Skip to main content

Fine Properties of Solutions to Conductivity Equations With Applications to Composites

  • Chapter
Mathematics of Multiscale Materials

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 99))

  • 385 Accesses

Abstract

The simplest possible approach in bounding effective moduli enjoying a variational definition, consists in plugging into the variational principle an “admissible test field”. If only the volume fraction of the phases is known, the traditional approach is to use a field which is constant throughout the media. In the context of conductivity, this very simple choice leads to the so called Wiener (or harmonic and arithmetic mean) bounds. On the other hand rank one laminates provide us with composites which saturate these elementary bounds.

If one considers “sum of energies” and restricts attention to isotropic composites, Wiener bounds are no longer attainable. This is because the constant test field no longer matches the actual solution for any microgeometry.

We explain how to use recent results from the theory of quasiconformal mappings, to make a more flexible and in general more appropriate choice of test field when a sum of energies is considered. Our method only requires information about the volume fraction and, if used in combination with the translation method, is at least as successful as any other known method.

The method, as developed so far, works only in two dimensional conductivity. However it applies to non linear problems as well. In the non linear context, when applied to a polycrystalline material, the method delivers a new lower bound when the energy is subquadratic. The only other known method to do so has been recently developed by D. Talbot and J. R. Willis. A brief review of recently established very fine properties of solutions to the conductivity equations in the linear context will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astala, K., Area distortion of quasiconformal mappings, Acta Math. 173 (1994), 37–60.

    Article  MathSciNet  MATH  Google Scholar 

  2. Alessandrini, G., Critical points of solutions of elliptic equations in two variables, Ann. Sc. Norm. Sup. Pisa Cl. Sci., vol. 14 (1987), 229–256.

    MathSciNet  MATH  Google Scholar 

  3. Alessandrini, G., An identification problem for an elliptic equation in two variables, Ann. Mat. Pura Appl. (4), Vol 145 (1986), 265–295.

    Article  MathSciNet  Google Scholar 

  4. Alessandrini, G. & Magnanini R., The index of isolated critical points and solutions of elliptic equations in the plane, Ann. Sc. Norm. Sup. Pisa Cl. Sci., vol. 19 (1992), 567–589.

    MathSciNet  MATH  Google Scholar 

  5. Alessandrini, G. & MagnaniniR., Elliptic equation in divergence form, geometric critical points of solutions and Stekloff eigenfunctions, SIAM J. Math. Anal., vol. 25, No. 5 (1994), 1259–1268.

    MathSciNet  MATH  Google Scholar 

  6. Avellaneda, M., Iterated homogenization, differential effective medium theory and applications, Comm. Pure Appl. Math., vol. XL (1987), 527–556.

    Google Scholar 

  7. Axell, J., Bounds for field fluctuations in two-phase materials, J. Appl. Phys. (1992), 1217–1220.

    Google Scholar 

  8. Bauman, P., Marini A., & Nesi V., Univalent solutions of an elliptic system of partial differential equations arising in homogenization, Preprint.

    Google Scholar 

  9. Beran, M., Field fluctuations in a two phase random media, J. Math. Phys., vol. 21 (10) (1980), 2583–2585.

    Article  Google Scholar 

  10. Bojarski, B., Homeomorphic solutions of Beltrami system, Dokl. Akad. Nauk. SSSR 102 (1955), 661–664.

    MathSciNet  Google Scholar 

  11. Bojarski, B., Generalized solutions of a system of differential equations of first order and elliptic type with discontinuous coefficients, Math. Sb. No. 43 (85) (1957), 451–503.

    MathSciNet  Google Scholar 

  12. A.M. Dykhne, Conductivity of a two dimensional two-phase system, Soviet Physics JETP. 32, 1 (1971).

    Google Scholar 

  13. Ekeland, I. and Temam, R., Convex analysis and variational problems, North-Holland, 1976.

    Google Scholar 

  14. Eremenko, A. & Hamilton D.H., The area distortion by quasiconformal mappings, Proc. Amer. Math. Soc., Vol. 123, Number 9, 2793–2797 (Sept 1995).

    Article  MathSciNet  MATH  Google Scholar 

  15. Francfort, G. & Milton G.W., Optimal bounds for conduction in two-dimensional, multiphase polycrystalline media, J. Stat. Phys. 46, 161–177.

