Skip to main content

Advertisement

Log in

Targeting imidazoline site on monoamine oxidase B through molecular docking simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Monoamine oxidase (MAO) is an enzyme of major importance in neurochemistry, because it catalyzes the inactivation pathway for the catecholamine neurotransmitters, noradrenaline, adrenaline and dopamine. In the last decade it was demonstrated that imidazoline derivatives were able to inhibit MAO activity. Furthermore, crystallographic studies identified the imidazoline-binding domain on monoamine oxidase B (MAO-B), which opens the possibility of molecular docking studies focused on this binding site. The goal of the present study is to identify new potential inhibitors for MAO-B. In addition, we are also interested in establishing a fast and reliable computation methodology to pave the way for future molecular docking simulations focused on the imidazoline-binding site of this enzyme. We used the program ‘molegro virtual docker’ (MVD) in all simulations described here. All results indicate that simplex evolution algorithm is able to succesfully simulate the protein-ligand interactions for MAO-B. In addition, a scoring function implemented in the program MVD presents high correlation coefficient with experimental activity of MAO-B inhibitors. Taken together, our results identified a new family of potential MAO-B inhibitors and mapped important residues for intermolecular interactions between this enzyme and ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PD:

Parkinson's disease

IMAO:

Inhibitor of monoamine oxidase

MAO:

Monoamine oxidase

MAO-A:

Monoamine oxidase A

MAO-B:

Monoamine Oxidase B

FAD:

Flavin –adenine - dinucleotide

VS:

Virtual screening

2-BFI:

2-(2-benzofuranyl)-2-imidazoline

RMSD:

Root mean square deviation

PDB:

Protein data bank

EA:

Evolutionary algorithm

PLP:

Piecewise linear potencial

E intermol:

Energia intermolecular

E intramol:

energia intramolecular

RO5:

Lipinski’s rule of five

ρ:

Coeficiente de Spearman

IUPAC:

International Union of Pure and Applied Chemistry

IC50 :

Half maximal inhibitory concentration

References

  1. Naoi M, Maruyama W (2010) Monoamine oxidase inhibitors as neuroprotective agents in age-dependent neurodegenerative disorders. Curr Pharm Des 16(25):2799–817

    CAS  Google Scholar 

  2. Naoi M, Maruyama W, Akao Y, Yi H, Yamaoka Y (2006) Involvement of type A monoamine oxidase in neurodegeneration: regulation of mitochondrial signaling leading to cell death or neuroprotection. J Neural Transm Suppl 71:67–77

    Article  CAS  Google Scholar 

  3. Edmondson DE, Binda C, Mattevi A (2007) Structural insights into the mechanism of amine oxidation by monoamine oxidases A and B. Arch Biochem Biophys 464(2):269–276

    Article  CAS  Google Scholar 

  4. Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from genes to behavior. Annu Rev Neurosci 22:197–217

    Article  CAS  Google Scholar 

  5. Birkmayer W, Knoll J, Riederer P, Youdim MB, Hars V, Marton J (1985) Increased life expectancy resulting from addition of L-deprenyl to Madopar treatment in Parkinson’s disease; a long-term study. J Neural Transm 64(2):113–127

    Article  CAS  Google Scholar 

  6. Edmondson DE, Mattevi A, Binda C, Li M, Hubálek F (2004) Structure and mechanism of monoamine oxidase. Curr Med Chem 11(15):1983–1993

    CAS  Google Scholar 

  7. Riederer P, Konradi C, Schay V, Kienzl E, Birkmayer G, Danielczyk W, Sofic E, Youdim MB (1987) Localization of MAO-A and MAO-B in human brain: a step in understanding the therapeutic action of L-deprenyl. Adv Neurol 45:111–118

    CAS  Google Scholar 

  8. Youdim MBH, Bakhle YS (2006) Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol 147(Suppl 1):S287–296

    CAS  Google Scholar 

  9. Youdim MB, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7(4):295–309

    Article  CAS  Google Scholar 

  10. Riederer P, Lachenmayer L, Laux G (2004) Clinical applications of MAO-inhibitors. Curr Med Chem 11(15):2033–2043

    CAS  Google Scholar 

  11. Manley-King CI, Bergh JJ, Petzer JP (2011) Inhibition of monoamine oxidase by C5-substituted phthalimide analogues. Bioorg Med Chem 19(16):4829–4840

    Article  CAS  Google Scholar 

  12. Maccioni E, Alcaro S, Cirilli R, Vigo S, Cardia MC, Sanna ML, Meleddu R, Yanez M, Costa G, Casu L, Matyus P, Distinto S (2011) 3-Acetyl-2,5-diaryl-2,3-dihydro-1,3,4-oxadiazoles: a new scaffold for the selective inhibition of monoamine oxidase B. J Med Chem 54(18):6394–6398

    CAS  Google Scholar 

  13. Gaspar A, Silva T, Yáñez M, Vina D, Orallo F, Ortuso F, Uriarte E, Alcaro S, Borges F (2011) Chromone, a privileged scaffold for the development of monoamine oxidase inhibitors. J Med Chem 54(14):5165–5173

    Article  CAS  Google Scholar 

  14. Gaspar A, Teixeira F, Uriarte E, Milhazes N, Melo A, Cordeiro MN, Ortuso F, Alcaro S, Borges F (2011) Towards the discovery of a novel class of monoamine oxidase inhibitors: structure-property-activity and docking studies on chromone amides. Chem Med Chem 6(4):628–632

    CAS  Google Scholar 

  15. Shelke SM, Bhosale SH, Dash RC, Suryawanshi MR, Mahadik KR (2011) Exploration of new scaffolds as potential MAO-A inhibitors using pharmacophore and 3D-QSAR based in silico screening. Bioorg Med Chem Lett 21(8):2419–2424

    Article  CAS  Google Scholar 

  16. Delogu G, Picciau C, Ferino G, Quezada E, Podda G, Uriarte E, Viña D (2011) Synthesis, human monoamine oxidase inhibitory activity and molecular docking studies of 3-heteroarylcoumarin derivatives. Eur J Med Chem 46(4):1147–1152

    Article  CAS  Google Scholar 

  17. Reniers J, Robert S, Frederick R, Masereel B, Vincent S, Wouters J (2011) Synthesis and evaluation of ß-carboline derivatives as potential monoamine oxidase inhibitors. Bioorg Med Chem 19(1):134–144

    Article  CAS  Google Scholar 

  18. Jia Z, Zhu Q (2010) 'Click' assembly of selective inhibitors for MAO-A. Bioorg Med Chem Lett 20(21):6222–6225

    Article  CAS  Google Scholar 

  19. Khattab SN, Hassan SY, Bekhit AA, El Massry AM, Langer V, Amer A (2010) Synthesis of new series of quinoxaline based MAO-inhibitors and docking studies. Eur J Med Chem 45(10):4479–4489

    Article  CAS  Google Scholar 

  20. Maccioni E, Alcaro S, Orallo F, Cardia MC, Distinto S, Costa G, Yanez M, Sanna ML, Vigo S, Meleddu R, Secci D (2010) Synthesis of new 3-aryl-4,5-dihydropyrazole-1-carbothioamide derivatives. An investigation on their ability to inhibit monoamine oxidase. Eur J Med Chem 45(10):4490–4498

    Article  CAS  Google Scholar 

  21. Geldenhuys WJ, Darvesh AS, Funk MO, Van der Schyf CJ, Carroll RT (2010) Identification of novel monoamine oxidase B inhibitors by structure-based virtual screening. Bioorg Med Chem Lett 20(17):5295–5298

    Article  CAS  Google Scholar 

  22. Parini A, Moudanos CG, Pizzinat N, Lanier SM (1996) The elusive family of imidazoline binding sites. Trends Pharmacol Sci 17(1):13–16

    Article  CAS  Google Scholar 

  23. Raddatz R, Parini A, Lanier SM (1997) Localization of the imidazoline binding domain on monoamine oxidase B. Mol Pharmacol 52(4):549–553

    CAS  Google Scholar 

  24. Lanier SM, Lanier B, Bakthavachalam V, McGrath CR, Neumeyer JL (1995) Use of high affinity, radioiodinated probes for identification of imidazoline/guanidinium receptive sites. Ann NY Acad Sci 763:106–111

    Article  CAS  Google Scholar 

  25. Remaury A, Raddatz R, Ordener C, Savic S, Shih JC, Chen K, Seif I, De Maeyer E, Lanier SM, Parini A (2000) Analysis of the pharmacological and molecular heterogeneity of I(2)-imidazoline-binding proteins using monoamine oxidase-deficient mouse models. Mol Pharmacol 58(5):1085–1090

    CAS  Google Scholar 

  26. Anderson NJ, Seif I, Nutt DJ, Hudson AL, Robinson ES (2006) Autoradiographical distribution of imidazoline binding sites in monoamine oxidase A deficient mice. J Neurochem 96(6):1551–1559

    Article  CAS  Google Scholar 

  27. Ozaita A, Olmos G, Boronat MA, Lizcano JM, Unzeta M, Garcia-Sevilla JA (1997) Inhibitons of MAO A and B activities by imidazol(ine)/guanidine receptive drugs, nature of the interaction and distinction from I2-imidazoline receptors in rat liver. Br J Pharmacol 121(5):901–912

    Article  CAS  Google Scholar 

  28. Jones TZ, Giurato L, Guccione S, Ramsay RR (2007) Interactions of imidazoline ligands with the active site of purified monoamine oxidase A. FEBS J 274(6):1567–1575

    Article  CAS  Google Scholar 

  29. Raddatz R, Parini A, Lanier SM (1995) Imidazoline/guanidinium binding domains on monoamine oxidases. Relationship to subtypes of imidazoline-binding proteins and tissue-specific interaction of imidazoline ligands with monoamine oxidase B. J Biol Chem 270(46):27961–27968

    Article  CAS  Google Scholar 

  30. Raddatz R, Savic SL, Bakthavachalam V, Lesnick J, Jasper JR, McGrath CR, Parini A, Lanier SM (2000) Imidazoline-binding domains on monoamine oxidase B and subpopulations of enzyme. J Pharmacol Exp Ther 292(3):1135–1145

    CAS  Google Scholar 

  31. Bonivento D, Milczek EM, McDonald GR, Binda C, Holt A, Edmondson DE, Mattevi A (2010) Potentiation of ligand binding through cooperative effects in monoamine oxidase B. J Biol Chem 285(47):36849–36856

    Article  CAS  Google Scholar 

  32. Klebe G, Böhm HJ (1997) Energetic and entropic factors determining binding affinity in protein-ligand complexes. J Recept Signal Transduct Res 17(1–3):459–473

    CAS  Google Scholar 

  33. Böhm HJ (1994) The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J Comput Aided Mol Des 8(3):243–256

    Article  Google Scholar 

  34. Böhm HJ (1996) Current computational tools for de novo ligand design. Curr Opin Biotechnol 7(4):433–436

    Article  Google Scholar 

  35. Böhm HJ (1998) Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3D database search programs. J Comput Aided Mol Des 12(4):309–323

    Article  Google Scholar 

  36. Stahl M, Böhm HJ (1998) Development of filter functions for protein-ligand docking. J Mol Graph Model 16(3):121–132

    Article  CAS  Google Scholar 

  37. Wang R, Lai L, Wang S (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 16(1):11–26

    Article  CAS  Google Scholar 

  38. De Azevedo WF, Jr DR (2008) Computational methods for calculation ligand-binding affinity. Curr Drug Targets 9(12):1031–1039

    Article  Google Scholar 

  39. Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49(11):3315–3321

    Article  CAS  Google Scholar 

  40. Heberlé G, De Azevedo WF Jr (2011) Bio-inspired algorithms applied to molecular docking simulations. Curr Med Chem 18(9):1339–1352

    Article  Google Scholar 

  41. De Azevedo WF Jr (2010) MolDock applied to structure-based virtual screening. Curr Drug Targets 11(3):327–334

    Article  Google Scholar 

  42. Araújo JQ, Lima JA, Pinto Ada C, de Alencastro RB, Albuquerque MG (2011) Docking of the alkaloid geissospermine into acetylcholinesterase: a natural scaffold targeting the treatment of Alzheimer's disease. J Mol Model 17(6):1401–1412

    Article  Google Scholar 

  43. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shaw DE, Shelley M, Perry JK, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749

    Article  CAS  Google Scholar 

  44. Vianna CP, de Azevedo WF Jr (2012) Identification of new potential Mycobacterium tuberculosis shikimate kinase inhibitors through molecular docking simulations. J Mol Model 18(2):755–764

    Article  CAS  Google Scholar 

  45. Miteva MA, Violas S, Montes M, Gomez D, Tuffery P, Villoutreix BO (2006) FAF-drugs: free ADME/tox filtering of compound collections. Nucleic Acids Res 34:W738–W744

    Article  CAS  Google Scholar 

  46. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26

    Article  CAS  Google Scholar 

  47. Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, Rother M, Söhngen C, Stelzer M, Thiele J, Schomburg D (2011) BRENDA, the enzyme information system in 2011. Nucleic Acids Res 39:D670–6

    Article  Google Scholar 

  48. Irwin JJ, Shoichet BK (2005) ZINC - a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182

    Article  CAS  Google Scholar 

  49. Timmers LF, Pauli I, Caceres RA, De Azevedo WF Jr (2008) Drug-binding databases. Curr Drug Targets 9(12):1092–1099

    Article  CAS  Google Scholar 

  50. De Azevedo WF Jr (2010) Structure-based virtual screening. Curr Drug Targets 11(3):261–263

    Article  Google Scholar 

  51. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8(2):127–134

    Article  CAS  Google Scholar 

  52. Allen WJ, Bevan DR (2011) Steered molecular dynamics simulations reveal important mechanisms in reversible monoamine oxidase B inhibition. Biochemistry 50(29):6441–6454

    Article  CAS  Google Scholar 

  53. Ramsay RR, Olivieri A, Holt A (2011) An improved approach to steady-state analysis of monoamine oxidases. J Neural Transm 118(7):1003–1019

    Article  CAS  Google Scholar 

  54. Dowson JH (1987) MAO inhibitors in mental disease: their current status. J Neural Transm Suppl 23:121–138

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Council for Scientific and Technological Development of Brazil (CNPq) and Instituto Nacional de Ciência e Tecnologia do Conselho Nacional de Desenvolvimento Científico e Tecnológico-Ministério de Ciência e Tecnologia (INCT-Tuberculose, CNPq-MCT, Brazil). WFA is senior researcher for CNPq (Brazil). The fellowship from CNPq-Brazil is also acknowledged (FPM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Filgueira de Azevedo Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moraes, F.P., de Azevedo, W.F. Targeting imidazoline site on monoamine oxidase B through molecular docking simulations. J Mol Model 18, 3877–3886 (2012). https://doi.org/10.1007/s00894-012-1390-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1390-7

Keywords

Navigation