamel pellicle on deciduous teeth. Int J Mol Sci 14(1):920–934. https://doi.org/10.3390/ijms14010920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zlotogorski-Hurvitz A, Dayan D, Chaushu G, Korvala J, Salo T, Sormunen R, Vered M (2015) Human saliva-derived exosomes: comparing methods of isolation. J Histochem Cytochem 63(3):181–189. https://doi.org/10.1369/0022155414564219. Epub 2014 Dec 3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Amado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amado, F., Calheiros-Lobo, M.J., Ferreira, R., Vitorino, R. (2019). Sample Treatment for Saliva Proteomics. In: Capelo-Martínez, JL. (eds) Emerging Sample Treatments in Proteomics. Advances in Experimental Medicine and Biology(), vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-030-12298-0_2

Download citation

Publish with us

Policies and ethics