    Google Scholar 

  16. Francfort, G. & Murat F., Optimal bounds for conduction in two-dimensional, two phase, anisotropic media, in Non-classical continuum mechanics, R.J. Knops and A.A. Lacey eds. London Mathematical Society Lecture Note Series 122, Cambridge, Cambridge 1987, 197–212.

    Google Scholar 

  17. Gehring, F.W., The LP integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277.

    Article  MathSciNet  MATH  Google Scholar 

  18. Giusti, E., Metodi diretti nel calcolo delle variazioni, Unione Matematica Italiana ed. (1994).

    Google Scholar 

  19. Hartman P. & Wintner A., On the local behavior of solutions of non-parabolic partial differential equations (I), Amer. J. Math., Vol. 75 (1953), 449–476.

    Article  MathSciNet  MATH  Google Scholar 

  20. Hashin, Z. & Siitrikman, S., A variational approach to the theory of effective magnetic permeability of multiphase materials, J. Appl. Phys. 33 (1962), 3125–3131.

    Article  MATH  Google Scholar 

  21. Hashin, Z. & Shtrikman, S., Conductivity of polycrystals, Phys. Rev., Vol. 130 (1) (1963), 129–133.

    Article  Google Scholar 

  22. John F. & Nirenberg L., On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961), 415–426.

    MathSciNet  MATH  Google Scholar 

  23. J. Keller, A theorem on the conductivity of a composite medium, J. Math. Phys. 5 (1964), 548–550.

    Article  MATH  Google Scholar 

  24. Kohn, R.V., & Strang, G., Optimal design and relaxation of variational problems I, II, III, Commun Pure Appl. Math. 39 (1986), 113–137, 139–182, 353–377.

    Google Scholar 

  25. Leonetti F. & Nesi V., Quasiconformal solutions to certain first order systems and the proof of a conjecture of G. W. Milton, Jour. Math. Pures Appl. 76, 109–124, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  26. Lehto O., Univalent functions and Teichmüller spaces, Springer-Verlag, Berlin, 1987.

    Book  MATH  Google Scholar 

  27. Letho O., & Virtanen K.I., Quasiconformal mapping in the plane, Springer-Verlag, Berlin, 1973.

    Google Scholar 

  28. Lurie, K.A., & Cherkaev, A.V., Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportions, Proc. Roy. Soc. Edinburgh 99 A, 1984, 71–87.

    Article  MathSciNet  MATH  Google Scholar 

  29. K.A. Lurie and A.V. Cherkaev, Exact estimates of conductivity of composites a binary mixture of isotropic components, Proc. Roy. Soc. Edinburgh Sect. A, 104, 21 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  30. MarcelliniP., Periodic solutions and homogenization of non linear variational problems, Ann. Mat. Pura Appl. 117 (1978), 139–152.

    Article  MathSciNet  MATH  Google Scholar 

  31. K.S. Mendelson, Effective conductivity of a two-phase material with cylindrical phase boundaries, J. Appl. Phys. 46 (1975), 917–918.

    Article  Google Scholar 

  32. Meyers N., An L P-estimate for the gradient of solutions of second order elliptic divergence form equations, Ann. Sc. Superiore di Pisa Serie III, Vol. XVII, 1963,189–206.

    MathSciNet  Google Scholar 

  33. Milton, G.W., Modelling the properties of composites by laminates, in Homogenization and effective moduli of materials and media, Ericksen, Kinderleher, Kohn, Lions, eds., IMA volumes in mathematics and its applications 1, Springer-Verlag, New York (1986), 150–174.

    Google Scholar 

  34. Milton, G.W., The coherent potential approximation is a realizable effective medium scheme, Comm. Math. Phys. 99, vol. 463 (1985).

    Google Scholar 

  35. Milton, G.W. & Kohn, R.V., Variational bounds on the effective moduli of anisotropic composites, J. Mech. Phys. Solids, Vol. 36, No. 6 (1988), 597–629.

    Article  MathSciNet  MATH  Google Scholar 

  36. Murat F., & Tartar L., Calcul des variations et homogénéisation, in Les Meth-odes de LHomogénéisation: Theorie et Applications en Physique, 1985, Eyrolles, 319–369.

    Google Scholar 

  37. Nesi V., Bounds on the effective conductivity of 2d composites made of n > 3 isotropic phases: the weighted translation method, Proc. Roy. Soc. Edinburgh A 125 A, 1219–1239, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  38. Nesi V., Quasiconformal mappings as a tool to study the effective conductivity of two dimensional composites made of n > 2 anisotropie phases in prescribed volume fraction, Arch. Rat. Mech. and Analysis 134 (1996), 17–51.

    Article  MathSciNet  MATH  Google Scholar 

  39. Nesi V., Reverse Holder’s inequality in non linear conductivity, Nonlinear Differential Equations (To appear).

    Google Scholar 

  40. Ponte Castaneda P., The effective mechanical properties of nonlinear isotropic composites, J. Mech. Phys. Solids 39 (1991), 45–71.

    Article  MathSciNet  MATH  Google Scholar 

  41. Ponte Castaneda P., Bounds and estimates for the properties of nonlinear heterogeneous systems, Phil. Trans. R. Soc. London A 340 (1992), 531–567.

    Article  MATH  Google Scholar 

  42. Sanchez-Palencia, E., Homogenization techniques for composite media, Lecture notes in physics, vol. 272, Springer-Verlag, Heidelberg eds. (1985).

    Google Scholar 

  43. Schulgasser, K., A reciprocal theorem in two dimensional heat transfer and its implications, International Communications in Heat and Mass Transfer, vol. 19 (1992), 497–515.

    Article  Google Scholar 

  44. Schulgasser K., Sphere assemblage model for polycrystal and symmetric materials, J. Appl. Phys. 54 (1982), 1380–1382.

    Article  Google Scholar 

  45. Suquet P., Overall potentials and extremal surfaces of power law or ideally plastic composites, J. Mech. Phys. Solids 41 (1993), 981–1002.

    Article  MathSciNet  MATH  Google Scholar 

  46. Talbot D.R.S. & Willis J.R., Variational principles for inhomogeneous nonlinear media, IMA J. Appl. Math. 35 (1985), 39–54.

    MathSciNet  MATH  Google Scholar 

  47. Talbot D.R.S. & Willts J.R., Upper and lower bounds for the overall properties of u nonlinear composite dielectric. I. Random microgeometry, Proc. Roy. Soc. Lond. A 447 (1994), 365–384.

    MATH  Google Scholar 

  48. Talbot D.R.S. & Willis J.R., Upper and lower bounds for the overall properties of a nonlinear composite dielectric. II. Periodic microgeometry, Proc Roy. Soc. London A 447 (1994), 385–396.

    Article  MATH  Google Scholar 

  49. D.R.S. Talbot, J.R. Willis & V. Nesi, An interpolation between the HashinShtrikman bounds for the effective conductivities of two-phase and three-phase composite media, IMA J. Appl. Math. 54 (1995), 97–107.

    MathSciNet  MATH  Google Scholar 

  50. L. Tartar, Estimation fines des coefficients homogeneises, in Ennio De Giorgi’s Colloquium (ed. P. Kree) Research notes in mathematics 125, Pitman Press, London (1985), 168.

    Google Scholar 

  51. Tartar, L., Compensated compactness and applications to p.d.e. in nonlinear analysis and mechanics, Heriot-Watt Symposium, Vol. IV, ed. by R.J. Knops, Research notes in mathematics 39, Pitman, Boston (1979), 136–212.

    Google Scholar 

  52. Willis J.R., The overall elastic response of composite materials, J. Appl. Mech. (1983), 1202–1209.

    Google Scholar 

  53. Zhikov V.V., Estimates for the averaged matrix and the averaged tensor, Russian Math. surveys 46:3 1991), 65–136.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nesi, V. (1998). Fine Properties of Solutions to Conductivity Equations With Applications to Composites. In: Golden, K.M., Grimmett, G.R., James, R.D., Milton, G.W., Sen, P.N. (eds) Mathematics of Multiscale Materials. The IMA Volumes in Mathematics and its Applications, vol 99. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1728-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1728-2_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7256-4

  • Online ISBN: 978-1-4612-1728-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics