Skip to main content

SAnDReS: A Computational Tool for Docking

  • Protocol
  • First Online:
Docking Screens for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2053))

Abstract

Since the early 1980s, we have witnessed considerable progress in the development and application of docking programs to assess protein–ligand interactions. Most of these applications had as a goal the identification of potential new binders to protein targets. Another remarkable progress is taking place in the determination of the structures of protein–ligand complexes, mostly using X-ray diffraction crystallography. Considering these developments, we have a favorable scenario for the creation of a computational tool that integrates into one workflow all steps involved in molecular docking simulations. We had these goals in mind when we developed the program SAnDReS. This program allows the integration of all computational features related to modern docking studies into one workflow. SAnDReS not only carries out docking simulations but also evaluates several docking protocols allowing the selection of the best approach for a given protein system. SAnDReS is a free and open-source (GNU General Public License) computational environment for running docking simulations. Here, we describe the combination of SAnDReS and AutoDock4 for protein–ligand docking simulations. AutoDock4 is a free program that has been applied to over a thousand receptor–ligand docking simulations. The dataset described in this chapter is available for downloading at https://github.com/azevedolab/sandres

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roberts NA, Martin JA, Kinchington D, Broadhurst AV, Craig JC, Duncan IB et al (1990) Rational design of peptide-based HIV proteinase inhibitors. Science 248:358–361

    Article  CAS  PubMed  Google Scholar 

  2. Erickson J, Neidhart DJ, VanDrie J, Kempf DJ, Wang XC, Norbeck DW et al (1990) Design, activity, and 2.8 a crystal structure of a C2 symmetric inhibitor complexed to HIV-1 protease. Science 249:527–533

    Article  CAS  PubMed  Google Scholar 

  3. Dorsey BD, Levin RB, McDaniel SL, Vacca JP, Guare JP, Darke PL et al (1994) L-735,524: the design of a potent and orally bioavailable HIV protease inhibitor. J Med Chem 37:3443–3451

    Article  CAS  PubMed  Google Scholar 

  4. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161:269–288

    Article  CAS  PubMed  Google Scholar 

  5. DesJarlais RL, Dixon JS (1994) A shape- and chemistry-based docking method and its use in the design of HIV-1 protease inhibitors. J Comput Aided Mol Des 8:231–242

    Article  CAS  PubMed  Google Scholar 

  6. Lunney EA, Hagen SE, Domagala JM, Humblet C, Kosinski J, Tait BD et al (1994) A novel nonpeptide HIV-1 protease inhibitor: elucidation of the binding mode and its application in the design of related analogs. J Med Chem 37:2664–2677

    Article  CAS  PubMed  Google Scholar 

  7. Vaillancourt M, Cohen E, Sauvé G (1995) Characterization of dynamic state inhibitors of HIV-1 protease. J Enzym Inhib 9:217–233

    Article  CAS  PubMed  Google Scholar 

  8. Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DB, Fogel LJ et al (1995) Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. Chem Biol 2:317–324

    Article  CAS  PubMed  Google Scholar 

  9. King BL, Vajda S, DeLisi C (1996) Empirical free energy as a target function in docking and design: application to HIV-1 protease inhibitors. FEBS Lett 384:87–91

    Article  CAS  PubMed  Google Scholar 

  10. Wang S, Milne GW, Yan X, Posey IJ, Nicklaus MC, Graham L et al (1996) Discovery of novel, non-peptide HIV-1 protease inhibitors by pharmacophore searching. J Med Chem 39:2047–2054

    Article  CAS  PubMed  Google Scholar 

  11. Muegge I, Bergner A, Kriegl JM (2017) Computer-aided drug design at Boehringer ingelheim. J Comput Aided Mol Des 31:275–285

    Article  CAS  PubMed  Google Scholar 

  12. Hillisch A, Heinrich N, Wild H (2015) Computational chemistry in the pharmaceutical industry: from childhood to adolescence. Chem Med Chem 10:1958–1962

    Article  CAS  PubMed  Google Scholar 

  13. Kuntz ID (1992) Structure-based strategies for drug design and discovery. Science 257:1078–1082

    Article  CAS  PubMed  Google Scholar 

  14. Shoichet BK, Stroud RM, Santi DV, Kuntz ID, Perry KM (1993) Structure-based discovery of inhibitors of thymidylate synthase. Science 259:1445–1450

    Article  CAS  PubMed  Google Scholar 

  15. Rutenber E, Fauman EB, Keenan RJ, Fong S, Furth PS, Ortiz de Montellano PR et al (1993) Structure of a non-peptide inhibitor complexed with HIV-1 protease. Developing a cycle of structure-based drug design. J Biol Chem 268:15343–15346

    CAS  PubMed  Google Scholar 

  16. Zheng Q, Kyle DJ (1996) Computational screening of combinatorial libraries. Bioorg Med Chem 4:631–638

    Article  CAS  PubMed  Google Scholar 

  17. Gschwend DA, Good AC, Kuntz ID (1996) Molecular docking towards drug discovery. J Mol Recognit 9:175–186

    Article  CAS  PubMed  Google Scholar 

  18. Finn PW (1996) Computer-based screening of compound databases for the identification of novel leads. Drug Discov Today 1:363–370

    Article  CAS  Google Scholar 

  19. Horvath D (1997) A virtual screening approach applied to the search for trypanothione reductase inhibitors. J Med Chem 40:2412–2423

    Article  CAS  PubMed  Google Scholar 

  20. Toyoda T, Brobey RKB, Sano G, Horii T, Tomioka N, Itai A (1997) Lead discovery of inhibitors of the dihydrofolate reductase domain of Plasmodium Falciparum dihydrofolate reductase-thymidylate synthase. Biochem Biophys Res Commun 235:515–519

    Article  CAS  PubMed  Google Scholar 

  21. Olson AJ, Goodsell DS (1998) Automated docking and the search for HIV protease inhibitors. SAR QSAR Environ Res 8:273–285

    Article  CAS  PubMed  Google Scholar 

  22. Walters WP, Stahl MT, Murcko MA (1998) Virtual screening—an overview. Drug Discov Today 3:160–178

    Article  CAS  Google Scholar 

  23. Toney JH, Fitzgerald PMD, Groversharma N, Olson SH, May WJ, Sundelof JG et al (1998) Antibiotic sensitization using biphenyl Tetrazoles as potent inhibitors of Bacteroides fragilis Metallo-BetaLactamase. Chem Biol 5:185–196

    Article  CAS  PubMed  Google Scholar 

  24. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K et al (2002) The protein data bank. Acta Crystallogr D Biol Crystallogr 58:899–907

    Article  PubMed  CAS  Google Scholar 

  26. Westbrook J, Feng Z, Chen L, Yang H, Berman HM (2003) The protein data Bank and structural genomics. Nucleic Acids Res 31:489–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu L, Benson ML, Smith RD, Lerner MG, Carlson HA (2005) Binding MOAD (mother of all databases). Proteins 60:333–340

    Article  CAS  PubMed  Google Scholar 

  28. Liu T, Lin Y, Wen X, Jorrisen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35:198–201

    Article  Google Scholar 

  29. Wang R, Fang X, Lu Y, Wang S (2004) The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J Med Chem 47:2977–2980

    Article  CAS  PubMed  Google Scholar 

  30. Xavier MM, Heck GS, de Avila MB, Levin NM, Pintro VO, Carvalho NL et al (2016) SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions. Comb Chem High Throughput Screen 19:801–812

    Article  CAS  PubMed  Google Scholar 

  31. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  32. Goodsell DS, Olson AJ (1990) Automated docking of substrates to proteins by simulated annealing. Proteins 8:195–202

    Article  CAS  PubMed  Google Scholar 

  33. Goodsell DS, Morris GM, Olson AJ (1996) Docking of flexible ligands: applications of AutoDock. J Mol Recognit 9:1–5

    Article  CAS  PubMed  Google Scholar 

  34. Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10:293–304

    Article  CAS  PubMed  Google Scholar 

  35. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK et al (1998) Automated docking using a Lamarckian genetic algorithm and and empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  36. de Ávila MB, Xavier MM, Pintro VO, de Azevedo WF (2017) Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2. Biochem Biophys Res Commun 494:305–310

    Article  CAS  PubMed  Google Scholar 

  37. Levin NMB, Pintro VO, Bitencourt-Ferreira G, Mattos BB, Silvério AC, de Azevedo Jr WF (2018) Development of CDK-targeted scoring functions for prediction of binding affinity. Biophys Chem 235:1–8

