Skip to main content
Log in

Quasiconformal mappings as a tool to study certain two-dimensional G-closure problems

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

A recent theorem due to Astala establishes the best exponent for the area distortion of planar K-quasiconformal mappings. We use a refinement of Astala's theorem due to Eremenko and Hamilton to prove new bounds on the effective conductivity of two-dimensional composites. The bounds are valid for composites made of an arbitrary finite number n of possibly anisotropic phases in prescribed volume fractions. For n= 2 we prove the optimality of the bounds under certain additional assumptions on the G-closure parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astala K., Area distortion of quasiconformal mappings, Acta Math., 173 (1994), 37–60.

    Google Scholar 

  2. Avellaneda, M., Cherkaev, A. V., Lurie, K. A., & Milton, G. W., On the effective conductivity of polycrystals and a three dimensional phase-interchange inequality, J. Appl. Phys. 63 (1988), 4989–5003.

    Google Scholar 

  3. Bojarski, B., Homeomorphic solutions of Beltrami system, Dokl. Akad. Nauk. SSSR 102 (1955), 661–664.

    Google Scholar 

  4. Bojarski, B., Generalized solutions of a system of differential equations of first order and elliptic type with discontinuous coefficients, Mat. Sb. 43(85) (1957), 451–503.

    Google Scholar 

  5. Bauman, P., Marini A., & Nesi V., Univalent solutions of an elliptic system of partial differential equations arising in homogenization, preprint.

  6. Ball, J. M., & Murat, F., W 1,p-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal. 58 (1984), 225–253.

    Google Scholar 

  7. Dacorogna, B., & Marcellini, P., Existence of minimizers for non quasiconvex integrals, Arch. Rational Mech. Anal. 131 (1995), 359–399.

    Google Scholar 

  8. Eremenko, A., On Astala's proof of the area distortion theorem for quasiconformal mappings, preprint, December 1992.

  9. Eremenko, A., & Hamilton, D. H., The area distortion by quasiconformal mappings, Proc. Amer. Math. Soc., 123 (1995), 2793–2797.

    Google Scholar 

  10. Francfort, G., & Milton, G. W., Optimal bounds for conduction in two-dimensional, multiphase polycrystalline media, J. Stat. Phys. 46 (1987), 161–177.

    Google Scholar 

  11. Francfort, G., & Murat, F., Optimal bounds for conduction in two-dimensional, two phase, anisotropic media, in Non-classical continuum mechanics, R. J. Knops and A. A. Lacey, eds., London Mathematical Society Lecture Note Series 122, Cambridge Univ. Press, 1987, 197–212.

  12. Grabovsky, Y., The G-closure of two well ordered anisotropic conductors. Proc. Roy. Soc. Edinburgh A 123 (1993), 423–432.

    Google Scholar 

  13. Hamilton, D., Area distortion of quasiconformal mappings, preprint, December 1992.

  14. Hashin, Z., & Shtrikman, S., A variational approach to the theory of effective magnetic permeability of multiphase materials, J. Appl. Phys. 33 (1962), 3125–3131.

    Google Scholar 

  15. Hashin, Z., & Shtrikman, S., Conductivity of polycrystals, Phys. Rev. 130 (1963), 129–133.

    Google Scholar 

  16. Kohn, R. V., The relaxation of a double energy, Continuum Mech. Thermodyn. 3 (1991), 193–236.

    Google Scholar 

  17. Kohn, R. V., & Milton, G.W., On bounding the effective conductivity of anisotropic composites, in Homogenization and effective moduli of materials and media, Ericksen, J. L., Kinderlehrer, D., Kohn, R., & Lions, J. L., eds., Springer-Verlag, New York, 1986, 97–125.

    Google Scholar 

  18. Kohn, R. V., & Strang, G., Optimal design and relaxation of variational problems I, II, III, Comm. Pure Appl. Math. 39 (1986), 113–137, 139–182, 353–377.

    Google Scholar 

  19. Iwaniec, T., & Kosecki, R., Sharp estimates for complex potentials and quasiconformal mappings, preprint of Syracuse University, 1–69.

  20. Iwaniec, T., & Martin, G., Quasiregular mappings in even dimensions, Acta Math. 170 (1993), 29–81.

    Google Scholar 

  21. Lehto, O., Univalent functions and Teichmüller spaces, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  22. Letho, O., & Virtanen, K. I., Quasiconformal mappings in the plane, Springer-Verlag, Berlin, 1973.

    Google Scholar 

  23. Lurie, K. A., & Cherkaev, A. V., Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportions, Proc. Roy. Soc. Edinburgh A 99 (1984), 71–87.

    Google Scholar 

  24. Lurie, K. A., & Cherkaev, A. V., G-closure of a set of anisotropically conducting media in the two-dimensional case, J. Opt. Th. Appl. 42 (1984), 283–304.

    Google Scholar 

  25. Meyers, N., An L p-estimate for the gradient of solutions of second order elliptic divergence form equations. Ann. Sc. Superiore di Pisa Serie III, 17 (1963), 189–206.

    Google Scholar 

  26. Milton, G. W., & Kohn, R. V., Variational bounds on the effective moduli of anisotropic composites, J. Mech. Phys. Solids, 36 (1988), 597–629.

    Google Scholar 

  27. Murat, F., & Tartar, L., Calcul des variations et homogénéisation, in Les méthodes de l'homogénéisation: Théorie et Applications en Physique, Eyrolles, 1985, 319–369.

  28. Nesi, V., Using quasiconvex functionals to bound the effective conductivity of composite materials, Proc. Roy. Soc. Edinburgh A 123 (1993), 633–679.

    Google Scholar 

  29. Nesi, V., Bounds on the effective conductivity of 2d composite made of n ≳= 3 isotropie phases: the weighted translation method, Proc. Roy. Soc. Edinburgh A 125 (1995), 1219–1239.

    Google Scholar 

  30. Schulgasser, K., Sphere assemblage model for polycrystal and symmetric materials, J. Appl. Phys. 54 (1982), 1380–1382.

    Google Scholar 

  31. Tartar, L., Estimation fines des coefficient homogénéisés, in Ennio De Giorgi's Colloquium, P. Kree, ed., Pitman Research Notes in Mathematics 125, London, 1985, pp. 168–187.

  32. Tartar, L., Compensated compactness and applications to partial differential equations in Nonlinear analysis and mechanics, Heriot-Watt Symposium, Vo1. IV, R. J. Knops, ed., Pitman Research Notes in mathematics 39, Boston, 1979, 136–212.

  33. Zhikov, V. V., Estimates for the averaged matrix and the averaged tensor, Russian Math. Surveys 46 (1991), 65–136.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. V. Kohn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesi, V. Quasiconformal mappings as a tool to study certain two-dimensional G-closure problems. Arch. Rational Mech. Anal. 134, 17–51 (1996). https://doi.org/10.1007/BF00376254

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00376254

Keywords

Navigation