Skip to main content

Advertisement

Log in

The oral cavity—a key system to understand substratum-dependent bioadhesion on solid surfaces in man

  • Review
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

One of the greatest challenges in life sciences and biomaterials research is adhesion of biomolecules and bacteria to solid surfaces in aqueous solutions. An example concerning everybody is biofilm formation in the oral cavity on dental materials and dental hard substances, respectively. The main characteristics typical for any bioadhesion can be observed excellently in the oral cavity. Initially, a proteinaceous layer termed pellicle is formed. It mediates the interactions between solid substrata, oral fluids and microorganisms. Numerous different materials with differing physico-chemical properties and possible impact on the acquired pellicle are present in the oral cavity such as enamel, dentine, restorative materials or dental implants. Despite the fact that in vitro studies demonstrate considerable differences of experimental pellicles formed on these materials, the in situ pellicles seem to be relatively similar and level off the different properties of the underlying substrates. However, the bacterial colonisation of pellicle-coated surfaces under in vivo conditions differs considerably. Long-range forces and detachment of biofilm layers may account for this phenomenon despite the masking effect of the pellicle. Accordingly, low-energy surfaces are desirable for restorative materials exposed to the oral cavity to minimise bacterial adhesion. The oral cavity is an easy accessible in vivo model for understanding bioadhesion and for investigation of protein–surface interactions noninvasively. For evaluation of biofilm formation on dental materials, in situ or in vivo studies are preferable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Absolom DR, Lamberti FV, Policova Z, Zingg W, van Oss CJ, Neumann AW (1983) Surface thermodynamics of bacterial adhesion. Appl Environ Microbiol 46:90–97

    PubMed  Google Scholar 

  2. Absolom DR, Zingg W, Neumann AW (1987) Protein adsorption to polymer particles: role of surface properties. J Biomed Mater Res 21:289–295

    Article  Google Scholar 

  3. Ahn SJ, Kho HS, Lee SW, Nahm DS (2002) Roles of salivary proteins in the adherence of oral streptococci to various orthodontic brackets. J Dent Res 81:411–415

    Article  PubMed  Google Scholar 

  4. Al-Hashimi I, Levine MJ (1989) Characterization of in vivo salivary-derived enamel pellicle. Arch Oral Biol 34:289–295

    Article  PubMed  Google Scholar 

  5. Arvidsson A, Lofgren CD, Christersson CE, Glantz PO, Wennerberg A (2004) Characterisation of structures in salivary secretion film formation. An experimental study with atomic force microscopy. Biofouling 20:181–188

    Article  PubMed  Google Scholar 

  6. Baier RE, Glantz PO (1978) Characterization of oral in vivo films formed on different types of solid surfaces. Acta Odontol Scand 36:289–301

    Article  PubMed  Google Scholar 

  7. Baier RE (2006) Surface behaviour of biomaterials: the theta surface for biocompatibility. J Mater Sci Mater Med 17:1057–1062

    Article  PubMed  Google Scholar 

  8. Bellon-Fontaine MN, Mozes N, van der Mei HC, Sjollema J, Cerf O, Rouxhet PG, Busscher HJ (1990) A comparison of thermodynamic approaches to predict the adhesion of dairy microorganisms to solid substrata. Cell Biophys 17:93–106

    PubMed  Google Scholar 

  9. Bennick A, Cannon M, Madapallimattam G (1979) The nature of the hydroxyapatite-binding site in salivary acidic proline-rich proteins. Biochem J 183:115–126

    PubMed  Google Scholar 

  10. Berthold CH, Berthold P, Soder PO (1971) The growth of dental plaque on different materials. Svensk Tandläk Tidskr 64:863–877

    Google Scholar 

  11. Berthold P (1979) Formation of salivary coating and dental plaque on two different supporting materials. An electron microscopic study. J Periodontol 50:397–405

    PubMed  Google Scholar 

  12. Bradway SD, Bergey EJ, Scannapieco FA, Ramasubbu N, Zawacki S, Levine MJ (1992) Formation of salivary-mucosal pellicle: the role of transglutaminase. Biochem J 284(Pt 2):557–564

    PubMed  Google Scholar 

  13. Busscher H, Sjolema J, van der Mei HC (1990) Relative importance of surface free energy as a measure of hydrophobicity in bacterial adhesion to solid surfaces. In: Doyle RJ, Rosenberg M (eds) Microbial cell surface hydrophobicity. American Society for Microbiology, Washington DC, pp 335–359

    Google Scholar 

  14. Busscher HJ, de Jong HP, van Pelt AW, Arends J (1984) The surface free energy of human dental enamel. Biomater Med Devices Artif Organs 12:37–49

    PubMed  Google Scholar 

  15. Carlén A, Borjesson AC, Nikdel K, Olsson J (1998) Composition of pellicles formed in vivo on tooth surfaces in different parts of the dentition, and in vitro on hydroxyapatite. Caries Res 32:447–455

    Article  PubMed  Google Scholar 

  16. Carlén A, Nikdel K, Wennerberg A, Holmberg K, Olsson J (2001) Surface characteristics and in vitro biofilm formation on glass ionomer and composite resin. Biomaterials 22:481–487

    Article  PubMed  Google Scholar 

  17. Carlén A, Rüdiger SG, Loggner I, Olsson J (2003) Bacteria-binding plasma proteins in pellicles formed on hydroxyapatite in vitro and on teeth in vivo. Oral Microbiol Immunol 18:203–207

    Article  PubMed  Google Scholar 

  18. Christersson CE, Dunford RG (1991) Salivary film formation on defined solid surfaces in the absence and presence of microorganisms. Biofouling 3:237–250

    Article  Google Scholar 

  19. Christersson CE, Glantz PO (1992) Retention of streptococci to defined solid surfaces in the presence of saliva secretions. Scand J Dent Res 100:98–103

    PubMed  Google Scholar 

  20. Dawes CJG, Tonge CH (1963) The nomenclature of the integuments of the enamel surface of the teeth. Br Dent J 115:65–68

    Google Scholar 

  21. de Jong HP, van Pelt AW, Arends J (1982) Contact angle measurements on human enamel—an in vitro study of influence of pellicle and storage period. J Dent Res 61:11–13

    PubMed  Google Scholar 

  22. de Jong HP, de Boer P, Busscher HJ, van Pelt AW, Arends J (1984) Surface free energy changes of human enamel during pellicle formation. An in vivo study. Caries Res 18:408–415

    PubMed  Google Scholar 

  23. de Jong HP, de Boer P, van Pelt AW, Busscher HJ, Arends J (1984) Effect of topically applied fluoride solutions on the surface free energy of pellicle-covered human enamel. Caries Res 18:505–508

    PubMed  Google Scholar 

  24. Deimling D, Breschi L, Hoth-Hannig W, Ruggeri A, Hannig C, Nekrashevych Y, Prati C, Hannig M (2004) Electron microscopic detection of salivary alpha-amylase in the pellicle formed in situ. Eur J Oral Sci 112:503–509

    Article  PubMed  Google Scholar 

  25. Deimling D, Hannig C, Hoth-Hannig W, Schmitz P, Schulte-Monting J, Hannig M (2007) Non-destructive visualisation of protective proteins in the in situ pellicle. Clin Oral Investig 11:211–216

    Article  PubMed  Google Scholar 

  26. Douglas CW (1994) Bacterial–protein interactions in the oral cavity. Adv Dent Res 8:254–262

    PubMed  Google Scholar 

  27. Edgerton M, Levine MJ (1992) Characterization of acquired denture pellicle from healthy and stomatitis patients. J Prosthet Dent 68:683–691

    Article  PubMed  Google Scholar 

  28. Edgerton M, Lo SE, Scannapieco FA (1996) Experimental salivary pellicles formed on titanium surfaces mediate adhesion of streptococci. Int J Oral Maxillofac Implants 11:443–449

    PubMed  Google Scholar 

  29. Eliades T, Eliades G, Brantley WA (1995) Microbial attachment on orthodontic appliances: I. Wettability and early pellicle formation on bracket materials. Am J Orthod Dentofacial Orthop 108:351–360

    Article  PubMed  Google Scholar 

  30. Ericson T, Pruitt KM, Arwin H, Lundstrom I (1982) Ellipsometric studies of film formation on tooth enamel and hydrophilic silicon surfaces. Acta Odontol Scand 40:197–201

    Article  PubMed  Google Scholar 

  31. Fine DH, Wilton JM, Caravana C (1984) In vitro sorption of albumin, immunoglobulin G, and lysozyme to enamel and cementum from human teeth. Infect Immun 44:332–338

    PubMed  Google Scholar 

  32. Glantz PO (1969) On wettabilty and adhesiveness. Odontol Rev 20:1–132

    Google Scholar 

  33. Glantz PO (1971) The adhesiveness of teeth. J Colloid Interface Sci 37:281–290

    Article  Google Scholar 

  34. Glantz PO (1977) Adhesion to teeth. Int Dent J 27:324–332

    PubMed  Google Scholar 

  35. Glantz PO (1980) Adhesion to the surfaces of teeth. In: Leach SA (ed) Dental plaque and surface interactions in the oral cavity. IRL, London, pp 119–128

    Google Scholar 

  36. Göcke R, Gerath F, von Schwanewede H (2002) Quantitative determination of salivary components in the pellicle on PMMA denture base material. Clin Oral Investig 6:227–235

    Article  PubMed  Google Scholar 

  37. Goobes G, Goobes R, Shaw WJ, Gibson JM, Long JR, Raghunathan V, Schueler-Furman O, Popham JM, Baker D, Campbell CT, Stayton PS, Drobny GP (2008) The structure, dynamics, and energetics of protein adsorption—lessons learned from adsorption of statherin to hydroxyapatite. Magn Reson Chem 45:S32–S47

    Article  PubMed  Google Scholar 

  38. Gray JJ (2004) The interaction of proteins with solid surfaces. Curr Opin Struct Biol 14:110–115

    Article  PubMed  Google Scholar 

  39. Groessner-Schreiber B, Hannig M, Duck A, Griepentrog M, Wenderoth DF (2004) Do different implant surfaces exposed in the oral cavity of humans show different biofilm compositions and activities? Eur J Oral Sci 112:516–522

    Article  PubMed  Google Scholar 

  40. Hannig C, Hannig M, Attin T (2005) Enzymes in the acquired enamel pellicle. Eur J Oral Sci 113:2–13

    Article  PubMed  Google Scholar 

  41. Hannig C, Hoch J, Becker K, Hannig M, Attin T (2005) Lysozyme activity in the initially formed in situ pellicle. Arch Oral Biol 50:821–828

    Article  PubMed  Google Scholar 

  42. Hannig C, Wasser M, Becker K, Hannig M, Huber K, Attin T (2006) Influence of different restorative materials on lysozyme and amylase activity of the salivary pellicle in situ. J Biomed Mater Res A 78:755–761

    PubMed  Google Scholar 

  43. Hannig C, Becker K, Häusler N, Hoth-Hannig W, Attin T, Hannig M (2007) Protective effect of the in situ pellicle on dentin erosion—an ex vivo pilot study. Arch Oral Biol 52:444–449

    Article  PubMed  Google Scholar 

  44. Hannig C, Hannig M, Rehmer O, Braun G, Hellwig E, Al-Ahmad A (2007) Fluorescence-microscopic visualisation and quantification of initial bacterial colonisation on enamel in situ. Arch Oral Biol 52:1048–1056

    Article  PubMed  Google Scholar 

  45. Hannig C, Huber K, Lambrichts I, Graser J, D'Haen J, Hannig M (2007) Detection of salivary alpha-amylase and lysozyme exposed on the pellicle formed in situ on different materials. J Biomed Mater Res A 83:98–103

    PubMed  Google Scholar 

  46. Hannig C, Spitzmüller B, Hannig M (2008) Characterization of lysozyme activity in the in situ pellicle using a fluorimetric assay. Clin Oral Investig (in press)

  47. Hannig C, Spitzmüller B, Miller M, Hellwig E, Hannig M (2008) Intrinsic enzymatic crosslinking and maturation of the in situ pellicle. Arch Oral Biol 53:416–422

    Article  PubMed  Google Scholar 

  48. Hannig M (1997) Transmission electron microscopic study of in vivo pellicle formation on dental restorative materials. Eur J Oral Sci 105:422–433

    PubMed  Google Scholar 

  49. Hannig M (1999) Ultrastructural investigation of pellicle morphogenesis at two different intraoral sites during a 24-h period. Clin Oral Investig 3:88–95

    Article  PubMed  Google Scholar 

  50. Hannig M (1999) Transmission electron microscopy of early plaque formation on dental materials in vivo. Eur J Oral Sci 107:55–64

    Article  PubMed  Google Scholar 

  51. Hannig M, Döbert A, Stigler R, Muller U, Prokhorova SA (2004) Initial salivary pellicle formation on solid substrates studied by AFM. J Nanosci Nanotechnol 4:532–538

    Article  PubMed  Google Scholar 

  52. Hannig M, Fiebiger M, Güntzer M, Döbert A, Zimehl R, Nekrashevych Y (2004) Protective effect of the in situ formed short-term salivary pellicle. Arch Oral Biol 49:903–910

    Article  PubMed  Google Scholar 

  53. Hannig M, Joiner A (2006) The structure, function and properties of the acquired pellicle. Monogr Oral Sci 19:29–64 (edited by Duckworth R)

    PubMed  Google Scholar 

  54. Hannig M, Hannig C (2007) Does a biofilm free of bacteria, exist in situ? J Parodontol Implantol Orale 26:187–200

    Google Scholar 

  55. Hannig M, Kriener L, Hoth-Hannig W, Schmidt H (2007) Influence of nano-composite surface coating on biofilm formation in situ. J Nanosci Nanotechnol 7:4642–4648

    PubMed  Google Scholar 

  56. Hay DI (1967) The adsorption of salivary proteins by hydroxyapatite and enamel. Arch Oral Biol 12:937–946

    Article  PubMed  Google Scholar 

  57. Hay DI (1973) The interaction of human parotid salivary proteins with hydoxyapatite. Arch Oral Biol 18:1517–1529

    Article  PubMed  Google Scholar 

  58. Howell D, Behrends B (2006) A review of surface roughness in antifouling coatings illustrating the importance of cutoff length. Biofouling 22:401–410

    Article  PubMed  Google Scholar 

  59. Jendresen MD, Glantz PO (1981) Clinical adhesiveness of selected dental materials. An in-vivo study. Acta Odontol Scand 39:39–45

    PubMed  Google Scholar 

  60. Joiner A, Schwarz A, Philpotts CJ, Cox TF, Huber K, Hannig M (2008) The protective nature of pellicle towards toothpaste abrasion on enamel and dentine. J Dent 36:360–368

    Article  PubMed  Google Scholar 

  61. Kambara M, Norde W (1995) Influence of fluoride applications on some physicochemical surface properties of synthetic hydroxyapatite and human dental enamel and its consequences for protein adsorption. Caries Res 29:210–217

    PubMed  Google Scholar 

  62. Kawai K, Urano M (2001) Adherence of plaque components to different restorative materials. Oper Dent 26:396–400

    PubMed  Google Scholar 

  63. Keene HJ, Brown CK (1983) Colonization of metallic and nonmetallic restorations by Streptococcus mutans in vivo. Clin Prev Dent 5:3–7

    PubMed  Google Scholar 

  64. Kohavi D, Klinger A, Steinberg D, Sela MN (1995) Adsorption of salivary proteins onto prosthetic titanium components. J Prosthet Dent 74:531–534

    Article  PubMed  Google Scholar 

  65. Kohavi D, Klinger A, Steinberg D, Mann E, Sela NM (1997) alpha-Amylase and salivary albumin adsorption onto titanium, enamel and dentin: an in vivo study. Biomaterials 18:903–906

    Article  PubMed  Google Scholar 

  66. Konradsson K, Claesson R, van Dijken JW (2006) Mutans streptococci and lactobacilli in plaque on a leucite-reinforced dental ceramic and on a calcium aluminate cement. Clin Oral Investig 10:175–180

    Article  PubMed  Google Scholar 

  67. Kraus FW, Orstavik D, Hurst DC, Cook CH (1973) The acquired pellicle: variability and subject-dependence of specific proteins. J Oral Pathol 2:165–173

    Article  PubMed  Google Scholar 

  68. Kuboki Y, Teraoka K, Okada S (1987) X-ray photoelectron spectroscopic studies of the adsorption of salivary constituents on enamel. J Dent Res 66:1016–1019

    PubMed  Google Scholar 

  69. Lee SJ, Kho HS, Lee SW, Yang WS (2001) Experimental salivary pellicles on the surface of orthodontic materials. Am J Orthod Dentofacial Orthop 119:59–66

    Article  PubMed  Google Scholar 

  70. Lendenmann U, Grogan J, Oppenheim FG (2000) Saliva and dental pellicle—a review. Adv Dent Res 14:22–28

    Article  PubMed  Google Scholar 

  71. Leonhardt A, Olsson J, Dahlen G (1995) Bacterial colonization on titanium, hydroxyapatite, and amalgam surfaces in vivo. J Dent Res 74:1607–1612

    Article  PubMed  Google Scholar 

  72. Li J, Helmerhorst EJ, Troxler RF, Oppenheim FG (2004) Identification of in vivo pellicle constituents by analysis of serum immune responses. J Dent Res 83:60–64

    Article  PubMed  Google Scholar 

  73. Lie T (1979) Morphologic studies on dental plaque formation. Acta Odontol Scand 37:73–85

    Article  PubMed  Google Scholar 

  74. Lindh L, Arnebrandt T, Isberg PE, Glantz PO (1999) Concentration dependence of adsorption from human whole resting saliva at solid/liquid interfaces: an ellipsometric study. Biofouling 14:189–196

    Article  Google Scholar 

  75. Lindh L (2002) On the adsorption behaviour of saliva and purified salivary proteins at solid/liquid interfaces. Swed Dent J 152(Suppl):1–57

    Google Scholar 

  76. Lindh L, Glantz PO, Str omberg N, Arnebrandt T (2002) On the adsorption of human acidic Proline-rich proteins (PRP-1 and PRP-3) and statherin at solid/liquid interfaces. Biofouling 18:87–94

    Article  Google Scholar 

  77. Liu Y, Zhao Q (2005) Influence of surface energy of modified surfaces on bacterial adhesion. Biophys Chemist 117:39–45

    Article  Google Scholar 

  78. Lloyd AW, Faragher RG, Denyer SP (2001) Ocular biomaterials and implants. Biomaterials 22:769–785

    Article  PubMed  Google Scholar 

  79. Lockowandt P, Loges H, Wagner IV (1991) Restorative materials and initial pellicle formation. Dtsch Zahn Mund Kieferheilkd Zentralbl 79:147–151

    PubMed  Google Scholar 

  80. Maetani T, Miyoshi R, Nahara Y, Kawazoe Y, Hamada T (1984) Plaque accumulation on Teflon-coated metal. J Prosthet Dent 51:353–357

    Article  PubMed  Google Scholar 

  81. Manhart J, Garcia-Godoy F, Hickel R (2002) Direct posterior restorations: clinical results and new developments. Dent Clin North Am 46:303–339

    Article  PubMed  Google Scholar 

  82. Marsh P (1993) Antimicrobial strategies in the prevention of dental caries. Caries Res 27(Suppl 1):72–76

    PubMed  Google Scholar 

  83. Marsh P, Bradshaw DJ (1995) Dental plaque as a biofilm. J Induct Micro 15:169–175

    Article  Google Scholar 

  84. Marsh P, Martin M (1999) Oral microbiology, 4th edn. Wright, Oxford

    Google Scholar 

  85. Marsh P (2005) Dental plaque: biological significance of a biofilm and community life-style. J Clin Periodontol 32(Suppl 6):7–15

    Article  PubMed  Google Scholar 

  86. Mayhall CW (1975) Studies on the composition of the enamel pellicle. Alabama J Med Sci 12:252–271

    Google Scholar 

  87. Milleding P, Carlen A, Wennerberg A, Karlsson S (2001) Protein characterisation of salivary and plasma biofilms formed in vitro on non-corroded and corroded dental ceramic materials. Biomaterials 22:2545–2555

    Article  PubMed  Google Scholar 

  88. Moreno EC, Kresak M, Hay DI (1982) Adsorption thermodynamics of acidic proline-rich human salivary proteins onto calcium apatites. J Biol Chem 257:2981–2989

    PubMed  Google Scholar 

  89. Morge S, Adamczak E, Linden LA (1989) Variation in human salivary pellicle formation on biomaterials during the day. Arch Oral Biol 34:669–674

    Article  PubMed  Google Scholar 

  90. Müller R, Hiller KA, Schmalz G, Ruhl S (2006) Chemiluminescence-based detection and comparison of protein amounts adsorbed on differently modified silica surfaces. Anal Biochem 359:194–202

    Article  PubMed  Google Scholar 

  91. Müller R, Groger G, Hiller KA, Schmalz G, Ruhl S (2007) Fluorescence-based bacterial overlay method for simultaneous in situ quantification of surface-attached bacteria. Appl Environ Microbiol 73:2653–2660

    Article  PubMed  Google Scholar 

  92. Nakazato G, Tsuchiya H, Sato M, Yamauchi M (1989) In vivo plaque formation on implant materials. Int J Oral Maxillofac Implants 4:321–326

    PubMed  Google Scholar 

  93. Norde W (1986) Adsorption of proteins from solution at the solid–liquid interface. Adv Colloid Interface Sci 25:267–340

    Article  PubMed  Google Scholar 

  94. Norde W, Lyklema L (1989) Protein adsorption and bacterial adhesion to solid surfaces: a colloid—chemical approach. Colloids Surf 38:1–13

    Article  Google Scholar 

  95. Norde W (1995) Adsorption of proteins at solid–liquid interfaces. Cells Mater 5:97–112

    Google Scholar 

  96. Norde W (2008) My voyage of discovery to proteins in flatland…and beyond. Colloids Surf B Biointerfaces 61:1–9

    Article  PubMed  Google Scholar 

  97. Nyvad B, Fejerskov O (1987) Transmission electron microscopy of early microbial colonization of human enamel and root surfaces in vivo. Scand J Dent Res 95:297–307

    PubMed  Google Scholar 

  98. Olsson J, van der Heijde Y, Holmberg K (1992) Plaque formation in vivo and bacterial attachment in vitro on permanently hydrophobic and hydrophilic surfaces. Caries Res 26:428–433

    PubMed  Google Scholar 

  99. Ørstavik J, Ørstavik D, Kommisar J (1982) Preferential affinity of oral bacteria for homologous salivary films on dental materials. Acta Odontol Scand 40:49–56

    Article  PubMed  Google Scholar 

  100. Oste R, Ronstrom A, Birkhed D, Edwardsson S, Stenberg M (1981) Gas–liquid chromatographic analysis of amino acids in pellicle formed on tooth surface and plastic film in vivo. Arch Oral Biol 26:635–641

    Article  PubMed  Google Scholar 

  101. Otten JE, Wiedmann-Al-Ahmad M, Jahnke H, Pelz K (2005) Bacterial colonization on different suture materials—a potential risk for intraoral dentoalveolar surgery. J Biomed Mater Res B Appl Biomater 74:627–635

    PubMed  Google Scholar 

  102. Ozden AN, Haghighat N, Al-Hashimi I (2002) Preliminary evaluation of salivary pellicle on nickel–chromium alloy in vivo. Quintessence Int 33:731–735

    PubMed  Google Scholar 

  103. Pratt-Terpstra IH, Weerkamp AH, Busscher HJ (1987) Adhesion of oral streptococci from a flowing suspension to uncoated and albumin-coated surfaces. J Gen Microbiol 133:3199–3206

    PubMed  Google Scholar 

  104. Pratt-Terpstra IH, Weerkamp AH, Busscher HJ (1989) The effects of pellicle formation on streptococcal adhesion to human enamel and artificial substrata with various surface free-energies. J Dent Res 68:463–467

    PubMed  Google Scholar 

  105. Pruitt KM, Caldwell RC, Jamieson AD, Taylor RE (1969) The interaction of salivary proteins with tooth surface. J Dent Res 48:818–823

    PubMed  Google Scholar 

  106. Quinn A, Mantz H, Jacobs K, Bellion M, Santen L (2006) Protein adsorption kinetics in different surface potentials. Europhysics Lett 81:p1–p6

    Google Scholar 

  107. Quirynen M, Marechal M, Busscher HJ, Weerkamp AH, Arends J, Darius PL, van Steenberghe D (1989) The influence of surface free-energy on planimetric plaque growth in man. J Dent Res 68:796–799

    PubMed  Google Scholar 

  108. Quirynen M, Marechal M, Busscher HJ, Weerkamp AH, Darius PL, van Steenberghe D (1990) The influence of surface free energy and surface roughness on early plaque formation. An in vivo study in man. J Clin Periodontol 17:138–144

    Article  PubMed  Google Scholar 

  109. Quirynen M, van der Mei HC, Bollen CM, Schotte A, Marechal M, Doornbusch GI, Naert I, Busscher HJ, van Steenberghe D (1993) An in vivo study of the influence of the surface roughness of implants on the microbiology of supra- and subgingival plaque. J Dent Res 72:1304–1309

    PubMed  Google Scholar 

  110. Quirynen M, Bollen CM (1995) The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature. J Clin Periodontol 22:1–14

    PubMed  Google Scholar 

  111. Rogers JD, Haase EM, Brown AE, Douglas CW, Gwynn JP, Scannapieco FA (1998) Identification and analysis of a gene (abpA) encoding a major amylase-binding protein in Streptococcus gordonii. Microbiology 144(Pt 5):1223–1233

    Article  PubMed  Google Scholar 

  112. Rølla G, Rykke M (1994) Evidence for presence of micelle-like protein globules in human saliva. Colloids Surf B Biointerfaces 3:177–182

    Article  Google Scholar 

  113. Rönström A, Edwardsson S, Attström R (1977) Streptococcus sanguis and Streptococcus salivarius in early plaque formation on plastic films. J Periodont Res 12:331–339

    Article  PubMed  Google Scholar 

  114. Ruan MS, Di Paola C, Mandel ID (1986) Quantitative immunochemistry of salivary proteins adsorbed in vitro to enamel and cementum from caries-resistant and caries-susceptible human adults. Arch Oral Biol 31:597–601

    Article  PubMed  Google Scholar 

  115. Rupp F, Axmann D, Ziegler C, Geis-Gerstorfer J (2002) Adsorption/desorption phenomena on pure and Teflon AF-coated titania surfaces studied by dynamic contact angle analysis. J Biomed Mater Res 62:567–578

    Article  PubMed  Google Scholar 

  116. Rykke M, Sønju T, Skjørland K, Rölla G (1989) Protein adsorption to hydroxyapatite and to calcium fluoride in vitro and amino acid analyses of pellicle formed on normal enamel and on calcium-fluoride-covered enamel in vivo. Acta Odontol Scand 47:245–251

    Article  PubMed  Google Scholar 

  117. Rykke M, Sønju T, Rölla G (1990) Interindividual and longitudinal studies of amino acid composition of pellicle collected in vivo. Scand J Dent Res 98:129–134

    PubMed  Google Scholar 

  118. Rykke M, Ellingsen JE, Sønju T (1991) Chemical analysis and scanning electron microscopy of acquired pellicle formed in vivo on stannous fluoride treated enamel. Scand J Dent Res 99:205–211

    PubMed  Google Scholar 

  119. Rykke M, Sønju T (1991) Amino acid composition of acquired enamel pellicle collected in vivo after 2 hours and after 24 hours. Scand J Dent Res 99:463–469

    PubMed  Google Scholar 

  120. Rykke M, Smistadt G, Rölla G, Karlsen J (1995) Micelle-like structures in human saliva. Colloids Surf B Biointerfaces 4:33–40

    Article  Google Scholar 

  121. Scannapieco FA, Bergey EJ, Reddy MS, Levine MJ (1989) Characterization of salivary alpha-amylase binding to Streptococcus sanguis. Infect Immun 57:2853–2863

    PubMed  Google Scholar 

  122. Scannapieco FA, Torres G, Levine MJ (1993) Salivary alpha-amylase: role in dental plaque and caries formation. Crit Rev Oral Biol Med 4:301–307

    PubMed  Google Scholar 

  123. Scarano A, Piattelli M, Caputi S, Favero GA, Piattelli A (2004) Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. J Periodontol 75:292–296

    Article  PubMed  Google Scholar 

  124. Schwender N, Huber K, Al Marrawi F, Hannig M (2005) Initial bioadhesion on surfaces in the oral cavity investigated by scanning force microscopy. Appl Surf Sci 252:117–122

    Article  Google Scholar 

  125. Shahal Y, Steinberg D, Hirschfeld Z, Bronshteyn M, Kopolovic K (1998) In vitro bacterial adherence onto pellicle-coated aesthetic restorative materials. J Oral Rehabil 25:52–58

    Article  PubMed  Google Scholar 

  126. Siegrist BE, Brecx MC, Gusberti FA, Joss A, Lang NP (1991) In vivo early human dental plaque formation on different supporting substances. A scanning electron microscopic and bacteriological study. Clin Oral Implants Res 2:38–46

    Article  PubMed  Google Scholar 

  127. Sipahi C, Anil N, Bayramli E (2001) The effect of acquired salivary pellicle on the surface free energy and wettability of different denture base materials. J Dent 29:197–204

    Article  PubMed  Google Scholar 

  128. Siqueira WL, Zhang W, Helmerhorst EJ, Gygi SP, Oppenheim FG (2007) Identification of protein components in in vivo human acquired enamel pellicle using LC-ESI-MS/MS. J Proteome Res 6:2152–2160

    Article  PubMed  Google Scholar 

  129. Skjørland KK (1973) Plaque accumulation on different dental filling materials. Scand J Dent Res 81:538–542

    PubMed  Google Scholar 

  130. Skjørland KK (1976) Bacterial accumulation on silicate and composite materials. J Biol Buccale 4:315–322

    PubMed  Google Scholar 

  131. Skjørland KK, Sønju T (1982) Effect of sucrose rinses on bacterial colonization on amalgam and composite. Acta Odontol Scand 40:193–196

    Article  PubMed  Google Scholar 

  132. Skjørland KK, Rykke M, Sønju T (1995) Rate of pellicle formation in vivo. Acta Odontol Scand 53:358–362

    Article  PubMed  Google Scholar 

  133. Soderholm KJ, Zigan M, Ragan M, Fischlschweiger W, Bergman M (1984) Hydrolytic degradation of dental composites. J Dent Res 63:1248–1254

    PubMed  Google Scholar 

  134. Soderholm KJ (1990) Filler leachability during water storage of six composite materials. Scand J Dent Res 98:82–88

    PubMed  Google Scholar 

  135. Sønju Clasen AB, Hannig M, Skjørland K, Sønju T (1997) Analytical and ultrastructural studies of pellicle on primary teeth. Acta Odontol Scand 55:339–343

    PubMed  Google Scholar 

  136. Sønju T, Glantz PO (1975) Chemical composition of salivary integuments formed in vivo on solids with some established surface characteristics. Arch Oral Biol 20:687–691

    Article  PubMed  Google Scholar 

  137. Sønju T, Rølla G (1973) Chemical analysis of the acquired pellicle formed in two hours on cleaned human teeth in vivo. Rate of formation and amino acid analysis. Caries Res 7:30–38

    PubMed  Google Scholar 

  138. Sønju T, Skjørland K (1976) Pellicle composition and initial bacterial colonization on composite and amalgam in vivo. In: Microbial aspects of dental caries. Information Retrieval, Washington, DC, pp 133–141

    Google Scholar 

  139. Steinberg D, Klinger A, Kohavi D, Sela MN (1995) Adsorption of human salivary proteins to titanium powder. I. Adsorption of human salivary albumin. Biomaterials 16:1339–1343

    Article  PubMed  Google Scholar 

  140. Steinberg D, Eyal S (2002) Early formation of Streptococcus sobrinus biofilm on various dental restorative materials. J Dent 30:47–51

    Article  PubMed  Google Scholar 

  141. Tanner J, Vallittu PK, Soderling E (2000) Adherence of Streptococcus mutans to an E-glass fiber-reinforced composite and conventional restorative materials used in prosthetic dentistry. J Biomed Mater Res 49:250–256

    Article  PubMed  Google Scholar 

  142. Tanner J, Carlen A, Soderling E, Vallittu PK (2003) Adsorption of parotid saliva proteins and adhesion of Streptococcus mutans ATCC 21752 to dental fiber-reinforced composites. J Biomed Mater Res B Appl Biomater 66:391–398

    Article  PubMed  Google Scholar 

  143. Teughels W, Van Assche N, Sliepen I, Quirynen M (2006) Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res 17(Suppl 2):68–81

    Article  PubMed  Google Scholar 

  144. Theilade E, Theilade J, Mikkelsen L (1982) Microbiological studies on early dento-gingival plaque on teeth and Mylar strips in humans. J Periodontal Res 17:12–25

    Article  PubMed  Google Scholar 

  145. Tsang CS, Ng H, McMillan AS (2007) Antifungal susceptibility of Candida albicans biofilms on titanium discs with different surface roughness. Clin Oral Investig 11:361–368

    Article  PubMed  Google Scholar 

  146. Uyen HM, Schakenraad JM, Sjollema J, Noordmans J, Jongebloed WL, Stokroos I, Busscher HJ (1990) Amount and surface structure of albumin adsorbed to solid substrata with different wettabilities in a parallel plate flow cell. J Biomed Mater Res 24:1599–1614

    Article  PubMed  Google Scholar 

  147. Vacca-Smith AM, Bowen WH (2000) In situ studies of pellicle formation on hydroxyapatite discs. Arch Oral Biol 45:277–291

    Article  PubMed  Google Scholar 

  148. Van Dijk L, Herkströter F, Busscher H, Weerkamp AH, Jansen HWB, Arends J (1987) Surface free energy and bacterial adhesion—an in vivo study with beagle dogs. J Clin Periodontol 14:300–304

    Article  PubMed  Google Scholar 

  149. Van Dijk L, Goldsweer R, Busscher HJ (1988) Interfacial free energy as a driving force for pellicle formation in the oral cavity: an in vivo study in beagle dogs. Biofouling 1:19–25

    Article  Google Scholar 

  150. van Dulm P, Norde W (1983) The adsorption of plasma albumin on solid surfaces with special attention to the kinetic aspects. J Colloid Interface Sci 91:248–255

    Article  Google Scholar 

  151. van Oss CJ, Good RJ, Chaudhury MK (1986) Nature of the antigen–antibody interaction. Primary and secondary bonds: optimal conditions for association and dissociation. J Chromatogr 376:111–119

    Article  PubMed  Google Scholar 

  152. van Oss CJ (2003) Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. J Mol Recognit 16:177–190

    Article  PubMed  Google Scholar 

  153. Vassilakos N, Arnebrandt T, Rundegren J, Glantz PO (1982) In vitro interactions of anionic and cationic surfactants with salivary fractions on well-defined solid surfaces. Acta Odontol Scand 50:179–188

    Article  Google Scholar 

  154. Vassilakos N, Arnebrant T, Glantz PO (1992) Adsorption of whole saliva onto hydrophilic and hydrophobic solid surfaces: influence of concentration, ionic strength and pH. Scand J Dent Res 100:346–353

    PubMed  Google Scholar 

  155. Vassilakos N, Rundegren J, Arnebrant T, Glantz PO (1992) Adsorption from salivary fractions at solid/liquid and air/liquid interfaces. Arch Oral Biol 37:549–557

    Article  PubMed  Google Scholar 

  156. Vassilakos N, Arnebrandt T, Glantz PO (1993) An in vitro study of salivary film formation at solid/liquid interfaces. Scand J Dent Res 101:133–137

    PubMed  Google Scholar 

  157. Vitkov L, Hannig M, Nekrashevych Y, Krautgartner WD (2004) Supramolecular pellicle precursors. Eur J Oral Sci 112:320–325

    Article  PubMed  Google Scholar 

  158. Vroman L (2008) Finding seconds count after contact with blood (and that is all I did). Colloids Surf B Biointerfaces 62:1–4

    Article  PubMed  Google Scholar 

  159. Walton AG, Soderquist ME (1980) Behaviour of proteins at interfaces. Croat Chem Acta 53:363–367

    Google Scholar 

  160. Weerkamp AH, Uyen HM, Busscher HJ (1988) Effect of zeta potential and surface energy on bacterial adhesion to uncoated and saliva-coated human enamel and dentin. J Dent Res 67:1483–1487

    PubMed  Google Scholar 

  161. Weerkamp AH, Quirynen M, Marechal M, van der Mei HC, van Steenberghe D, Busscher H (1989) The role of surface free energy in the early in vivo formation of dental plaque on human enamel and polymeric substrata. Microb Ecol 2:11–18

    Article  Google Scholar 

  162. Weitman RT, Eames WB (1975) Plaque accumulation on composite surfaces after various finishing procedures. Oral Health 65:29–33

    PubMed  Google Scholar 

  163. Wilkes PD, Leach SA (1980) The interactions of submandibular salivary proteins with solid surfaces. In: Leach SA (ed) Dental plaque and surface interactions in the oral cavity. IRL, London, pp 287–300

    Google Scholar 

  164. Wolinsky LE, de Camargo PM, Erard JC, Newman MG (1989) A study of in vitro attachment of Streptococcus sanguis and Actinomyces viscosus to saliva-treated titanium. Int J Oral Maxillofac Implants 4:27–31

    PubMed  Google Scholar 

  165. Yao Y, Lamkin MS, Oppenheim FG (1999) Pellicle precursor proteins: acidic proline-rich proteins, statherin, and histatins, and their crosslinking reaction by oral transglutaminase. J Dent Res 78:1696–1703

    Article  PubMed  Google Scholar 

  166. Yao Y, Lamkin MS, Oppenheim FG (2000) Pellicle precursor protein crosslinking characterization of an adduct between acidic proline-rich protein (PRP-1) and statherin generated by transglutaminase. J Dent Res 79:930–938

    Article  PubMed  Google Scholar 

  167. Yao Y, Grogan J, Zehnder M, Lendenmann U, Nam B, Wu Z, Costello CE, Oppenheim FG (2001) Compositional analysis of human acquired enamel pellicle by mass spectrometry. Arch Oral Biol 46:293–303

    Article  PubMed  Google Scholar 

  168. Yao Y, Berg EA, Costello CE, Troxler RF, Oppenheim FG (2003) Identification of protein components in human acquired enamel pellicle and whole saliva using novel proteomics approaches. J Biol Chem 278:5300–5308

    Article  PubMed  Google Scholar 

  169. Yoo JH, Kho HS, Kim YK, Lee SW, Chung SC (2003) Experimental salivary pellicles formed on the surface of self-curing resin. J Oral Rehabil 30:251–259

    Article  PubMed  Google Scholar 

  170. Young A, Rykke M, Rölla G (1999) Quantitative and qualitative analyses of human salivary micelle-like globules. Acta Odontol Scand 57:105–110

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The scientific projects on structure and biological activity of the pellicle layer linked with the present review were supported by the DFG (Deutsche Forschungsgemeinschaft, HA 2718/3-3/7-1 and 5192/1-2) Furthermore, the authors would like to thank Mrs Wiebke Hoth-Hannig for the excellent support with the TEM and Dr. G. Turzeltam for the scientific dialogue.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hannig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hannig, C., Hannig, M. The oral cavity—a key system to understand substratum-dependent bioadhesion on solid surfaces in man. Clin Oral Invest 13, 123–139 (2009). https://doi.org/10.1007/s00784-008-0243-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-008-0243-3

Keywords

Navigation