    Article  CAS  PubMed  Google Scholar 

  38. Pintro VO, Azevedo WF (2017) Optimized virtual screening workflow. Towards target-based polynomial scoring functions for HIV-1 protease. Comb Chem High Throughput Screen 20:820–827

    Article  CAS  PubMed  Google Scholar 

  39. Amaral MEA, Nery LR, Leite CE, de Azevedo Junior WF, Campos MM (2018) Pre-clinical effects of metformin and aspirin on the cell lines of different breast cancer subtypes. Investig New Drugs 36:782–796

    Article  CAS  Google Scholar 

  40. Russo S, de Azevedo WF (2018) Advances in the understanding of the cannabinoid receptor 1—focusing on the inverse agonists interactions. Curr Med Chem. https://doi.org/10.2174/0929867325666180417165247

    Article  PubMed  Google Scholar 

  41. de Ávila MB, de Azevedo WF Jr (2018) Development of machine learning models to predict inhibition of 3-dehydroquinate dehydratase. Chem Biol Drug Des 92:1468–1474

    Article  PubMed  CAS  Google Scholar 

  42. Bitencourt-Ferreira G, de Azevedo Jr WF (2018) Development of a machine-learning model to predict Gibbs free energy of binding for protein-ligand complexes. Biophys Chem 240:63–69

    Article  CAS  PubMed  Google Scholar 

  43. Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134

    Article  CAS  PubMed  Google Scholar 

  44. Murray AW (1994) Cyclin-dependent kinases: regulators of the cell cycle and more. Chem Biol 1:191–195

    Article  CAS  PubMed  Google Scholar 

  45. de Azevedo WF Jr (2016) Opinion paper: targeting multiple cyclin-dependent kinases (CDKs): a new strategy for molecular docking studies. Curr Drug Targets 17:2

    Article  PubMed  CAS  Google Scholar 

  46. Levin NM, Pintro VO, de Ávila MB, de Mattos BB, De Azevedo WF Jr (2017) Understanding the structural basis for inhibition of cyclin-dependent kinases. New pieces in the molecular puzzle. Curr Drug Targets 18:1104–1111

    Article  CAS  PubMed  Google Scholar 

  47. Jaghoori MM, Bleijlevens B, Olabarriaga SD (2016) 1001 ways to run AutoDock Vina for virtual screening. J Comput Aided Mol Des 30:237–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Heck GS, Pintro VO, Pereira RR, de Ávila MB, Levin NMB, de Azevedo WF (2017) Supervised machine learning methods applied to predict ligand-binding affinity. Curr Med Chem 24:2459–2470

    Article  CAS  PubMed  Google Scholar 

  49. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Morris GM, Huey R, Olson AJ (2008) Using AutoDock for ligand-receptor docking. Curr Protoc bioinformatics. Chapter 8:unit 8.14

    Google Scholar 

  51. El-Hachem N, Haibe-Kains B, Khalil A, Kobeissy FH, Nemer G (2017) AutoDock and AutoDockTools for protein-ligand docking: Beta-site amyloid precursor protein cleaving enzyme 1(BACE1) as a case study. Methods Mol Biol 1598:391–403

    Article  CAS  PubMed  Google Scholar 

  52. Kim SH, Schulze-Gahmen U, Brandsen J, de Azevedo Júnior WF (1996) Structural basis for chemical inhibition of CDK2. Prog Cell Cycle Res 2:137–145

    Article  CAS  PubMed  Google Scholar 

  53. de Azevedo WF Jr, Mueller-Dieckmann HJ, Schulze-Gahmen U, Worland PJ, Sausville E, Kim SH (1996) Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc Natl Acad Sci U S A 93:2735–2740

    Article  PubMed  PubMed Central  Google Scholar 

  54. de Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim SH (1997) Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human CDK2 complexed with roscovitine. Eur J Biochem 243:518–526

    Article  PubMed  Google Scholar 

  55. de Azevedo WF Jr, Canduri F, da Silveira NJ (2002) Structural basis for inhibition of cyclin-dependent kinase 9 by flavopiridol. Biochem Biophys Res Commun 293:566–571

    Article  PubMed  Google Scholar 

  56. Filgueira de Azevedo W Jr, Gaspar RT, Canduri F, Camera JC Jr, Freitas da Silveira NJ (2002) Molecular model of cyclin-dependent kinase 5 complexed with roscovitine. Biochem Biophys Res Commun 297:1154–1158

    Article  CAS  PubMed  Google Scholar 

  57. Canduri F, Uchoa HB, de Azevedo WF Jr (2004) Molecular models of cyclin-dependent kinase 1 complexed with inhibitors. Biochem Biophys Res Commun 324:661–666

    Article  CAS  PubMed  Google Scholar 

  58. Canduri F, de Azevedo WF Jr (2005) Structural basis for interaction of inhibitors with Cyclin-dependent kinase 2. Curr Comput Aided Drug Des 1:53–64

    Article  CAS  Google Scholar 

  59. Krystof V, Cankar P, Frysová I, Slouka J, Kontopidis G, Dzubák P et al (2006) 4-arylazo-3,5-diamino-1H-pyrazole CDK inhibitors: SAR study, crystal structure in complex with CDK2, selectivity, and cellular effects. J Med Chem 49:6500–6509

    Article  CAS  PubMed  Google Scholar 

  60. Vieth M, Hirst JD, Kolinski A, Brooks CL III (1998) Assessing energy functions for flexible docking. J Comput Chem 19:1612–1622

    Article  CAS  Google Scholar 

  61. Ballante F, Marshall GR (2016) An automated strategy for binding-pose selection and docking assessment in structure-based drug design. J Chem Inf Model 56:54–72

    Article  CAS  PubMed  Google Scholar 

  62. Azevedo LS, Moraes FP, Xavier MM, Pantoja EO, Villavicencio B, Finck JA et al (2012) Recent Progress of molecular docking simulations applied to development of drugs. Curr Bioinf 7:352–365

    Article  CAS  Google Scholar 

  63. Heberlé G, de Azevedo WF Jr (2011) Bio-inspired algorithms applied to molecular docking simulations. Curr Med Chem 18:1339–1352

    Article  PubMed  Google Scholar 

  64. Vianna CP, de Azevedo WF Jr (2012) Identification of new potential Mycobacterium tuberculosis shikimate kinase inhibitors through molecular docking simulations. J Mol Model 18:755–764

    Article  CAS  PubMed  Google Scholar 

  65. Moraes FP, de Azevedo WF Jr (2012) Targeting imidazoline site on monoamine oxidase B through molecular docking simulations. J Mol Model 18:3877–3886

    Article  CAS  PubMed  Google Scholar 

  66. Coracini JD, de Azevedo WF Jr (2014) Shikimate kinase, a protein target for drug design. Curr Med Chem 21:592–604

    Article  CAS  PubMed  Google Scholar 

  67. Teles CB, Moreira-Dill LS, Silva Ade A, Facundo VA, de Azevedo WF Jr, da Silva LH et al (2015) A Lupane-triterpene isolated from Combretum leprosum Mart. fruit extracts that interferes with the intracellular development of Leishmania (L.) amazonensis in vitro. BMC Complement Altern Med 15:165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Freitas PG, Elias TC, Pinto IA, Costa LT, de Carvalho PVSD, Omote DQ et al (2018) Computational approach to the discovery of phytochemical molecules with therapeutic potential targets to the PKCZ protein. Lett Drug Des Discovery 15:488–499

    Article  CAS  Google Scholar 

  69. de Azevedo WF Jr (2010) Structure-based virtual screening. Curr Drug Targets 11:261–263

    Article  PubMed  Google Scholar 

  70. de Azevedo WF Jr (2010) MolDock applied to structure-based virtual screening. Curr Drug Targets 11:327–334

    Article  PubMed  Google Scholar 

  71. Dias R, de Azevedo WF Jr (2008) Molecular docking algorithms. Curr Drug Targets 9:1040–1047

    Article  CAS  PubMed  Google Scholar 

  72. de Azevedo WF Jr, Dias R (2008) Computational methods for calculation of ligand-binding affinity. Curr Drug Targets 9:1031–1039

    Article  PubMed  Google Scholar 

  73. de Ávila MB, Bitencourt-Ferreira G, de Azevedo WF Jr (2018) Structural basis for inhibition of Enoyl-[acyl carrier protein] Reductase (InhA) from Mycobacterium tuberculosis. Curr Med Chem. https://doi.org/10.2174/0929867326666181203125229

  74. Volkart PA, Bitencourt-Ferreira G, Souto AA, de Azevedo WF (2019) Cyclin-dependent kinase 2 in cellular senescence and cancer. A structural and functional review. Curr Drug Targets 20(7):716–726. https://doi.org/10.2174/1389450120666181204165344

    Article  CAS  PubMed  Google Scholar 

  75. Canduri F, Fadel V, Basso LA, Palma MS, Santos DS, de Azevedo WF Jr (2005) New catalytic mechanism for human purine nucleoside phosphorylase. Biochem Biophys Res Commun 327:646–649

    Article  CAS  PubMed  Google Scholar 

  76. Filgueira de Azevedo W Jr, Canduri F, Simões de Oliveira J, Basso LA, Palma MS, Pereira JH et al (2002) Molecular model of shikimate kinase from Mycobacterium tuberculosis. Biochem Biophys Res Commun 295:142–148

    Article  CAS  PubMed  Google Scholar 

  77. Canduri F, Teodoro LG, Fadel V, Lorenzi CC, Hial V, Gomes RA et al (2001) Structure of human uropepsin at 2.45 a resolution. Acta Crystallogr D Biol Crystallogr 57:1560–1570

    Article  CAS  PubMed  Google Scholar 

  78. Pereira JH, Canduri F, de Oliveira JS, da Silveira NJ, Basso LA, Palma MS et al (2003) Structural bioinformatics study of EPSP synthase from Mycobacterium tuberculosis. Biochem Biophys Res Commun 312:608–614

    Article  CAS  PubMed  Google Scholar 

  79. de Azevedo WF Jr, Dias R (2008) Experimental approaches to evaluate the thermodynamics of protein-drug interactions. Curr Drug Targets 9:1071–1076

    Article  PubMed  Google Scholar 

  80. Delatorre P, Rocha BA, Souza EP, Oliveira TM, Bezerra GA, Moreno FB et al (2007) Structure of a lectin from Canavalia gladiata seeds: new structural insights for old molecules. BMC Struct Biol 7:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. de Azevedo WF Jr, Canduri F, dos Santos DM, Pereira JH, Bertacine Dias MV, Silva RG et al (2003) Crystal structure of human PNP complexed with guanine. Biochem Biophys Res Commun 312:767–772

    Article  PubMed  CAS  Google Scholar 

  82. Canduri F, de Azevedo WF (2008) Protein crystallography in drug discovery. Curr Drug Targets 9:1048–1053

    Article  CAS  PubMed  Google Scholar 

  83. Marques MR, Pereira JH, Oliveira JS, Basso LA, de Azevedo WF Jr, Santos DS et al (2007) The inhibition of 5-enolpyruvylshikimate-3-phosphate synthase as a model for development of novel antimicrobials. Curr Drug Targets 8:445–457

    Article  CAS  PubMed  Google Scholar 

  84. Filgueira de Azevedo W Jr, dos Santos GC, dos Santos DM, Olivieri JR, Canduri F, Silva RG et al (2003) Docking and small angle X-ray scattering studies of purine nucleoside phosphorylase. Biochem Biophys Res Commun 309:923–928

    Article  CAS  PubMed  Google Scholar 

  85. Canduri F, Perez PC, Caceres RA, de Azevedo WF Jr (2007) Protein kinases as targets for antiparasitic chemotherapy drugs. Curr Drug Targets 8:389–398

    Article  CAS  PubMed  Google Scholar 

  86. Dias MV, Borges JC, Ely F, Pereira JH, Canduri F, Ramos CH et al (2006) Structure of chorismate synthase from Mycobacterium tuberculosis. J Struct Biol 154:130–143

    Article  CAS  PubMed  Google Scholar 

  87. Dias MV, Ely F, Palma MS, de Azevedo WF Jr, Basso LA, Santos DS (2007) Chorismate synthase: an attractive target for drug development against orphan diseases. Curr Drug Targets 8:437–444

    Article  CAS  PubMed  Google Scholar 

  88. Silva RG, Pereira JH, Canduri F, de Azevedo WF Jr, Basso LA, Santos DS (2005) Kinetics and crystal structure of human purine nucleoside phosphorylase in complex with 7-methyl-6-thio-guanosine. Arch Biochem Biophys 442:49–58

    Article  CAS  PubMed  Google Scholar 

  89. Timmers LF, Caceres RA, Vivan AL, Gava LM, Dias R, Ducati RG et al (2008) Structural studies of human purine nucleoside phosphorylase: towards a new specific empirical scoring function. Arch Biochem Biophys 479:28–38

    Article  CAS  PubMed  Google Scholar 

  90. de Azevedo WF Jr (2011) Molecular dynamics simulations of protein targets identified in Mycobacterium tuberculosis. Curr Med Chem 18:1353–1366

    Article  PubMed  Google Scholar 

  91. de Azevedo WF Jr (2011) Protein targets for development of drugs against Mycobacterium tuberculosis. Curr Med Chem 18:1255–1257

    Article  PubMed  Google Scholar 

  92. Caceres RA, Saraiva Timmers LF, Dias R, Basso LA, Santos DS, de Azevedo WF Jr (2008) Molecular modeling and dynamics simulations of PNP from Streptococcus agalactiae. Bioorg Med Chem 16:4984–4993

    Article  CAS  PubMed  Google Scholar 

  93. Dias MV, Faím LM, Vasconcelos IB, de Oliveira JS, Basso LA, Santos DS et al (2007) Effects of the magnesium and chloride ions and shikimate on the structure of shikimate kinase from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 63:1–6

    Article  CAS  PubMed  Google Scholar 

  94. de Azevedo WF Jr, Ward RJ, Canduri F, Soares A, Giglio JR, Arni RK (1998) Crystal structure of piratoxin-I: a calcium-independent, myotoxic phospholipase A2-homologue from Bothrops pirajai venom. Toxicon 36:1395–1406

    Article  PubMed  Google Scholar 

  95. Dias R, Timmers LF, Caceres RA, de Azevedo WF Jr (2008) Evaluation of molecular docking using polynomial empirical scoring functions. Curr Drug Targets 9:1062–1070

    Article  CAS  PubMed  Google Scholar 

  96. da Silveira NJ, Uchôa HB, Canduri F, Pereira JH, Camera JC Jr, Basso LA et al (2004) Structural bioinformatics study of PNP from Schistosoma mansoni. Biochem Biophys Res Commun 322:100–104

    Article  PubMed  CAS  Google Scholar 

  97. de Azevedo WF Jr, Dias R (2008) Evaluation of ligand-binding affinity using polynomial empirical scoring functions. Bioorg Med Chem 16:9378–9382

    Article  PubMed  CAS  Google Scholar 

  98. Bezerra GA, Oliveira TM, Moreno FB, de Souza EP, da Rocha BA, Benevides RG et al (2007) Structural analysis of Canavalia maritima and Canavalia gladiata lectins complexed with different dimannosides: new insights into the understanding of the structure-biological activity relationship in legume lectins. J Struct Biol 160:168–176

    Article  CAS  PubMed  Google Scholar 

  99. Canduri F, Fadel V, Dias MV, Basso LA, Palma MS, Santos DS et al (2005) Crystal structure of human PNP complexed with hypoxanthine and sulfate ion. Biochem Biophys Res Commun 326:335–338

    Article  CAS  PubMed  Google Scholar 

  100. Timmers LF, Pauli I, Caceres RA, de Azevedo WF Jr (2008) Drug-binding databases. Curr Drug Targets 9:1092–1099

    Article  CAS  PubMed  Google Scholar 

  101. Delatorre P, Rocha BA, Gadelha CA, Santi-Gadelha T, Cajazeiras JB, Souza EP et al (2006) Crystal structure of a lectin from Canavalia maritima (ConM) in complex with trehalose and maltose reveals relevant mutation in ConA-like lectins. J Struct Biol 154:280–286

    Article  CAS  PubMed  Google Scholar 

  102. Rádis-Baptista G, Moreno FB, de Lima NL, Martins AM, de Oliveira TD, Toyama MH et al (2006) Crotacetin, a novel snake venom C-type lectin homolog of convulxin, exhibits an unpredictable antimicrobial activity. Cell Biochem Biophys 44:412–423

    Article  PubMed  Google Scholar 

  103. Breda A, Basso LA, Santos DS, de Azevedo Jr WF (2008) Virtual screening of drugs: score functions, docking, and drug design. Curr Comput Aided Drug Des 4:265–272

    Article  CAS  Google Scholar 

  104. Nolasco DO, Canduri F, Pereira JH, Cortinóz JR, Palma MS, Oliveira JS et al (2004) Crystallographic structure of PNP from Mycobacterium tuberculosis at 1.9A resolution. Biochem Biophys Res Commun 324:789–794

    Article  CAS  PubMed  Google Scholar 

  105. Arcuri HA, Canduri F, Pereira JH, da Silveira NJ, Camera Júnior JC, de Oliveira JS et al (2004) Molecular models for shikimate pathway enzymes of Xylella fastidiosa. Biochem Biophys Res Commun 320:979–991

    Article  CAS  PubMed  Google Scholar 

  106. Soares MB, Silva CV, Bastos TM, Guimarães ET, Figueira CP, Smirlis D et al (2012) Anti-Trypanosoma cruzi activity of nicotinamide. Acta Trop 12:224–229

    Article  CAS  Google Scholar 

  107. Rocha BA, Delatorre P, Oliveira TM, Benevides RG, Pires AF, Sousa AA et al (2011) Structural basis for both pro- and anti-inflammatory response induced by mannose-specific legume lectin from Cymbosema roseum. Biochimie 93:806–816

    Article  CAS  PubMed  Google Scholar 

  108. Ducati RG, Basso LA, Santos DS, de Azevedo WF Jr (2010) Crystallographic and docking studies of purine nucleoside phosphorylase from Mycobacterium tuberculosis. Bioorg Med Chem 18:4769–4774

    Article  CAS  PubMed  Google Scholar 

  109. Manhani KK, Arcuri HA, da Silveira NJ, Uchôa HB, de Azevedo WF Jr, Canduri F (2005) Molecular models of protein kinase 6 from Plasmodium falciparum. J Mol Model 12:42–48

    Article  CAS  PubMed  Google Scholar 

  110. Arcuri HA, Borges JC, Fonseca IO, Pereira JH, Neto JR, Basso LA et al (2008) Structural studies of shikimate 5-dehydrogenase from Mycobacterium tuberculosis. Proteins 72:720–730

    Article  CAS  PubMed  Google Scholar 

  111. Marques MR, Vaso A, Neto JR, Fossey MA, Oliveira JS, Basso LA et al (2008) Dynamics of glyphosate-induced conformational changes of Mycobacterium tuberculosis 5-enolpyruvylshikimate-3-phosphate synthase (EC 2.5.1.19) determined by hydrogen-deuterium exchange and electrospray mass spectrometry. Biochemistry 47:7509–7522

    Article  CAS  PubMed  Google Scholar 

  112. Cavada BS, Moreno FB, da Rocha BA, de Azevedo WF Jr, Castellón RE, Goersch GV et al (2006) cDNA cloning and 1.75 a crystal structure determination of PPL2, an endochitinase and N-acetylglucosamine-binding hemagglutinin from Parkia platycephala seeds. FEBS J 273:3962–3974

    Article  CAS  PubMed  Google Scholar 

  113. Arcuri HA, Zafalon GF, Marucci EA, Bonalumi CE, da Silveira NJ, Machado JM (2010) SKPDB: a structural database of shikimate pathway enzymes. BMC Bioinformatics 11:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Moreno FB, de Oliveira TM, Martil DE, Viçoti MM, Bezerra GA, Abrego JR et al (2008) Identification of a new quaternary association for legume lectins. J Struct Biol 161:133–143

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from CNPq (Brazil) (308883/2014-4). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior—Brasil (CAPES)—Finance Code 001. GB-F acknowledges support from PUCRS/BPA fellowship. WFA is a senior researcher for CNPq (Brazil) (Process Numbers: 308883/2014-4 and 309029/2018-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Filgueira de Azevedo Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bitencourt-Ferreira, G., de Azevedo, W.F. (2019). SAnDReS: A Computational Tool for Docking. In: de Azevedo Jr., W. (eds) Docking Screens for Drug Discovery. Methods in Molecular Biology, vol 2053. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9752-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9752-7_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9751-0

  • Online ISBN: 978-1-4939-9752-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics