Skip to main content

Associating Aversive Task Exposure with Pharmacological Intervention to Model Traumatic Memories in Laboratory Rodents

  • Protocol
  • First Online:
Translational Methods for PTSD Research

Part of the book series: Neuromethods ((NM,volume 198))

Abstract

Post-traumatic stress disorder is associated with highly threatening and stressful events. The underlying memory is overconsolidated, leading to generalized fear expression and overall resistance to extinction- and reconsolidation-based interventions. Fear conditioning and avoidance protocols commonly used in laboratory settings induce specific and moderate-intensity aversive memories, but traumatic ones differ in quantitative and qualitative aspects. It would be appropriate to reproduce their abnormal features for studying PTSD neurobiology and assessing potential new therapeutics. After discussing the mnemonic basis of PTSD, its memory-related symptoms, and neurochemical findings underlying the traumatic memory, we aimed to review and discuss studies addressing the abovementioned question in rats and mice. Because of its potential translational value, the focus was on procedures associating an aversive task with single or combined post-training pharmacological interventions. Nearly 200 studies published since 1975 report that this protocol enhances aversive memory strength. The parallel assessment of abnormal features related to traumatic memories, such as altered specificity and susceptibility to extinction and drug-induced reconsolidation blockade, started more recently. Systemically administered drugs potentiating noradrenergic or glucocorticoid mechanisms have predominated, probably because of PTSD’s physiopathology. Other options and discrete brain infusions have provided complementary information. Currently available data indicate that aversive task exposure followed by adequate drug interference during consolidation generates more intense and generalized memories, which are less prone to modulation by behavioral and pharmacological strategies. These findings based on the bedside-to-bench approach are instructive for future analyses to advance our understanding of the underlying neurobiological mechanisms and develop more effective treatments for PTSD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACTH:

Adrenocorticotropic hormone

AFC:

Auditory fear conditioning

BLA:

Basolateral amygdala

BNST:

Bed nucleus of the stria terminalis

CB1:

Cannabinoid type-1 receptor

CeA:

Central amygdala

CFC:

Contextual fear conditioning

CS:

Conditioned stimulus

dACC:

Dorsal anterior cingulate cortex

DH:

Dorsal hippocampus

DSM-5:

Diagnostic and Statistical Manual of Mental Disorders, 5th edition

eCB:

Endocannabinoid

HPA:

Hypothalamic–pituitary–adrenal axis

i.c.v.:

Intracerebroventricular

IL:

Infralimbic cortex

i.p.:

Intraperitoneal

LTP:

Long-term potentiation

mTORC1:

Mammalian target of rapamycin complex 1

ND:

Not described or retrieved

NMDA:

N-Methyl-D-aspartate

NR:

Nucleus reuniens of the thalamus

PFC:

Prefrontal cortex

PI3K:

Phosphoinositide 3-kinase

PL:

Prelimbic cortex

p.o.:

via oral, oral route

PTSD:

Post-traumatic stress disorder

SAM:

Sympathoadrenomedullary axis

s.c.:

Subcutaneous

US:

Unconditioned stimulus

VH:

Ventral hippocampus

vmPFC:

Ventromedial prefrontal cortex

References

  1. Izquierdo I, Furini CR, Myskiw JC (2016) Fear memory. Physiol Rev 96(2):695–750. https://doi.org/10.1152/physrev.00018.2015

    Article  PubMed  Google Scholar 

  2. Aubry AV, Serrano PA, Burghardt NS (2016) Molecular mechanisms of stress-induced increases in fear memory consolidation within the amygdala. Front Behav Neurosci 10:191. https://doi.org/10.3389/fnbeh.2016.00191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. de Quervain D, Schwabe L, Roozendaal B (2017) Stress, glucocorticoids and memory: implications for treating fear-related disorders. Nat Rev Neurosci 18(1):7–19. https://doi.org/10.1038/nrn.2016.155

    Article  CAS  PubMed  Google Scholar 

  4. Schwabe L, Nader K, Wolf OT, Beaudry T, Pruessner JC (2012) Neural signature of reconsolidation impairments by propranolol in humans. Biol Psychiatry 71(4):380–386. https://doi.org/10.1016/j.biopsych.2011.10.028

    Article  CAS  PubMed  Google Scholar 

  5. Wingenfeld K, Wolf OT (2014) Stress, memory, and the hippocampus. Front Neuro Neurosci 34:109–120. https://doi.org/10.1159/000356423

    Article  Google Scholar 

  6. Orsini CA, Maren S (2012) Neural and cellular mechanisms of fear and extinction memory formation. Neurosci Biobehav Rev 36(7):1773–1802. https://doi.org/10.1016/j.neubiorev.2011.12.014

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mahan AL, Ressler KJ (2012) Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci 35(1):24–35. https://doi.org/10.1016/j.tins.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  8. Costanzi M, Battaglia M, Rossi-Arnaud C, Cestari V, Castellano C (2004) Effects of anandamide and morphine combinations on memory consolidation in cd1 mice: involvement of dopaminergic mechanisms. Neurobiol Learn Mem 81(2):144–149. https://doi.org/10.1016/j.nlm.2003.09.003

    Article  CAS  PubMed  Google Scholar 

  9. Gazarini L, Stern CA, Takahashi RN, Bertoglio LJ (2022) Interactions of noradrenergic, glucocorticoid and endocannabinoid systems intensify and generalize fear memory traces. Neuroscience 497:118–133. https://doi.org/10.1016/j.neuroscience.2021.09.012

    Article  CAS  PubMed  Google Scholar 

  10. Kety SS (1972) The possible role of the adrenergic systems of the cortex in learning. Res Publica 50:376–389

    CAS  Google Scholar 

  11. McGaugh JL, Gold PE, Van Buskirk R, Haycock J (1975) Modulating influences of hormones and catecholamines on memory storage processes. Prog Brain Res 42:151–162. https://doi.org/10.1016/S0079-6123(08)63656-0

    Article  CAS  PubMed  Google Scholar 

  12. Dronjak S, Gavrilović L, Filipović D, Radojcić MB (2004) Immobilization and cold stress affect sympatho-adrenomedullary system and pituitary-adrenocortical axis of rats exposed to long-term isolation and crowding. Physiol Behav 81(3):409–415. https://doi.org/10.1016/j.physbeh.2004.01.011

    Article  CAS  PubMed  Google Scholar 

  13. van Marle HJ, Hermans EJ, Qin S, Fernández G (2009) From specificity to sensitivity: how acute stress affects amygdala processing of biologically salient stimuli. Biol Psychiatry 66(7):649–655. https://doi.org/10.1016/j.biopsych.2009.05.014

    Article  PubMed  Google Scholar 

  14. McGaugh JL (2015) Consolidating memories. Annu Rev Psychol 66:1–24. https://doi.org/10.1146/annurev-psych-010814-014954

    Article  PubMed  Google Scholar 

  15. Maren S, Phan KL, Liberzon I (2013) The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci 14(6):417–428. https://doi.org/10.1038/nrn3492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Troyner F, Bicca MA, Bertoglio LJ (2018) Nucleus reuniens of the thalamus controls fear memory intensity, specificity and long-term maintenance during consolidation. Hippocampus 28(8):602–616. https://doi.org/10.1002/hipo.22964

    Article  CAS  PubMed  Google Scholar 

  17. McIntyre CK, McGaugh JL, Williams CL (2012) Interacting brain systems modulate memory consolidation. Neurosci Biobehav Rev 36(7):1750–1762. https://doi.org/10.1016/j.neubiorev.2011.11.001

    Article  PubMed  Google Scholar 

  18. Haubrich J, Nader K (2018) Memory reconsolidation. Curr Top Behav Neurosci 37:151–176. https://doi.org/10.1007/7854_2016_463

    Article  PubMed  Google Scholar 

  19. Izquierdo I (1992) Dopamine receptors in the caudate nucleus and memory processes. Trends Pharmacol Sci 13(1):7–8. https://doi.org/10.1016/0165-6147(92)90004-p

    Article  CAS  PubMed  Google Scholar 

  20. Dudai Y (2012) The restless engram: consolidations never end. Annu Rev Neurosci 35:227–247. https://doi.org/10.1146/annurev-neuro-062111-150500

    Article  CAS  PubMed  Google Scholar 

  21. Eichenbaum H (2016) Still searching for the engram. Learn Behav 44(3):209–222. https://doi.org/10.3758/s13420-016-0218-1

    Article  PubMed  PubMed Central  Google Scholar 

  22. Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20(1):11–21. https://doi.org/10.1136/jnnp.20.1.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356. https://doi.org/10.1113/jphysiol.1973.sp010273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84(1):87–136. https://doi.org/10.1152/physrev.00014.2003

    Article  CAS  PubMed  Google Scholar 

  25. Gazarini L, Stern CA, Carobrez AP, Bertoglio LJ (2013) Enhanced noradrenergic activity potentiates fear memory consolidation and reconsolidation by differentially recruiting α1- and β-adrenergic receptors. Learn Mem 20(4):210–219. https://doi.org/10.1101/lm.030007.112

    Article  CAS  PubMed  Google Scholar 

  26. Gazarini L, Stern CA, Piornedo RR, Takahashi RN, Bertoglio LJ (2014) PTSD-like memory generated through enhanced noradrenergic activity is mitigated by a dual step pharmacological intervention targeting its reconsolidation. Int J Neuropsychopharmacol 18(1):pyu026. https://doi.org/10.1093/ijnp/pyu026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stern CAJ, da Silva TR, Raymundi AM, de Souza CP, Hiroaki-Sato VA, Kato L, Guimarães FS, Andreatini R, Takahashi RN, Bertoglio LJ (2017) Cannabidiol disrupts the consolidation of specific and generalized fear memories via dorsal hippocampus CB1 and CB2 receptors. Neuropharmacology 125:220–230. https://doi.org/10.1016/j.neuropharm.2017.07.024

    Article  CAS  PubMed  Google Scholar 

  28. Besnard A, Caboche J, Laroche S (2012) Reconsolidation of memory: a decade of debate. Prog Neurobiol 99(1):61–80. https://doi.org/10.1016/j.pneurobio.2012.07.002

    Article  PubMed  Google Scholar 

  29. Nader K, Schafe GE, Le Doux JE (2000) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406(6797):722–726. https://doi.org/10.1038/35021052

    Article  CAS  PubMed  Google Scholar 

  30. Stern CA, Gazarini L, Takahashi RN, Guimarães FS, Bertoglio LJ (2012) On disruption of fear memory by reconsolidation blockade: evidence from cannabidiol treatment. Neuropsychopharmacology 37(9):2132–2142. https://doi.org/10.1038/npp.2012.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pedreira ME, Pérez-Cuesta LM, Maldonado H (2004) Mismatch between what is expected and what actually occurs triggers memory reconsolidation or extinction. Learn Mem 11(5):579–585. https://doi.org/10.1101/lm.76904

    Article  PubMed  PubMed Central  Google Scholar 

  32. Milad MR, Quirk GJ (2002) Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420(6911):70–74. https://doi.org/10.1038/nature01138

    Article  CAS  PubMed  Google Scholar 

  33. VanElzakker MB, Dahlgren MK, Davis FC, Dubois S, Shin LM (2014) From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and anxiety disorders. Neurobiol Learn Mem 113:3–18. https://doi.org/10.1016/j.nlm.2013.11.014

    Article  PubMed  Google Scholar 

  34. Swenson RM, Vogel WH (1983) Plasma Catecholamine and corticosterone as well as brain catecholamine changes during coping in rats exposed to stressful footshock. Pharmacol Biochem Behav 18(5):689–693. https://doi.org/10.1016/0091-3057(83)90007-2

    Article  CAS  PubMed  Google Scholar 

  35. de Diego AM, Gandía L, García AG (2008) A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla. Acta Physiol 192(2):287–301. https://doi.org/10.1111/j.1748-1716.2007.01807.x

    Article  CAS  Google Scholar 

  36. Haubrich J, Bernabo M, Nader K (2020) Noradrenergic projections from the locus coeruleus to the amygdala constrain fear memory reconsolidation. elife 9:e57010. https://doi.org/10.7554/eLife.57010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Seo DO, Zhang ET, Piantadosi SC, Marcus DJ, Motard LE, Kan BK, Gomez AM, Nguyen TK, Xia L, Bruchas MR (2021) A locus coeruleus to dentate gyrus noradrenergic circuit modulates aversive contextual processing. Neuron 109(13):2116–2130.e6. https://doi.org/10.1016/j.neuron.2021.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Borrell J, De Kloet ER, Versteeg DH, Bohus B (1983) Inhibitory avoidance deficit following short-term adrenalectomy in the rat: the role of adrenal catecholamines. Behav Neural Biol 39(2):241–258. https://doi.org/10.1016/s0163-1047(83)90910-x

    Article  CAS  PubMed  Google Scholar 

  39. Gamache K, Pitman RK, Nader K (2012) Preclinical evaluation of reconsolidation blockade by clonidine as a potential novel treatment for posttraumatic stress disorder. Neuropsychopharmacology 37(13):2789–2796. https://doi.org/10.1038/npp.2012.145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Przybyslawski J, Roullet P, Sara SJ (1999) Attenuation of emotional and nonemotional memories after their reactivation: role of beta adrenergic receptors. J Neurosci 19(15):6623–6628. https://doi.org/10.1523/JNEUROSCI.19-15-06623.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Asok A, Kandel ER, Rayman JB (2019) The neurobiology of fear generalization. Front Behav Neurosci 12:329. https://doi.org/10.3389/fnbeh.2018.00329

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dunsmoor JE, Prince SE, Murty VP, Kragel PA, LaBar KS (2011) Neurobehavioral mechanisms of human fear generalization. NeuroImage 55(4):1878–1888. https://doi.org/10.1016/j.neuroimage.2011.01.041

    Article  PubMed  Google Scholar 

  43. Lissek S, Rabin S, Heller RE, Lukenbaugh D, Geraci M, Pine DS, Grillon C (2010) Overgeneralization of conditioned fear as a pathogenic marker of panic disorder. Am J Psychiatr 167(1):47–55. https://doi.org/10.1176/appi.ajp.2009.09030410

    Article  PubMed  Google Scholar 

  44. Elliott ND, Richardson R (2019) The effects of early life stress on context fear generalization in adult rats. Behav Neurosci 133(1):50–58. https://doi.org/10.1037/bne0000289

    Article  CAS  PubMed  Google Scholar 

  45. Pedraza LK, Sierra RO, Boos FZ, Haubrich J, Quillfeldt JA, Alvares L (2016) The dynamic nature of systems consolidation: stress during learning as a switch guiding the rate of the hippocampal dependency and memory quality. Hippocampus 26(3):362–371. https://doi.org/10.1002/hipo.22527

    Article  CAS  PubMed  Google Scholar 

  46. Temme SJ, Bell RZ, Pahumi R, Murphy GG (2014) Comparison of inbred mouse substrains reveals segregation of maladaptive fear phenotypes. Front Behav Neurosci 8:282. https://doi.org/10.3389/fnbeh.2014.00282

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bienvenu T, Dejean C, Jercog D, Aouizerate B, Lemoine M, Herry C (2021) The advent of fear conditioning as an animal model of post-traumatic stress disorder: learning from the past to shape the future of PTSD research. Neuron 109(15):2380–2397. https://doi.org/10.1016/j.neuron.2021.05.017

    Article  CAS  PubMed  Google Scholar 

  48. Lisboa SF, Vila-Verde C, Rosa J, Uliana DL, Stern C, Bertoglio LJ, Resstel LB, Guimaraes FS (2019) Tempering aversive/traumatic memories with cannabinoids: a review of evidence from animal and human studies. Psychopharmacology 236(1):201–226. https://doi.org/10.1007/s00213-018-5127-x

    Article  CAS  PubMed  Google Scholar 

  49. Schafe GE, LeDoux JE (2008) Learning and memory: a comprehensive reference, vol 4. Academic, Boston, pp 157–192. https://doi.org/10.1016/B978-012370509-9.00045-0

  50. Rescorla RA (1968) Probability of shock in the presence and absence of CS in fear conditioning. J Comp Physiol Psychol 66(1):1–5. https://doi.org/10.1037/h0025984

    Article  CAS  PubMed  Google Scholar 

  51. Kim JJ, Jung MW (2006) Neural circuits and mechanisms involved in Pavlovian fear conditioning: a critical review. Neurosci Biobehav Rev 30(2):188–202. https://doi.org/10.1016/j.neubiorev.2005.06.005

    Article  PubMed  Google Scholar 

  52. Blanchard RJ, Blanchard DC (1969) Passive and active reactions to fear-eliciting stimuli. J Comp Physiol Psychol 68(1):129–135. https://doi.org/10.1037/h0027676

    Article  CAS  PubMed  Google Scholar 

  53. Fanselow MS (1986) Conditioned fear-induced opiate analgesia: a competing motivational state theory of stress analgesia. Ann N Y Acad Sci 467:40–54. https://doi.org/10.1111/j.1749-6632.1986.tb14617.x

    Article  CAS  PubMed  Google Scholar 

  54. Schwarting RK, Wöhr M (2012) On the relationships between ultrasonic calling and anxiety-related behavior in rats. Braz J Med Biol Res 45(4):337–348. https://doi.org/10.1590/s0100-879x2012007500038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stiedl O, Tovote P, Ögren SO, Meyer M (2004) Behavioral and autonomic dynamics during contextual fear conditioning in mice. Auton Neurosci 115(1–2):15–27. https://doi.org/10.1002/da.22903

    Article  PubMed  Google Scholar 

  56. Dos Santos Corrêa M, Vaz B, Grisanti G, de Paiva J, Tiba PA, Fornari RV (2019) Relationship between footshock intensity, post-training corticosterone release and contextual fear memory specificity over time. Psychoneuroendocrinology 110:104447. https://doi.org/10.1016/j.psyneuen.2019.104447

    Article  CAS  PubMed  Google Scholar 

  57. Dos Santos Corrêa M, Vaz B, Menezes BS, Ferreira TL, Tiba PA, Fornari RV (2021) Corticosterone differentially modulates time-dependent fear generalization following mild or moderate fear conditioning training in rats. Neurobiol Learn Mem 184:107487. https://doi.org/10.1016/j.nlm.2021.107487

    Article  CAS  PubMed  Google Scholar 

  58. da Silva TR, Sohn J, Andreatini R, Stern CA (2020) The role of prelimbic and anterior cingulate cortices in fear memory reconsolidation and persistence depends on the memory age. Learn Mem 27(8):292–300. https://doi.org/10.1101/lm.051615.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Atucha E, Zalachoras I, van den Heuvel JK, van Weert LT, Melchers D, Mol IM, Belanoff JK, Houtman R, Hunt H, Roozendaal B, Meijer OC (2015) A mixed glucocorticoid/mineralocorticoid selective modulator with dominant antagonism in the male rat brain. Endocrinology 156(11):4105–4114. https://doi.org/10.1210/en.2015-1390

    Article  CAS  PubMed  Google Scholar 

  60. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. Author, Washington, DC

    Book  Google Scholar 

  61. Taylor JR, Torregrossa MM (2015) Pharmacological disruption of maladaptive memory. Handb Exp Pharmacol 228:381–415. https://doi.org/10.1007/978-3-319-16522-6_13

    Article  PubMed  Google Scholar 

  62. Herz N, Bar-Haim Y, Holmes EA, Censor N (2020) Intrusive memories: a mechanistic signature for emotional memory persistence. Behav Res Ther 135:103752. https://doi.org/10.1016/j.brat.2020.103752

    Article  PubMed  Google Scholar 

  63. Pitman RK (1989) Post-traumatic stress disorder, hormones, and memory. Biol Psychiatry 26(3):221–223. https://doi.org/10.1016/0006-3223(89)90033-4

    Article  CAS  PubMed  Google Scholar 

  64. Bracha HS (2006) Human brain evolution and the “Neuroevolutionary Time-depth Principle”: implications for the Reclassification of fear-circuitry-related traits in DSM-V and for studying resilience to warzone-related posttraumatic stress disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 30(5):827–853. https://doi.org/10.1016/j.pnpbp.2006.01.008

    Article  Google Scholar 

  65. Norrholm SD, Jovanovic T (2018) Fear processing, psychophysiology, and PTSD. Harv Rev Psychiatry 26(3):129–141. https://doi.org/10.1097/HRP.0000000000000189

    Article  PubMed  Google Scholar 

  66. Jovanovic T, Kazama A, Bachevalier J, Davis M (2012) Impaired safety signal learning may be a biomarker of PTSD. Neuropharmacology 62(2):695–704. https://doi.org/10.1016/j.neuropharm.2011.02.023

    Article  CAS  PubMed  Google Scholar 

  67. Norrholm SD, Jovanovic T, Briscione MA, Anderson KM, Kwon CK, Warren VT, Bosshardt L, Bradley B (2014) Generalization of fear-potentiated startle in the presence of auditory cues: a parametric analysis. Front Behav Neurosci 8:361. https://doi.org/10.3389/fnbeh.2014.00361

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ehlers A, Hackmann A, Michael T (2004) Intrusive re-experiencing in post-traumatic stress disorder: phenomenology, theory, and therapy. Memory 12(4):403–415. https://doi.org/10.1080/09658210444000025

    Article  PubMed  Google Scholar 

  69. Wessa M, Flor H (2007) Failure of extinction of fear responses in posttraumatic stress disorder: evidence from second-order conditioning. Am J Psychiatry 164(11):1684–1692. https://doi.org/10.1176/appi.ajp.2007.07030525

    Article  PubMed  Google Scholar 

  70. Muravieva EV, Alberini CM (2010) Limited efficacy of propranolol on the reconsolidation of fear memories. Learn Mem 17(6):306–313. https://doi.org/10.1101/lm.1794710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Garfinkel SN, Abelson JL, King AP, Sripada RK, Wang X, Gaines LM, Liberzon I (2014) Impaired contextual modulation of memories in PTSD: an fMRI and psychophysiological study of extinction retention and fear renewal. J Neurosci 34(40):13435–13443. https://doi.org/10.1523/JNEUROSCI.4287-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wood NE, Rosasco ML, Suris AM, Spring JD, Marin MF, Lasko NB, Goetz JM, Fischer AM, Orr SP, Pitman RK (2015) Pharmacological blockade of memory reconsolidation in posttraumatic stress disorder: three negative psychophysiological studies. Psychiatry Res 225(1–2):31–39. https://doi.org/10.1016/j.psychres.2014.09.005

    Article  PubMed  Google Scholar 

  73. McGuire JF, Orr SP, Essoe JK, McCracken JT, Storch EA, Piacentini J (2016) Extinction learning in childhood anxiety disorders, obsessive compulsive disorder and post-traumatic stress disorder: implications for treatment. Expert Rev Neurother 16(10):1155–1174. https://doi.org/10.1080/14737175.2016.1199276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wicking M, Steiger F, Nees F, Diener SJ, Grimm O, Ruttorf M, Schad LR, Winkelmann T, Wirtz G, Flor H (2016) Deficient fear extinction memory in posttraumatic stress disorder. Neurobiol Learn Mem 136:116–126. https://doi.org/10.1016/j.nlm.2016.09.016

    Article  PubMed  Google Scholar 

  75. Beckers T, Kindt M (2017) Memory reconsolidation interference as an emerging treatment for emotional disorders: strengths, limitations, challenges, and opportunities. Annu Rev Clin Psychol 13:99–121. https://doi.org/10.1146/annurev-clinpsy-032816-045209

    Article  PubMed  PubMed Central  Google Scholar 

  76. AlOkda AM, Nasr MM, Amin SN (2019) Between an ugly truth and a perfect lie: wiping off fearful memories using beta-adrenergic receptors antagonists. J Cell Physiol 234(5):5722–5727. https://doi.org/10.1002/jcp.27441

    Article  CAS  PubMed  Google Scholar 

  77. Hennings AC, McClay M, Lewis-Peacock JA, Dunsmoor JE (2020) Contextual reinstatement promotes extinction generalization in healthy adults but not PTSD. Neuropsychologia 147:107573

    Article  PubMed  PubMed Central  Google Scholar 

  78. Uniyal A, Singh R, Akhtar A, Dhaliwal J, Kuhad A, Sah SP (2020) Pharmacological rewriting of fear memories: a beacon for post-traumatic stress disorder. Eur J Pharmacol 870:172824. https://doi.org/10.1016/j.ejphar.2019.172824

    Article  CAS  PubMed  Google Scholar 

  79. Norbury A, Brinkman H, Kowalchyk M, Monti E, Pietrzak RH, Schiller D, Feder A (2021) Latent cause inference during extinction learning in trauma-exposed individuals with and without PTSD. Psychol Med:1–12. https://doi.org/10.1017/S0033291721000647

  80. Yehuda R, McFarlane AC, Shalev AY (1998) Predicting the development of posttraumatic stress disorder from the acute response to a traumatic event. Biol Psychiatry 44(12):1305–1313. https://doi.org/10.1016/s0006-3223(98)00276-5

    Article  CAS  PubMed  Google Scholar 

  81. Shalev AY, Sahar T, Freedman S, Peri T, Glick N, Brandes D, Orr SP, Pitman RK (1998) A prospective study of heart rate response following trauma and the subsequent development of posttraumatic stress disorder. Arch Gen Psychiatry 55(6):553–559. https://doi.org/10.1001/archpsyc.55.6.553

    Article  CAS  PubMed  Google Scholar 

  82. Yehuda R, LeDoux J (2007) Response variation following trauma: a translational neuroscience approach to understanding PTSD. Neuron 56(1):19–32. https://doi.org/10.1016/j.neuron.2007.09.006

    Article  CAS  PubMed  Google Scholar 

  83. Ginty AT, Young DA, Tyra AT, Hurley PE, Brindle RC, Williams SE (2021) Heart rate reactivity to acute psychological stress predicts higher levels of posttraumatic stress disorder symptoms during the COVID-19 pandemic. Psychosom Med 83(4):351–357. https://doi.org/10.1097/PSY.0000000000000848

    Article  CAS  PubMed  Google Scholar 

  84. Morey RA, Dunsmoor JE, Haswell CC, Brown VM, Vora A, Weiner J, Stjepanovic D, Wagner HR 3rd, VA Mid-Atlantic MIRECC Workgroup, LaBar KS (2015) Fear learning circuitry is biased toward generalization of fear associations in posttraumatic stress disorder. Transl Psychiatry 5(12):e700. https://doi.org/10.1038/tp.2015.196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Besnard A, Sahay A (2016) Adult hippocampal neurogenesis, fear generalization, and stress. Neuropsychopharmacology 41(1):24–44. https://doi.org/10.1038/npp.2015.167

    Article  PubMed  Google Scholar 

  86. Lopresto D, Schipper P, Homberg JR (2016) Neural circuits and mechanisms involved in fear generalization: implications for the pathophysiology and treatment of posttraumatic stress disorder. Neurosci Biobehav Rev 60:31–42. https://doi.org/10.1016/j.neubiorev.2015.10.009

    Article  PubMed  Google Scholar 

  87. Hammell AE, Helwig NE, Kaczkurkin AN, Sponheim SR, Lissek S (2020) The temporal course of over-generalized conditioned threat expectancies in posttraumatic stress disorder. Behav Res Ther 124:103513. https://doi.org/10.1016/j.brat.2019.103513

    Article  PubMed  Google Scholar 

  88. Lis S, Thome J, Kleindienst N, Mueller-Engelmann M, Steil R, Priebe K, Schmahl C, Hermans D, Bohus M (2020) Generalization of fear in post-traumatic stress disorder. Psychophysiology 57(1):e13422. https://doi.org/10.1111/psyp.13422

    Article  CAS  PubMed  Google Scholar 

  89. Sangha S, Diehl MM, Bergstrom HC, Drew MR (2020) Know safety, no fear. Neurosci Biobehav Rev 108:218–230. https://doi.org/10.1016/j.neubiorev.2019.11.006

    Article  PubMed  Google Scholar 

  90. Lin CC, Liu YP (2021) Psychiatric view of generalization and nonspecific memory after traumatic stress. Biol Psychiatry 90(7):434–435. https://doi.org/10.1016/j.biopsych.2021.07.022

    Article  PubMed  Google Scholar 

  91. Rabinak CA, Mori S, Lyons M, Milad MR, Phan KL (2017) Acquisition of CS-US contingencies during Pavlovian fear conditioning and extinction in social anxiety disorder and posttraumatic stress disorder. J Affect Disord 207:76–85. https://doi.org/10.1016/j.jad.2016.09.018

    Article  PubMed  Google Scholar 

  92. Berg H, Ma Y, Rueter A, Kaczkurkin A, Burton PC, DeYoung CG, MacDonald AW, Sponheim SR, Lissek SM (2021) Salience and central executive networks track overgeneralization of conditioned-fear in post-traumatic stress disorder. Psychol Med 51(15):2610–2619. https://doi.org/10.1017/S0033291720001166

    Article  PubMed  Google Scholar 

  93. Levy-Gigi E, Szabo C, Richter-Levin G, Kéri S (2015) Reduced hippocampal volume is associated with overgeneralization of negative context in individuals with PTSD. Neuropsychology 29(1):151–161. https://doi.org/10.1037/neu0000131

    Article  PubMed  Google Scholar 

  94. Bian XL, Qin C, Cai CY, Zhou Y, Tao Y, Lin YH, Wu HY, Chang L, Luo CX, Zhu DY (2019) Anterior cingulate cortex to ventral hippocampus circuit mediates contextual fear generalization. J Neurosci 39(29):5728–5739. https://doi.org/10.1523/JNEUROSCI.2739-18.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bergstrom HC (2020) Assaying fear memory discrimination and generalization: methods and concepts. Curr Protoc Neurosci 91(1):e89. https://doi.org/10.1002/cpns.89

    Article  PubMed  PubMed Central  Google Scholar 

  96. Akhtar A, Pilkhwal Sah S (2021) Advances in the pharmacotherapeutic management of post-traumatic stress disorder. Expert Opin Pharmacother 22(14):1919–1930. https://doi.org/10.1080/14656566.2021.1935871

    Article  CAS  PubMed  Google Scholar 

  97. Martin A, Naunton M, Kosari S, Peterson G, Thomas J, Christenson JK (2021) Treatment guidelines for PTSD: a systematic review. J Clin Med 10(18):4175. https://doi.org/10.3390/jcm10184175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pary R, Micchelli AN, Lippmann S (2021) How we treat posttraumatic stress disorder. Prim Care Compan CNS Disord 23(1):19nr02572. https://doi.org/10.4088/PCC.19nr02572

    Article  Google Scholar 

  99. Brewin CR (2018) Memory and forgetting. Curr Psychiatry Rep 20(10):87. https://doi.org/10.1007/s11920-018-0950-7

    Article  PubMed  PubMed Central  Google Scholar 

  100. Waits WM, Hoge CW (2018) Reconsolidation of traumatic memories using psychotherapy. Am J Psychiatry 175(11):1145. https://doi.org/10.1176/appi.ajp.2018.18060646

    Article  PubMed  Google Scholar 

  101. Monfils MH, Holmes EA (2018) Memory boundaries: opening a window inspired by reconsolidation to treat anxiety, trauma-related, and addiction disorders. Lancet Psychiatry 5(12):1032–1042. https://doi.org/10.1016/S2215-0366(18)30270-0

    Article  PubMed  Google Scholar 

  102. Kida S (2019) Reconsolidation/destabilization, extinction and forgetting of fear memory as therapeutic targets for PTSD. Psychopharmacology 236(1):49–57. https://doi.org/10.1007/s00213-018-5086-2

    Article  CAS  PubMed  Google Scholar 

  103. Milton AL (2019) Fear not: recent advances in understanding the neural basis of fear memories and implications for treatment development. F1000Research 8:F1000 Faculty Rev-1948. https://doi.org/10.12688/f1000research.20053.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Phelps EA, Hofmann SG (2019) Memory editing from science fiction to clinical practice. Nature 572(7767):43–50. https://doi.org/10.1038/s41586-019-1433-7

    Article  CAS  PubMed  Google Scholar 

  105. Cain CK, Maynard GD, Kehne JH (2012) Targeting memory processes with drugs to prevent or cure PTSD. Expert Opin Investig Drugs 21(9):1323–1350. https://doi.org/10.1517/13543784.2012.704020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Debiec J (2012) Memory reconsolidation processes and posttraumatic stress disorder: promises and challenges of translational research. Biol Psychiatry 71(4):284–285. https://doi.org/10.1016/j.biopsych.2011.12.009

    Article  PubMed  Google Scholar 

  107. Steckler T, Risbrough V (2012) Pharmacological treatment of PTSD - established and new approaches. Neuropharmacology 62(2):617–627. https://doi.org/10.1016/j.neuropharm.2011.06.012

    Article  CAS  PubMed  Google Scholar 

  108. Parsons RG, Ressler KJ (2013) Implications of memory modulation for post-traumatic stress and fear disorders. Nat Neurosci 16(2):146–153. https://doi.org/10.1038/nn.3296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schwabe L, Nader K, Pruessner JC (2014) Reconsolidation of human memory: brain mechanisms and clinical relevance. Biol Psychiatry 76(4):274–280. https://doi.org/10.1016/j.biopsych.2014.03.008

    Article  PubMed  Google Scholar 

  110. Haider S, Batool Z, Rafiq S (2020) Method for the identification of pharmacological intervention for the disruption of fear memory in PTSD-rat model. MethodsX 7:101059. https://doi.org/10.1016/j.mex.2020.101059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Vaiva G, Ducrocq F, Jezequel K, Averland B, Lestavel P, Brunet A, Marmar CR (2003) Immediate treatment with propranolol decreases posttraumatic stress disorder two months after trauma. Biol Psychiatry 54(9):947–949

    Article  CAS  PubMed  Google Scholar 

  112. Amos T, Stein DJ, Ipser JC (2014) Pharmacological interventions for preventing post-traumatic stress disorder (PTSD). Cochrane Database Syst Rev 7:CD006239. https://doi.org/10.1002/14651858.CD006239.pub2

    Article  Google Scholar 

  113. Roque AP (2015) Pharmacotherapy as prophylactic treatment of post-traumatic stress disorder: a review of the literature. Issues Ment Health Nurs 36(9):740–751. https://doi.org/10.3109/01612840.2015.1057785

    Article  PubMed  Google Scholar 

  114. Pope KS (1999) The ethics of research involving memories of trauma. Gen Hosp Psychiatry 21(3):157. https://doi.org/10.1016/s0163-8343(99)00019-5

    Article  CAS  PubMed  Google Scholar 

  115. Dossey L (2006) Memory management: a gathering ethical storm. Explore 2(3):185–188. https://doi.org/10.1016/j.explore.2006.03.001

    Article  PubMed  Google Scholar 

  116. Henry M, Fishman JR, Youngner SJ (2007) Propranolol and the prevention of post-traumatic stress disorder: is it wrong to erase the “sting” of bad memories? Am J Bioeth 7(9):12–20. https://doi.org/10.1080/15265160701518474

    Article  PubMed  Google Scholar 

  117. Donovan E (2010) Propranolol use in the prevention and treatment of posttraumatic stress disorder in military veterans: forgetting therapy revisited. Perspect Biol Med 53(1):61–74. https://doi.org/10.1353/pbm.0.0140

    Article  PubMed  Google Scholar 

  118. Quirk GJ, Paré D, Richardson R, Herry C, Monfils MH, Schiller D, Vicentic A (2010) Erasing fear memories with extinction training. J Neurosci 30(45):14993–14997. https://doi.org/10.1523/JNEUROSCI.4268-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Markowitz S, Fanselow M (2020) Exposure therapy for post-traumatic stress disorder: factors of limited success and possible alternative treatment. Brain Sci 10(3):167. https://doi.org/10.3390/brainsci10030167

    Article  PubMed  PubMed Central  Google Scholar 

  120. Paredes D, Morilak DA (2019) A rodent model of exposure therapy: the use of fear extinction as a therapeutic intervention for PTSD. Front Behav Neurosci 13:46. https://doi.org/10.3389/fnbeh.2019.00046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zuj DV, Palmer MA, Lommen MJ, Felmingham KL (2016) The centrality of fear extinction in linking risk factors to PTSD: a narrative review. Neurosci Biobehav Rev 69:15–35. https://doi.org/10.1016/j.neubiorev.2016.07.014

    Article  PubMed  Google Scholar 

  122. Pineles SL, Nillni YI, King MW, Patton SC, Bauer MR, Mostoufi SM, Gerber MR, Hauger R, Resick PA, Rasmusson AM, Orr SP (2016) Extinction retention and the menstrual cycle: different associations for women with posttraumatic stress disorder. J Abnorm Psychol 125(3):349–355. https://doi.org/10.1037/abn0000138

    Article  PubMed  Google Scholar 

  123. Singewald N, Holmes A (2019) Rodent models of impaired fear extinction. Psychopharmacology 236(1):21–32. https://doi.org/10.1007/s00213-018-5054-x

    Article  CAS  PubMed  Google Scholar 

  124. Marin MF, Lonak SF, Milad MR (2015) Augmentation of evidence-based psychotherapy for PTSD with cognitive enhancers. Curr Psychiatry Rep 17(6):39. https://doi.org/10.1007/s11920-015-0582-0

    Article  PubMed  Google Scholar 

  125. Singewald N, Schmuckermair C, Whittle N, Holmes A, Ressler KJ (2015) Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacol Ther 149:150–190. https://doi.org/10.1016/j.pharmthera.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  126. Smith NB, Doran JM, Sippel LM, Harpaz-Rotem I (2017) Fear extinction and memory reconsolidation as critical components in behavioral treatment for posttraumatic stress disorder and potential augmentation of these processes. Neurosci Lett 649:170–175. https://doi.org/10.1016/j.neulet.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  127. Baker JF, Cates ME, Luthin DR (2018) D-cycloserine in the treatment of posttraumatic stress disorder. Ment Health Clin 7(2):88–94. https://doi.org/10.9740/mhc.2017.03.088

    Article  PubMed  PubMed Central  Google Scholar 

  128. Bitencourt RM, Takahashi RN (2018) Cannabidiol as a therapeutic alternative for post-traumatic stress disorder: from bench research to confirmation in human trials. Front Neurosci 12:502. https://doi.org/10.3389/fnins.2018.00502

    Article  PubMed  PubMed Central  Google Scholar 

  129. Dittert N, Hüttner S, Polak T, Herrmann MJ (2018) Augmentation of fear extinction by transcranial direct current stimulation (tDCS). Front Behav Neurosci 12:76. https://doi.org/10.3389/fnbeh.2018.00076

    Article  PubMed  PubMed Central  Google Scholar 

  130. de Quervain D, Wolf OT, Roozendaal B (2019) Glucocorticoid-induced enhancement of extinction-from animal models to clinical trials. Psychopharmacology 236(1):183–199. https://doi.org/10.1007/s00213-018-5116-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lebois L, Seligowski AV, Wolff JD, Hill SB, Ressler KJ (2019) Augmentation of extinction and inhibitory learning in anxiety and trauma-related disorders. Annu Rev Clin Psychol 15:257–284. https://doi.org/10.1146/annurev-clinpsy-050718-095634

    Article  PubMed  PubMed Central  Google Scholar 

  132. Inslicht SS, Niles AN, Metzler TJ, Lipshitz SL, Otte C, Milad MR, Orr SP, Marmar CR, Neylan TC (2022) Randomized controlled experimental study of hydrocortisone and D-cycloserine effects on fear extinction in PTSD. Neuropsychopharmacology 47(11):1945–1952. https://doi.org/10.1038/s41386-021-01222-z

    Article  CAS  PubMed  Google Scholar 

  133. Fiorenza NG, Sartor D, Myskiw JC, Izquierdo I (2011) Treatment of fear memories: interactions between extinction and reconsolidation. An Acad Bras Cienc 83(4):1363–1372. https://doi.org/10.1590/s0001-37652011000400023

    Article  PubMed  Google Scholar 

  134. Auber A, Tedesco V, Jones CE, Monfils MH, Chiamulera C (2013) Post-retrieval extinction as reconsolidation interference: methodological issues or boundary conditions? Psychopharmacology 226(4):631–647. https://doi.org/10.1007/s00213-013-3004-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Post RM, Kegan R (2017) Prevention of recurrent affective episodes using extinction training in the reconsolidation window: a testable psychotherapeutic strategy. Psychiatry Res 249:327–336. https://doi.org/10.1016/j.psychres.2017.01.034

    Article  PubMed  Google Scholar 

  136. Chalkia A, Van Oudenhove L, Beckers T (2020) Preventing the return of fear in humans using reconsolidation update mechanisms: a verification report of Schiller et al. (2010). Cortex 129:510–525. https://doi.org/10.1016/j.cortex.2020.03.031

    Article  PubMed  PubMed Central  Google Scholar 

  137. Lancaster CL, Monfils MH, Telch MJ (2020) Augmenting exposure therapy with pre-extinction fear memory reactivation and deepened extinction: a randomized controlled trial. Behav Res Ther 135:103730. https://doi.org/10.1016/j.brat.2020.103730

    Article  PubMed  Google Scholar 

  138. Diergaarde L, Schoffelmeer AN, De Vries TJ (2008) Pharmacological manipulation of memory reconsolidation: towards a novel treatment of pathogenic memories. Eur J Pharmacol 585(2–3):453–457. https://doi.org/10.1016/j.ejphar.2008.03.010

    Article  CAS  PubMed  Google Scholar 

  139. Vermetten E, Zhohar J, Krugers HJ (2014) Pharmacotherapy in the aftermath of trauma; opportunities in the ‘golden hours’. Curr Psychiatry Rep 16(7):455. https://doi.org/10.1007/s11920-014-0455-y

    Article  PubMed  Google Scholar 

  140. Kindt M, van Emmerik A (2016) New avenues for treating emotional memory disorders: towards a reconsolidation intervention for posttraumatic stress disorder. Ther Adv Psychopharmacol 6(4):283–295. https://doi.org/10.1177/2045125316644541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dunbar AB, Taylor JR (2017) Reconsolidation and psychopathology: moving towards reconsolidation-based treatments. Neurobiol Learn Mem 142(Pt A):162–171. https://doi.org/10.1016/j.nlm.2016.11.005

    Article  PubMed  Google Scholar 

  142. Elsey J, Kindt M (2017) Tackling maladaptive memories through reconsolidation: from neural to clinical science. Neurobiol Learn Mem 142(Pt A):108–117. https://doi.org/10.1016/j.nlm.2017.03.007

    Article  PubMed  Google Scholar 

  143. Astill Wright L, Horstmann L, Holmes EA, Bisson JI (2021) Consolidation/reconsolidation therapies for the prevention and treatment of PTSD and re-experiencing: a systematic review and meta-analysis. Transl Psychiatry 11(1):453. https://doi.org/10.1038/s41398-021-01570-w

    Article  PubMed  PubMed Central  Google Scholar 

  144. Pitman RK (2011) Will reconsolidation blockade offer a novel treatment for posttraumatic stress disorder? Front Behav Neurosci 5:11. https://doi.org/10.3389/fnbeh.2011.00011

    Article  PubMed  PubMed Central  Google Scholar 

  145. Bustos SG, Maldonado H, Molina VA (2006) Midazolam disrupts fear memory reconsolidation. Neuroscience 139(3):831–842. https://doi.org/10.1016/j.neuroscience.2005.12.064

    Article  CAS  PubMed  Google Scholar 

  146. Lonergan MH, Olivera-Figueroa LA, Pitman RK, Brunet A (2013) Propranolol’s effects on the consolidation and reconsolidation of long-term emotional memory in healthy participants: a meta-analysis. J Psychiatry Neurosci 38(4):222–231. https://doi.org/10.1503/jpn.120111

    Article  PubMed  PubMed Central  Google Scholar 

  147. Brunet A, Thomas É, Saumier D, Ashbaugh AR, Azzoug A, Pitman RK, Orr SP, Tremblay J (2014) Trauma reactivation plus propranolol is associated with durably low physiological responding during subsequent script-driven traumatic imagery. Can J Psychiatr 59(4):228–232. https://doi.org/10.1177/070674371405900408

    Article  Google Scholar 

  148. Galarza Vallejo A, Kroes M, Rey E, Acedo MV, Moratti S, Fernández G, Strange BA (2019) Propofol-induced deep sedation reduces emotional episodic memory reconsolidation in humans. Sci Adv 5(3):eaav3801. https://doi.org/10.1126/sciadv.aav3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Raymundi AM, da Silva TR, Sohn J, Bertoglio LJ, Stern CA (2020) Effects of Δ9-tetrahydrocannabinol on aversive memories and anxiety: a review from human studies. BMC Psychiatry 20(1):420. https://doi.org/10.1186/s12888-020-02813-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Soeter M, Kindt M (2013) High trait anxiety: a challenge for disrupting fear memory reconsolidation. PLoS One 8(11):e75239. https://doi.org/10.1371/journal.pone.0075239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Toth SL, Cicchetti D (2011) Frontiers in translational research on trauma. Dev Psychopathol 23(2):353–355. https://doi.org/10.1017/S0954579411000101

    Article  PubMed  Google Scholar 

  152. Daskalakis NP, Yehuda R, Diamond DM (2013) Animal models in translational studies of PTSD. Psychoneuroendocrinology 38(9):1895–1911. https://doi.org/10.1016/j.psyneuen.2013.06.006

    Article  PubMed  Google Scholar 

  153. Cohen H, Matar MA, Zohar J (2014) Maintaining the clinical relevance of animal models in translational studies of post-traumatic stress disorder. ILAR J 55(2):233–245. https://doi.org/10.1093/ilar/ilu006

    Article  CAS  PubMed  Google Scholar 

  154. Kroes MC, Schiller D, LeDoux JE, Phelps EA (2016) Translational approaches targeting reconsolidation. Curr Top Behav Neurosci 28:197–230. https://doi.org/10.1007/7854_2015_5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kida S (2020) Function and mechanisms of memory destabilization and reconsolidation after retrieval. Proc Jpn Acad Ser B Phys Biol Sci 96(3):95–106. https://doi.org/10.2183/pjab.96.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bustos SG, Maldonado H, Molina VA (2009) Disruptive effect of midazolam on fear memory reconsolidation: decisive influence of reactivation time span and memory age. Neuropsychopharmacology 34(2):446–457. https://doi.org/10.1038/npp.2008.75

    Article  CAS  PubMed  Google Scholar 

  157. Bustos SG, Giachero M, Maldonado H, Molina VA (2010) Previous stress attenuates the susceptibility to Midazolam’s disruptive effect on fear memory reconsolidation: influence of pre-reactivation D-cycloserine administration. Neuropsychopharmacology 35(5):1097–1108. https://doi.org/10.1038/npp.2009.215

    Article  CAS  PubMed  Google Scholar 

  158. Marin FN, Franzen JM, Troyner F, Molina VA, Giachero M, Bertoglio LJ (2020) Taking advantage of fear generalization-associated destabilization to attenuate the underlying memory via reconsolidation intervention. Neuropharmacology 181:108338. https://doi.org/10.1016/j.neuropharm.2020.108338

    Article  CAS  PubMed  Google Scholar 

  159. Foa EB, Zinbarg R, Rothbaum BO (1992) Uncontrollability and unpredictability in post-traumatic stress disorder: an animal model. Psychol Bull 112(2):218–238. https://doi.org/10.1037/0033-2909.112.2.218

    Article  CAS  PubMed  Google Scholar 

  160. Yehuda R, Antelman SM (1993) Criteria for rationally evaluating animal models of posttraumatic stress disorder. Biol Psychiatry 33(7):479–486. https://doi.org/10.1016/0006-3223(93)90001-t

    Article  CAS  PubMed  Google Scholar 

  161. Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP, Gilbertson MW, Milad MR, Liberzon I (2012) Biological studies of post-traumatic stress disorder. Nat Rev Neurosci 13(11):769–787. https://doi.org/10.1038/nrn3339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Aspesi D, Pinna G (2019) Animal models of post-traumatic stress disorder and novel treatment targets. Behav Pharmacol 30:130–150. https://doi.org/10.1097/FBP.0000000000000467

    Article  CAS  PubMed  Google Scholar 

  163. Verbitsky A, Dopfel D, Zhang N (2020) Rodent models of post-traumatic stress disorder: behavioral assessment. Transl Psychiatry 10(1):132. https://doi.org/10.1038/s41398-020-0806-x

    Article  PubMed  PubMed Central  Google Scholar 

  164. Briscione MA, Jovanovic T, Norrholm SD (2014) Conditioned fear associated phenotypes as robust, translational indices of trauma-, stressor-, and anxiety-related behaviors. Front Psychiatry 5:88. https://doi.org/10.3389/fpsyt.2014.00088

    Article  PubMed  PubMed Central  Google Scholar 

  165. Bali A, Jaggi AS (2015) Electric foot shock stress: a useful tool in neuropsychiatric studies. Rev Neurosci 26(6):655–677. https://doi.org/10.1515/revneuro-2015-0015

    Article  PubMed  Google Scholar 

  166. Lissek S, van Meurs B (2015) Learning models of PTSD: theoretical accounts and psychobiological evidence. Int J Psychophysiol 98(3 Pt 2):594–605. https://doi.org/10.1016/j.ijpsycho.2014.11.006

    Article  PubMed  Google Scholar 

  167. Richter-Levin G, Stork O, Schmidt MV (2019) Animal models of PTSD: a challenge to be met. Mol Psychiatry 24(8):1135–1156. https://doi.org/10.1038/s41380-018-0272-5

    Article  PubMed  Google Scholar 

  168. Fanselow MS, Ponnusamy (2008) The use of conditioning tasks to model fear and anxiety. In: Blanchard RJ, Blanchard DC, Griebel G, Nutt D (eds) Handbook of anxiety and fear. Academic, Oxford, pp 29–48

    Chapter  Google Scholar 

  169. Siegmund A, Wotjak CT (2006) Toward an animal model of posttraumatic stress disorder. Ann N Y Acad Sci 1071:324–334. https://doi.org/10.1196/annals.1364.025

    Article  PubMed  Google Scholar 

  170. Armstrong T, Federman S, Hampson K, Crabtree O, Olatunji BO (2021) Fear learning in veterans with combat-related PTSD is linked to anxiety sensitivity: evidence from self-report and pupillometry. Behav Ther 52(1):149–161. https://doi.org/10.1016/j.beth.2020.03.006

    Article  PubMed  Google Scholar 

  171. Miller MM, McEwen BS (2006) Establishing an agenda for translational research on PTSD. Ann N Y Acad Sci 1071:294–312. https://doi.org/10.1196/annals.1364.023

    Article  PubMed  Google Scholar 

  172. Cohen H, Richter-Levin G (2009) Toward animal models of post-traumatic stress disorder. In: Shiromani PJ, Keane TM, LeDoux JE (eds) Post-traumatic stress disorder: basic science and clinical practice. Humana Press, New York

    Google Scholar 

  173. Desmedt A, Marighetto A, Piazza PV (2015) Abnormal fear memory as a model for posttraumatic stress disorder. Biol Psychiatry 78(5):290–297. https://doi.org/10.1016/j.biopsych.2015.06.017

    Article  PubMed  Google Scholar 

  174. Maldonado NM, Martijena ID, Molina VA (2011) Facilitating influence of stress on the consolidation of fear memory induced by a weak training: reversal by midazolam pretreatment. Behav Brain Res 225(1):77–84. https://doi.org/10.1016/j.bbr.2011.06.035

    Article  CAS  PubMed  Google Scholar 

  175. Corley MJ, Caruso MJ, Takahashi LK (2012) Stress-induced enhancement of fear conditioning and sensitization facilitates extinction-resistant and habituation-resistant fear behaviors in a novel animal model of posttraumatic stress disorder. Physiol Behav 105(2):408–416. https://doi.org/10.1016/j.physbeh.2011.08.037

    Article  CAS  PubMed  Google Scholar 

  176. Olson VG, Rockett HR, Reh RK, Redila VA, Tran PM, Venkov HA, Defino MC, Hague C, Peskind ER, Szot P, Raskind MA (2011) The role of norepinephrine in differential response to stress in an animal model of posttraumatic stress disorder. Biol Psychiatry 70(5):441–448. https://doi.org/10.1016/j.biopsych.2010.11.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Reznikov R, Diwan M, Nobrega JN, Hamani C (2015) Towards a better preclinical model of PTSD: characterizing animals with weak extinction, maladaptive stress responses and low plasma corticosterone. J Psychiatr Res 61:158–165. https://doi.org/10.1016/j.jpsychires.2014.12.017

    Article  PubMed  Google Scholar 

  178. Cabib S, Orsini C, Puglisi Allegra S (2019) Animal models of liability to post-traumatic stress disorder: going beyond fear memory. Behav Pharmacol 30(2 and 3-Spec Issue):122–129. https://doi.org/10.1097/FBP.0000000000000475

    Article  PubMed  Google Scholar 

  179. Daskalakis NP, Lehrner A, Yehuda R (2013) Endocrine aspects of post-traumatic stress disorder and implications for diagnosis and treatment. Endocrinol Metab Clin N Am 42(3):503–513. https://doi.org/10.1016/j.ecl.2013.05.004

    Article  Google Scholar 

  180. Zoladz PR (2021) Animal models for the discovery of novel drugs for post-traumatic stress disorder. Expert Opin Drug Discovery 16(2):135–146. https://doi.org/10.1080/17460441.2020.1820982

    Article  CAS  Google Scholar 

  181. Bremner JD, Randall P, Scott TM, Bronen RA, Seibyl JP, Southwick SM, Delaney RC, McCarthy G, Charney DS, Innis RB (1995) MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am J Psychiatry 152(7):973–981. https://doi.org/10.1176/ajp.152.7.973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Gurvits TV, Shenton ME, Hokama H, Ohta H, Lasko NB, Gilbertson MW, Orr SP, Kikinis R, Jolesz FA, McCarley RW, Pitman RK (1996) Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol Psychiatry 40(11):1091–1099. https://doi.org/10.1016/S0006-3223(96)00229-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Stein MB, Koverola C, Hanna C, Torchia MG, McClarty B (1997) Hippocampal volume in women victimized by childhood sexual abuse. Psychol Med 27(4):951–959. https://doi.org/10.1017/s0033291797005242

    Article  CAS  PubMed  Google Scholar 

  184. Woon F, Hedges DW (2011) Gender does not moderate hippocampal volume deficits in adults with posttraumatic stress disorder: a meta-analysis. Hippocampus 21(3):243–252. https://doi.org/10.1002/hipo.20746

    Article  PubMed  Google Scholar 

  185. Kheirbek MA, Klemenhagen KC, Sahay A, Hen R (2012) Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci 15(12):1613–1620. https://doi.org/10.1038/nn.3262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kasai K, Yamasue H, Gilbertson MW, Shenton ME, Rauch SL, Pitman RK (2008) Evidence for acquired pregenual anterior cingulate gray matter loss from a twin study of combat-related posttraumatic stress disorder. Biol Psychiatry 63(6):550–556. https://doi.org/10.1016/j.biopsych.2007.06.022

    Article  PubMed  Google Scholar 

  187. Kitayama N, Quinn S, Bremner JD (2006) Smaller volume of anterior cingulate cortex in abuse-related posttraumatic stress disorder. J Affect Disord 90(2–3):171–174. https://doi.org/10.1016/j.jad.2005.11.006

    Article  PubMed  PubMed Central  Google Scholar 

  188. Shin LM, McNally RJ, Kosslyn SM, Thompson WL, Rauch SL, Alpert NM, Metzger LJ, Lasko NB, Orr SP, Pitman RK (1999) Regional cerebral blood flow during script-driven imagery in childhood sexual abuse-related PTSD: a PET investigation. Am J Psychiatry 156(4):575–584. https://doi.org/10.1176/ajp.156.4.575

    Article  CAS  PubMed  Google Scholar 

  189. Schuff N, Neylan TC, Fox-Bosetti S, Lenoci M, Samuelson KW, Studholme C, Kornak J, Marmar CR, Weiner MW (2008) Abnormal N-acetylaspartate in hippocampus and anterior cingulate in posttraumatic stress disorder. Psychiatry Res 162(2):147–157. https://doi.org/10.1016/j.pscychresns.2007.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kim SJ, Jeong DU, Sim ME, Bae SC, Chung A, Kim MJ, Chang KH, Ryu J, Renshaw PF, Lyoo IK (2006) Asymmetrically altered integrity of cingulum bundle in posttraumatic stress disorder. Neuropsychobiology 54(2):120–125. https://doi.org/10.1159/000098262

    Article  PubMed  Google Scholar 

  191. Liberzon I, Taylor SF, Amdur R, Jung TD, Chamberlain KR, Minoshima S, Koeppe RA, Fig LM (1999) Brain activation in PTSD in response to trauma-related stimuli. Biol Psychiatry 45(7):817–826. https://doi.org/10.1016/s0006-3223(98)00246-7

    Article  CAS  PubMed  Google Scholar 

  192. Pannu Hayes J, Labar KS, Petty CM, McCarthy G, Morey RA (2009) Alterations in the neural circuitry for emotion and attention associated with posttraumatic stress symptomatology. Psychiatry Res 172(1):7–15. https://doi.org/10.1016/j.pscychresns.2008.05.005

    Article  PubMed  Google Scholar 

  193. Shin LM, Handwerger K (2009) Is posttraumatic stress disorder a stress-induced fear circuitry disorder? J Trauma Stress 22(5):409–415. https://doi.org/10.1002/jts.20442

    Article  PubMed  Google Scholar 

  194. Bremner JD, Vermetten E, Schmahl C, Vaccarino V, Vythilingam M, Afzal N, Grillon C, Charney DS (2005) Positron emission tomographic imaging of neural correlates of a fear acquisition and extinction paradigm in women with childhood sexual-abuse-related post-traumatic stress disorder. Psychol Med 35(6):791–806. https://doi.org/10.1017/s0033291704003290

    Article  PubMed  PubMed Central  Google Scholar 

  195. Rauch SL, Shin LM, Phelps EA (2006) Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research – past, present, and future. Biol Psychiatry 60(4):376–382. https://doi.org/10.1016/j.biopsych.2006.06.004

    Article  PubMed  Google Scholar 

  196. Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB, Zeidan MA, Handwerger K, Orr SP, Rauch SL (2009) Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol Psychiatry 66(12):1075–1082. https://doi.org/10.1016/j.biopsych.2009.06.026

    Article  PubMed  PubMed Central  Google Scholar 

  197. Grossman R, Buchsbaum MS, Yehuda R (2002) Neuroimaging studies in post-traumatic stress disorder. Psychiatric Clin N Am 25(2):317–3vi. https://doi.org/10.1016/s0193-953x(01)00011-9

    Article  Google Scholar 

  198. Bryant RA, Felmingham KL, Kemp AH, Barton M, Peduto AS, Rennie C, Gordon E, Williams LM (2005) Neural networks of information processing in posttraumatic stress disorder: a functional magnetic resonance imaging study. Biol Psychiatry 58(2):111–118. https://doi.org/10.1016/j.biopsych.2005.03.021

    Article  PubMed  Google Scholar 

  199. Karl A, Schaefer M, Malta LS, Dörfel D, Rohleder N, Werner A (2006) A meta-analysis of structural brain abnormalities in PTSD. Neurosci Biobehav Rev 30(7):1004–1031. https://doi.org/10.1016/j.neubiorev.2006.03.004

    Article  PubMed  Google Scholar 

  200. Liberzon I, Martis B (2006) Neuroimaging studies of emotional responses in PTSD. Ann N Y Acad Sci 1071:87–109. https://doi.org/10.1196/annals.1364.009

    Article  PubMed  Google Scholar 

  201. Etkin A, Wager TD (2007) Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry 164(10):1476–1488. https://doi.org/10.1176/appi.ajp.2007.07030504

    Article  PubMed  PubMed Central  Google Scholar 

  202. Liberzon I, Sripada CS (2008) The functional neuroanatomy of PTSD: a critical review. Prog Brain Res 167:151–169. https://doi.org/10.1016/S0079-6123(07)67011-3

    Article  PubMed  Google Scholar 

  203. Simmons AN, Paulus MP, Thorp SR, Matthews SC, Norman SB, Stein MB (2008) Functional activation and neural networks in women with posttraumatic stress disorder related to intimate partner violence. Biol Psychiatry 64(8):681–690. https://doi.org/10.1016/j.biopsych.2008.05.027

    Article  PubMed  PubMed Central  Google Scholar 

  204. Taber KH, Hurley RA (2009) PTSD and combat-related injuries: functional neuroanatomy. J Neuropsychiatry Clin Neurosci 21(1):1–4. https://doi.org/10.1176/jnp.2009.21.1.iv

    Article  PubMed  Google Scholar 

  205. Karl A, Werner A (2010) The use of proton magnetic resonance spectroscopy in PTSD research – meta-analyses of findings and methodological review. Neurosci Biobehav Rev 34(1):7–22. https://doi.org/10.1016/j.neubiorev.2009.06.008

    Article  PubMed  Google Scholar 

  206. Hayes JP, Hayes SM, Mikedis AM (2012) Quantitative meta-analysis of neural activity in posttraumatic stress disorder. Biol Mood Anxiety Disord 2:9. https://doi.org/10.1186/2045-5380-2-9

    Article  PubMed  PubMed Central  Google Scholar 

  207. Patel R, Spreng RN, Shin LM, Girard TA (2012) Neurocircuitry models of posttraumatic stress disorder and beyond: a meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev 36(9):2130–2142. https://doi.org/10.1016/j.neubiorev.2012.06.003

    Article  PubMed  Google Scholar 

  208. Shucard JL, Cox J, Shucard DW, Fetter H, Chung C, Ramasamy D, Violanti J (2012) Symptoms of posttraumatic stress disorder and exposure to traumatic stressors are related to brain structural volumes and behavioral measures of affective stimulus processing in police officers. Psychiatry Res 204(1):25–31. https://doi.org/10.1016/j.pscychresns.2012.04.006

    Article  PubMed  Google Scholar 

  209. Scioli-Salter ER, Forman DE, Otis JD, Gregor K, Valovski I, Rasmusson AM (2015) The shared neuroanatomy and neurobiology of comorbid chronic pain and PTSD: therapeutic implications. Clin J Pain 31(4):363–374. https://doi.org/10.1097/AJP.0000000000000115

    Article  PubMed  Google Scholar 

  210. Akiki TJ, Averill CL, Abdallah CG (2017) A network-based neurobiological model of PTSD: evidence from structural and functional neuroimaging studies. Curr Psychiatry Rep 19(11):81. https://doi.org/10.1007/s11920-017-0840-4

    Article  PubMed  PubMed Central  Google Scholar 

  211. Fitzgerald JM, DiGangi JA, Phan KL (2018) Functional neuroanatomy of emotion and its regulation in PTSD. Harv Rev Psychiatry 26(3):116–128. https://doi.org/10.1097/HRP.0000000000000185

    Article  PubMed  PubMed Central  Google Scholar 

  212. Henigsberg N, Kalember P, Petrović ZK, Šečić A (2019) Neuroimaging research in posttraumatic stress disorder – focus on amygdala, hippocampus and prefrontal cortex. Prog Neuro-Psychopharmacol Biol Psychiatry 90:37–42. https://doi.org/10.1016/j.pnpbp.2018.11.003

    Article  Google Scholar 

  213. Harnett NG, Goodman AM, Knight DC (2020) PTSD-related neuroimaging abnormalities in brain function, structure, and biochemistry. Exp Neurol 330:113331. https://doi.org/10.1016/j.expneurol.2020.113331

    Article  CAS  PubMed  Google Scholar 

  214. Kamiya K, Abe O (2020) Imaging of posttraumatic stress disorder. Neuroimaging Clin N Am 30(1):115–123. https://doi.org/10.1016/j.nic.2019.09.010

    Article  PubMed  Google Scholar 

  215. Kribakaran S, Danese A, Bromis K, Kempton MJ, Gee DG (2020) Meta-analysis of structural magnetic resonance imaging studies in pediatric posttraumatic stress disorder and comparison with related conditions. Biol Psychiatry Cogn Neurosci Neuroimag 5(1):23–34. https://doi.org/10.1016/j.bpsc.2019.08.006

    Article  Google Scholar 

  216. Kunimatsu A, Yasaka K, Akai H, Kunimatsu N, Abe O (2020) MRI findings in posttraumatic stress disorder. J Magn Reson Imaging 52(2):380–396. https://doi.org/10.1002/jmri.26929

    Article  PubMed  Google Scholar 

  217. Nisar S, Bhat AA, Hashem S, Syed N, Yadav SK, Uddin S, Fakhro K, Bagga P, Thompson P, Reddy R, Frenneaux MP, Haris M (2020) Genetic and neuroimaging approaches to understanding post-traumatic stress disorder. Int J Mol Sci 21(12):4503. https://doi.org/10.3390/ijms21124503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ross MC, Cisler JM (2020) Altered large-scale functional brain organization in posttraumatic stress disorder: a comprehensive review of univariate and network-level neurocircuitry models of PTSD. NeuroImage Clin 27:102319. https://doi.org/10.1016/j.nicl.2020.102319

    Article  PubMed  PubMed Central  Google Scholar 

  219. Crombie KM, Ross MC, Letkiewicz AM, Sartin-Tarm A, Cisler JM (2021) Differential relationships of PTSD symptom clusters with cortical thickness and grey matter volumes among women with PTSD. Sci Rep 11(1):1825. https://doi.org/10.1038/s41598-020-80776-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Neria Y (2021) Functional neuroimaging in PTSD: from discovery of underlying mechanisms to addressing diagnostic heterogeneity. Am J Psychiatry 178(2):128–135. https://doi.org/10.1176/appi.ajp.2020.20121727

    Article  PubMed  Google Scholar 

  221. Serra-Blasco M, Radua J, Soriano-Mas C, Gómez-Benlloch A, Porta-Casteràs D, Carulla-Roig M, Albajes-Eizagirre A, Arnone D, Klauser P, Canales-Rodríguez EJ, Hilbert K, Wise T, Cheng Y, Kandilarova S, Mataix-Cols D, Vieta E, Via E, Cardoner N (2021) Structural brain correlates in major depression, anxiety disorders and post-traumatic stress disorder: a voxel-based morphometry meta-analysis. Neurosci Biobehav Rev 129:269–281. https://doi.org/10.1016/j.neubiorev.2021.07.002

    Article  PubMed  Google Scholar 

  222. van Rooij S, Sippel LM, McDonald WM, Holtzheimer PE (2021) Defining focal brain stimulation targets for PTSD using neuroimaging. Depress Anxiety. https://doi.org/10.1002/da.23159

  223. Shin LM, Orr SP, Carson MA, Rauch SL, Macklin ML, Lasko NB, Peters PM, Metzger LJ, Dougherty DD, Cannistraro PA, Alpert NM, Fischman AJ, Pitman RK (2004) Regional cerebral blood flow in the amygdala and medial prefrontal cortex during traumatic imagery in male and female Vietnam veterans with PTSD. Arch Gen Psychiatry 61(2):168–176. https://doi.org/10.1001/archpsyc.61.2.168

    Article  PubMed  Google Scholar 

  224. Richert KA, Carrion VG, Karchemskiy A, Reiss AL (2006) Regional differences of the prefrontal cortex in pediatric PTSD: an MRI study. Depress Anxiety 23(1):17–25. https://doi.org/10.1002/da.20131

    Article  PubMed  Google Scholar 

  225. Carrion VG, Weems CF, Richert K, Hoffman BC, Reiss AL (2010) Decreased prefrontal cortical volume associated with increased bedtime cortisol in traumatized youth. Biol Psychiatry 68(5):491–493. https://doi.org/10.1016/j.biopsych.2010.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Gold AL, Shin LM, Orr SP, Carson MA, Rauch SL, Macklin ML, Lasko NB, Metzger LJ, Dougherty DD, Alpert NM, Fischman AJ, Pitman RK (2011) Decreased regional cerebral blood flow in medial prefrontal cortex during trauma-unrelated stressful imagery in Vietnam veterans with post-traumatic stress disorder. Psychol Med 41(12):2563–2572. https://doi.org/10.1017/S0033291711000730

    Article  CAS  PubMed  Google Scholar 

  227. Shin LM, Bush G, Milad MR, Lasko NB, Brohawn KH, Hughes KC, Macklin ML, Gold AL, Karpf RD, Orr SP, Rauch SL, Pitman RK (2011) Exaggerated activation of dorsal anterior cingulate cortex during cognitive interference: a monozygotic twin study of posttraumatic stress disorder. Am J Psychiatry 168(9):979–985. https://doi.org/10.1176/appi.ajp.2011.09121812

    Article  PubMed  PubMed Central  Google Scholar 

  228. Aupperle RL, Allard CB, Grimes EM, Simmons AN, Flagan T, Behrooznia M, Cissell SH, Twamley EW, Thorp SR, Norman SB, Paulus MP, Stein MB (2012) Dorsolateral prefrontal cortex activation during emotional anticipation and neuropsychological performance in posttraumatic stress disorder. Arch Gen Psychiatry 69(4):360–371. https://doi.org/10.1001/archgenpsychiatry.2011.1539

    Article  PubMed  Google Scholar 

  229. Knight LK, Naaz F, Stoica T, Depue BE, Alzheimer’s Disease Neuroimaging Initiative (2017) Lifetime PTSD and geriatric depression symptomatology relate to altered dorsomedial frontal and amygdala morphometry. Psychiatry Res Neuroimaging 267:59–68. https://doi.org/10.1016/j.pscychresns.2017.07.003

    Article  PubMed  Google Scholar 

  230. Hinojosa CA, Kaur N, VanElzakker MB, Shin LM (2019) Cingulate subregions in posttraumatic stress disorder, chronic stress, and treatment. Handb Clin Neurol 166:355–370. https://doi.org/10.1016/B978-0-444-64196-0.00020-0

    Article  PubMed  Google Scholar 

  231. Kaldewaij R, Koch S, Hashemi MM, Zhang W, Klumpers F, Roelofs K (2021) Anterior prefrontal brain activity during emotion control predicts resilience to post-traumatic stress symptoms. Nat Hum Behav 5(8):1055–1064. https://doi.org/10.1038/s41562-021-01055-2

    Article  PubMed  PubMed Central  Google Scholar 

  232. Weisholtz D, Silbersweig D, Pan H, Cloitre M, LeDoux J, Stern E (2021) Correlation between rostral dorsomedial prefrontal cortex activation by trauma-related words and subsequent response to CBT for PTSD. J Neuropsychiatry Clin Neurosci 33(2):116–123. https://doi.org/10.1176/appi.neuropsych.20030058

    Article  PubMed  Google Scholar 

  233. Alexandra Kredlow M, Fenster RJ, Laurent ES, Ressler KJ, Phelps EA (2022) Prefrontal cortex, amygdala, and threat processing: implications for PTSD. Neuropsychopharmacology 47(1):247–259. https://doi.org/10.1038/s41386-021-01155-7

    Article  CAS  PubMed  Google Scholar 

  234. Woon FL, Hedges DW (2009) Amygdala volume in adults with posttraumatic stress disorder: a meta-analysis. J Neuropsychiatry Clin Neurosci 21(1):5–12. https://doi.org/10.1176/jnp.2009.21.1.5

    Article  PubMed  Google Scholar 

  235. Aghajani M, Veer IM, van Hoof MJ, Rombouts SA, van der Wee NJ, Vermeiren RR (2016) Abnormal functional architecture of amygdala-centered networks in adolescent posttraumatic stress disorder. Hum Brain Mapp 37(3):1120–1135. https://doi.org/10.1002/hbm.23093

    Article  PubMed  PubMed Central  Google Scholar 

  236. Ahmed-Leitao F, Spies G, van den Heuvel L, Seedat S (2016) Hippocampal and amygdala volumes in adults with posttraumatic stress disorder secondary to childhood abuse or maltreatment: a systematic review. Psychiatry Res Neuroimaging 256:33–43. https://doi.org/10.1016/j.pscychresns.2016.09.008

    Article  PubMed  Google Scholar 

  237. Lieberman L, Gorka SM, DiGangi JA, Frederick A, Phan KL (2017) Impact of posttraumatic stress symptom dimensions on amygdala reactivity to emotional faces. Prog Neuro-Psychopharmacol Biol Psychiatry 79(Pt B):401–407. https://doi.org/10.1016/j.pnpbp.2017.07.021

    Article  Google Scholar 

  238. Badura-Brack A, McDermott TJ, Heinrichs-Graham E, Ryan TJ, Khanna MM, Pine DS, Bar-Haim Y, Wilson TW (2018) Veterans with PTSD demonstrate amygdala hyperactivity while viewing threatening faces: a MEG study. Biol Psychol 132:228–232. https://doi.org/10.1016/j.biopsycho.2018.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  239. Herzog JI, Thome J, Demirakca T, Koppe G, Ende G, Lis S, Rausch S, Priebe K, Müller-Engelmann M, Steil R, Bohus M, Schmahl C (2020) Influence of severity of type and timing of retrospectively reported childhood maltreatment on female amygdala and hippocampal volume. Sci Rep 10(1):1903. https://doi.org/10.1038/s41598-020-57490-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Kang JI, Mueller SG, Wu G, Lin J, Ng P, Yehuda R, Flory JD, Abu-Amara D, Reus VI, Gautam A, PTSD Systems Biology Consortium, Hammamieh R, Doyle FJ 3rd, Jett M, Marmar CR, Mellon SH, Wolkowitz OM (2020) Effect of combat exposure and posttraumatic stress disorder on telomere length and amygdala volume. Biol Psychiatry Cogn Neurosci Neuroimag 5(7):678–687. https://doi.org/10.1016/j.bpsc.2020.03.007

    Article  Google Scholar 

  241. Morey RA, Clarke EK, Haswell CC, Phillips RD, Clausen AN, Mufford MS, Saygin Z, VA Mid-Atlantic MIRECC Workgroup, Wagner HR, LaBar KS (2020) Amygdala nuclei volume and shape in military veterans with posttraumatic stress disorder. Biol Psychiatry Cogn Neurosci Neuroimag 5(3):281–290. https://doi.org/10.1016/j.bpsc.2019.11.016

    Article  Google Scholar 

  242. Liu T, Ke J, Qi R, Zhang L, Zhang Z, Xu Q, Zhong Y, Lu G, Chen F (2021) Altered functional connectivity of the amygdala and its subregions in typhoon-related post-traumatic stress disorder. Brain Behav 11(1):e01952. https://doi.org/10.1002/brb3.1952

    Article  PubMed  Google Scholar 

  243. Sicorello M, Thome J, Herzog J, Schmahl C (2021) Differential Effects of Early adversity and posttraumatic stress disorder on amygdala reactivity: the role of developmental timing. Biol Psychiatry Cogn Neurosci Neuroimag 6(11):1044–1051. https://doi.org/10.1016/j.bpsc.2020.10.009

    Article  Google Scholar 

  244. Bonne O, Brandes D, Gilboa A, Gomori JM, Shenton ME, Pitman RK, Shalev AY (2001) Longitudinal MRI study of hippocampal volume in trauma survivors with PTSD. Am J Psychiatry 158(8):1248–1251. https://doi.org/10.1176/appi.ajp.158.8.1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Bremner JD, Vythilingam M, Vermetten E, Southwick SM, McGlashan T, Nazeer A, Khan S, Vaccarino LV, Soufer R, Garg PK, Ng CK, Staib LH, Duncan JS, Charney DS (2003) MRI and PET study of deficits in hippocampal structure and function in women with childhood sexual abuse and posttraumatic stress disorder. Am J Psychiatry 160(5):924–932. https://doi.org/10.1176/appi.ajp.160.5.924

    Article  PubMed  Google Scholar 

  246. Kitayama N, Vaccarino V, Kutner M, Weiss P, Bremner JD (2005) Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: a meta-analysis. J Affect Disord 88(1):79–86. https://doi.org/10.1016/j.jad.2005.05.014

    Article  PubMed  Google Scholar 

  247. Smith ME (2005) Bilateral hippocampal volume reduction in adults with post-traumatic stress disorder: a meta-analysis of structural MRI studies. Hippocampus 15(6):798–807. https://doi.org/10.1002/hipo.20102

    Article  PubMed  Google Scholar 

  248. Bonne O, Vythilingam M, Inagaki M, Wood S, Neumeister A, Nugent AC, Snow J, Luckenbaugh DA, Bain EE, Drevets WC, Charney DS (2008) Reduced posterior hippocampal volume in posttraumatic stress disorder. J Clin Psychiatry 69(7):1087–1091. https://doi.org/10.4088/jcp.v69n0707

    Article  PubMed  PubMed Central  Google Scholar 

  249. Wang Z, Neylan TC, Mueller SG, Lenoci M, Truran D, Marmar CR, Weiner MW, Schuff N (2010) Magnetic resonance imaging of hippocampal subfields in posttraumatic stress disorder. Arch Gen Psychiatry 67(3):296–303. https://doi.org/10.1001/archgenpsychiatry.2009.205

    Article  PubMed  PubMed Central  Google Scholar 

  250. Logue MW, van Rooij S, Dennis EL, Davis SL, Hayes JP, Stevens JS, Densmore M, Haswell CC, Ipser J, Koch S, Korgaonkar M, Lebois L, Peverill M, Baker JT, Boedhoe P, Frijling JL, Gruber SA, Harpaz-Rotem I, Jahanshad N, Koopowitz S et al (2018) Smaller hippocampal volume in posttraumatic stress disorder: a multisite ENIGMA-PGC study: subcortical volumetry results from posttraumatic stress disorder consortia. Biol Psychiatry 83(3):244–253. https://doi.org/10.1016/j.biopsych.2017.09.006

    Article  PubMed  Google Scholar 

  251. Quidé Y, Andersson F, Dufour-Rainfray D, Descriaud C, Brizard B, Gissot V, Cléry H, Carrey Le Bas MP, Osterreicher S, Ogielska M, Saint-Martin P, El-Hage W (2018) Smaller hippocampal volume following sexual assault in women is associated with post-traumatic stress disorder. Acta Psychiatr Scand 138(4):312–324. https://doi.org/10.1111/acps.12920

    Article  CAS  PubMed  Google Scholar 

  252. Joshi SA, Duval ER, Kubat B, Liberzon I (2020) A review of hippocampal activation in post-traumatic stress disorder. Psychophysiology 57(1):e13357. https://doi.org/10.1111/psyp.13357

    Article  PubMed  Google Scholar 

  253. Dark HE, Harnett NG, Knight AJ, Knight DC (2021) Hippocampal volume varies with acute posttraumatic stress symptoms following medical trauma. Behav Neurosci 135(1):71–78. https://doi.org/10.1037/bne0000419

    Article  PubMed  Google Scholar 

  254. Li L, Pan N, Zhang L, Lui S, Huang X, Xu X, Wang S, Lei D, Li L, Kemp GJ, Gong Q (2021) Hippocampal subfield alterations in pediatric patients with post-traumatic stress disorder. Soc Cogn Affect Neurosci 16(3):334–344. https://doi.org/10.1093/scan/nsaa162

    Article  PubMed  Google Scholar 

  255. Weis CN, Webb EK, Huggins AA, Kallenbach M, Miskovich TA, Fitzgerald JM, Bennett KP, Krukowski JL, deRoon-Cassini TA, Larson CL (2021) Stability of hippocampal subfield volumes after trauma and relationship to development of PTSD symptoms. NeuroImage 236:118076. https://doi.org/10.1016/j.neuroimage.2021.118076

    Article  CAS  PubMed  Google Scholar 

  256. Fonzo GA, Simmons AN, Thorp SR, Norman SB, Paulus MP, Stein MB (2010) Exaggerated and disconnected insular-amygdalar blood oxygenation level-dependent response to threat-related emotional faces in women with intimate-partner violence posttraumatic stress disorder. Biol Psychiatry 68(5):433–441. https://doi.org/10.1016/j.biopsych.2010.04.028

    Article  PubMed  PubMed Central  Google Scholar 

  257. Gong Q, Li L, Tognin S, Wu Q, Pettersson-Yeo W, Lui S, Huang X, Marquand AF, Mechelli A (2014) Using structural neuroanatomy to identify trauma survivors with and without post-traumatic stress disorder at the individual level. Psychol Med 44(1):195–203. https://doi.org/10.1017/S0033291713000561

    Article  CAS  PubMed  Google Scholar 

  258. Boukezzi S, El Khoury-Malhame M, Auzias G, Reynaud E, Rousseau PF, Richard E, Zendjidjian X, Roques J, Castelli N, Correard N, Guyon V, Gellato C, Samuelian JC, Cancel A, Comte M, Latinus M, Guedj E, Khalfa S (2017) Grey matter density changes of structures involved in Posttraumatic Stress Disorder (PTSD) after recovery following Eye Movement Desensitization and Reprocessing (EMDR) therapy. Psychiatry Res Neuroimaging 266:146–152. https://doi.org/10.1016/j.pscychresns.2017.06.009

    Article  PubMed  Google Scholar 

  259. Awasthi S, Pan H, LeDoux JE, Cloitre M, Altemus M, McEwen B, Silbersweig D, Stern E (2020) The bed nucleus of the stria terminalis and functionally linked neurocircuitry modulate emotion processing and HPA axis dysfunction in posttraumatic stress disorder. NeuroImage Clin 28:102442. https://doi.org/10.1016/j.nicl.2020.102442

    Article  PubMed  PubMed Central  Google Scholar 

  260. Cwik JC, Vahle N, Woud ML, Potthoff D, Kessler H, Sartory G, Seitz RJ (2020) Reduced gray matter volume in the left prefrontal, occipital, and temporal regions as predictors for posttraumatic stress disorder: a voxel-based morphometric study. Eur Arch Psychiatry Clin Neurosci 270(5):577–588. https://doi.org/10.1007/s00406-019-01011-2

    Article  PubMed  Google Scholar 

  261. Harnett NG, Ference EW 3rd, Knight AJ, Knight DC (2020) White matter microstructure varies with post-traumatic stress severity following medical trauma. Brain Imag Behav 14(4):1012–1024. https://doi.org/10.1007/s11682-018-9995-9

    Article  Google Scholar 

  262. Ju Y, Ou W, Su J, Averill CL, Liu J, Wang M, Wang Z, Zhang Y, Liu B, Li L, Abdallah CG (2020) White matter microstructural alterations in posttraumatic stress disorder: an ROI and whole-brain based meta-analysis. J Affect Disord 266:655–670. https://doi.org/10.1016/j.jad.2020.01.047

    Article  PubMed  Google Scholar 

  263. Sambuco N, Bradley MM, Lang PJ (2021) Trauma-related dysfunction in the fronto-striatal reward circuit. J Affect Disord 287:359–366. https://doi.org/10.1016/j.jad.2021.03.043

    Article  PubMed  Google Scholar 

  264. Seidemann R, Duek O, Jia R, Levy I, Harpaz-Rotem I (2021) The reward system and post-traumatic stress disorder: does trauma affect the way we interact with positive stimuli? Chronic Stress 5:2470547021996006. https://doi.org/10.1177/2470547021996006

    Article  PubMed  PubMed Central  Google Scholar 

  265. Yoshii T (2021) The role of the thalamus in post-traumatic stress disorder. Int J Mol Sci 22(4):1730. https://doi.org/10.3390/ijms22041730

    Article  PubMed  PubMed Central  Google Scholar 

  266. Kang HJ, Yoon S, Lyoo IK (2015) Peripheral biomarker candidates of posttraumatic stress disorder. Exp Neurobiol 24(3):186–196. https://doi.org/10.5607/en.2015.24.3.186

    Article  PubMed  PubMed Central  Google Scholar 

  267. Bandelow B, Baldwin D, Abelli M, Bolea-Alamanac B, Bourin M, Chamberlain SR, Cinosi E, Davies S, Domschke K, Fineberg N, Grünblatt E, Jarema M, Kim YK, Maron E, Masdrakis V, Mikova O, Nutt D, Pallanti S, Pini S, Ströhle A et al (2017) Biological markers for anxiety disorders, OCD and PTSD: a consensus statement. Part II: neurochemistry, neurophysiology and neurocognition. World J Biol Psychiatry 18(3):162–214. https://doi.org/10.1080/15622975.2016.1190867

    Article  PubMed  Google Scholar 

  268. Geracioti TD Jr, Baker DG, Ekhator NN, West SA, Hill KK, Bruce AB, Schmidt D, Rounds-Kugler B, Yehuda R, Keck PE Jr, Kasckow JW (2001) CSF norepinephrine concentrations in posttraumatic stress disorder. Am J Psychiatry 158(8):1227–1230. https://doi.org/10.1176/appi.ajp.158.8.1227

    Article  PubMed  Google Scholar 

  269. Geracioti TD Jr, Baker DG, Kasckow JW, Strawn JR, Jeffrey Mulchahey J, Dashevsky BA, Horn PS, Ekhator NN (2008) Effects of trauma-related audiovisual stimulation on cerebrospinal fluid norepinephrine and corticotropin-releasing hormone concentrations in post-traumatic stress disorder. Psychoneuroendocrinology 33(4):416–424. https://doi.org/10.1016/j.psyneuen.2007.12.012

    Article  CAS  PubMed  Google Scholar 

  270. Norrholm SD, Jovanovic T, Smith AK, Binder E, Klengel T, Conneely K, Mercer KB, Davis JS, Kerley K, Winkler J, Gillespie CF, Bradley B, Ressler KJ (2013) Differential genetic and epigenetic regulation of catechol-O-methyltransferase is associated with impaired fear inhibition in posttraumatic stress disorder. Front Behav Neurosci 7:30. https://doi.org/10.3389/fnbeh.2013.00030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Ziegler C, Wolf C, Schiele MA, Feric Bojic E, Kucukalic S, Sabic Dzananovic E, Goci Uka A, Hoxha B, Haxhibeqiri V, Haxhibeqiri S, Kravic N, Muminovic Umihanic M, Cima Franc A, Jaksic N, Babic R, Pavlovic M, Warrings B, Bravo Mehmedbasic A, Rudan D, Aukst-Margetic B et al (2018) Monoamine oxidase A gene methylation and its role in posttraumatic stress disorder: first evidence from the South Eastern Europe (SEE)-PTSD study. Int J Neuropsychopharmacol 21(5):423–432. https://doi.org/10.1093/ijnp/pyx111

    Article  CAS  PubMed  Google Scholar 

  272. Perry BD, Giller EL Jr, Southwick SM (1987) Altered platelet alpha 2-adrenergic binding sites in posttraumatic stress disorder. Am J Psychiatry 144(11):1511–1512. https://doi.org/10.1176/ajp.144.11.1511a

    Article  CAS  PubMed  Google Scholar 

  273. Maes M, Lin AH, Verkerk R, Delmeire L, Van Gastel A, Van der Planken M, Scharpé S (1999) Serotonergic and noradrenergic markers of post-traumatic stress disorder with and without major depression. Neuropsychopharmacology 20(2):188–197. https://doi.org/10.1016/S0893-133X(98)00058-X

    Article  CAS  PubMed  Google Scholar 

  274. Hartwig CL, Sprick JD, Jeong J, Hu Y, Morison DG, Stein CM, Paranjape S, Park J (2020) Increased vascular α1-adrenergic receptor sensitivity in older adults with posttraumatic stress disorder. Am J Physiol Regul Integr Comp Physiol 319(6):R611–R616. https://doi.org/10.1152/ajpregu.00155.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Southwick SM, Krystal JH, Morgan CA, Johnson D, Nagy LM, Nicolaou A, Heninger GR, Charney DS (1993) Abnormal noradrenergic function in posttraumatic stress disorder. Arch Gen Psychiatry 50(4):266–274. https://doi.org/10.1001/archpsyc.1993.01820160036003

    Article  CAS  PubMed  Google Scholar 

  276. Morgan CA 3rd, Grillon C, Southwick SM, Nagy LM, Davis M, Krystal JH, Charney DS (1995) Yohimbine facilitated acoustic startle in combat veterans with post-traumatic stress disorder. Psychopharmacology 117(4):466–471. https://doi.org/10.1007/BF02246220

    Article  CAS  PubMed  Google Scholar 

  277. Bremner JD, Innis RB, Ng CK, Staib LH, Salomon RM, Bronen RA, Duncan J, Southwick SM, Krystal JH, Rich D, Zubal G, Dey H, Soufer R, Charney DS (1997) Positron emission tomography measurement of cerebral metabolic correlates of yohimbine administration in combat-related posttraumatic stress disorder. Arch Gen Psychiatry 54(3):246–254. https://doi.org/10.1001/archpsyc.1997.01830150070011

    Article  CAS  PubMed  Google Scholar 

  278. Blanchard EB, Kolb LC, Prins A, Gates S, McCoy GC (1991) Changes in plasma norepinephrine to combat-related stimuli among Vietnam veterans with posttraumatic stress disorder. J Nerv Ment Dis 179(6):371–373. https://doi.org/10.1097/00005053-199106000-00012

    Article  CAS  PubMed  Google Scholar 

  279. Mellman TA, Kumar A, Kulick-Bell R, Kumar M, Nolan B (1995) Nocturnal/daytime urine noradrenergic measures and sleep in combat-related PTSD. Biol Psychiatry 38(3):174–179. https://doi.org/10.1016/0006-3223(94)00238-X

    Article  CAS  PubMed  Google Scholar 

  280. Cordero MI, Sandi C (1998) A role for brain glucocorticoid receptors in contextual fear conditioning: dependence upon training intensity. Brain Res 786(1–2):11–17. https://doi.org/10.1016/s0006-8993(97)01420-0

    Article  CAS  PubMed  Google Scholar 

  281. Palma BD, Suchecki D, Tufik S (2000) Differential effects of acute cold and footshock on the sleep of rats. Brain Res 861(1):97–104. https://doi.org/10.1016/s0006-8993(00)02024-2

    Article  CAS  PubMed  Google Scholar 

  282. Luine V, Martinez C, Villegas M, Magariños AM, McEwen BS (1996) Restraint stress reversibly enhances spatial memory performance. Physiol Behav 59(1):27–32. https://doi.org/10.1016/0031-9384(95)02016-0

    Article  CAS  PubMed  Google Scholar 

  283. Thompson BL, Erickson K, Schulkin J, Rosen JB (2004) Corticosterone facilitates retention of contextually conditioned fear and increases CRH mRNA expression in the amygdala. Behav Brain Res 149(2):209–215. https://doi.org/10.1016/s0166-4328(03)00216-x

    Article  CAS  PubMed  Google Scholar 

  284. Marchand AR, Barbelivien A, Seillier A, Herbeaux K, Sarrieau A, Majchrzak M (2007) Contribution of corticosterone to cued versus contextual fear in rats. Behav Brain Res 183(1):101–110. https://doi.org/10.1016/j.bbr.2007.05.034

    Article  CAS  PubMed  Google Scholar 

  285. Mourtzi N, Sertedaki A, Charmandari E (2021) Glucocorticoid signaling and epigenetic alterations in stress-related disorders. Int J Mol Sci 22(11):5964. https://doi.org/10.3390/ijms22115964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Meewisse ML, Reitsma JB, de Vries GJ, Gersons BP, Olff M (2007) Cortisol and post-traumatic stress disorder in adults: systematic review and meta-analysis. Br J Psychiatry J Ment Sci 191:387–392. https://doi.org/10.1192/bjp.bp.106.024877

    Article  Google Scholar 

  287. Pan X, Wang Z, Wu X, Wen SW, Liu A (2018) Salivary cortisol in post-traumatic stress disorder: a systematic review and meta-analysis. BMC Psychiatry 18(1):324. https://doi.org/10.1186/s12888-018-1910-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Yehuda R, Boisoneau D, Lowy MT, Giller EL Jr (1995) Dose-response changes in plasma cortisol and lymphocyte glucocorticoid receptors following dexamethasone administration in combat veterans with and without posttraumatic stress disorder. Arch Gen Psychiatry 52(7):583–593. https://doi.org/10.1001/archpsyc.1995.03950190065010

    Article  CAS  PubMed  Google Scholar 

  289. Yehuda R, Golier JA, Yang RK, Tischler L (2004) Enhanced sensitivity to glucocorticoids in peripheral mononuclear leukocytes in posttraumatic stress disorder. Biol Psychiatry 55(11):1110–1116. https://doi.org/10.1016/j.biopsych.2004.02.010

    Article  CAS  PubMed  Google Scholar 

  290. Yehuda R, Halligan SL, Golier JA, Grossman R, Bierer LM (2004) Effects of trauma exposure on the cortisol response to dexamethasone administration in PTSD and major depressive disorder. Psychoneuroendocrinology 29(3):389–404. https://doi.org/10.1016/s0306-4530(03)00052-0

    Article  CAS  PubMed  Google Scholar 

  291. Somvanshi PR, Mellon SH, Yehuda R, Flory JD, Makotkine I, Bierer L, Marmar C, Jett M, Doyle FJ 3rd (2020) Role of enhanced glucocorticoid receptor sensitivity in inflammation in PTSD: insights from computational model for circadian-neuroendocrine-immune interactions. Am J Phys Endocrinol Metab 319(1):E48–E66. https://doi.org/10.1152/ajpendo.00398.2019

    Article  CAS  Google Scholar 

  292. Lehrner A, Bierer LM, Passarelli V, Pratchett LC, Flory JD, Bader HN, Harris IR, Bedi A, Daskalakis NP, Makotkine I, Yehuda R (2014) Maternal PTSD associates with greater glucocorticoid sensitivity in offspring of Holocaust survivors. Psychoneuroendocrinology 40:213–220. https://doi.org/10.1016/j.psyneuen.2013.11.019

    Article  CAS  PubMed  Google Scholar 

  293. Baker DG, Ekhator NN, Kasckow JW, Dashevsky B, Horn PS, Bednarik L, Geracioti TD Jr (2005) Higher levels of basal serial CSF cortisol in combat veterans with posttraumatic stress disorder. Am J Psychiatry 162(5):992–994. https://doi.org/10.1176/appi.ajp.162.5.992

    Article  PubMed  Google Scholar 

  294. Baker DG, West SA, Nicholson WE, Ekhator NN, Kasckow JW, Hill KK, Bruce AB, Orth DN, Geracioti TD Jr (1999) Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder. Am J Psychiatry 156(4):585–588. https://doi.org/10.1176/ajp.156.4.585

    Article  CAS  PubMed  Google Scholar 

  295. Deppermann S, Storchak H, Fallgatter AJ, Ehlis AC (2014) Stress-induced neuroplasticity: (mal)adaptation to adverse life events in patients with PTSD – a critical overview. Neuroscience 283:166–177. https://doi.org/10.1016/j.neuroscience.2014.08.037

    Article  CAS  PubMed  Google Scholar 

  296. Speer KE, Semple S, Naumovski N, D’Cunha NM, McKune AJ (2019) HPA axis function and diurnal cortisol in post-traumatic stress disorder: a systematic review. Neurobiol Stress 11:100180. https://doi.org/10.1016/j.ynstr.2019.100180

    Article  PubMed  PubMed Central  Google Scholar 

  297. Castro-Vale I, Carvalho D (2020) The pathways between cortisol-related regulation genes and PTSD psychotherapy. Healthcare 8(4):376. https://doi.org/10.3390/healthcare8040376

    Article  PubMed  PubMed Central  Google Scholar 

  298. Sarapultsev A, Sarapultsev P, Dremencov E, Komelkova M, Tseilikman O, Tseilikman V (2020) Low glucocorticoids in stress-related disorders: the role of inflammation. Stress 23(6):651–661. https://doi.org/10.1080/10253890.2020.1766020

    Article  CAS  PubMed  Google Scholar 

  299. Kim TD, Lee S, Yoon S (2020) Inflammation in post-traumatic stress disorder (PTSD): a review of potential correlates of PTSD with a neurological perspective. Antioxidants 9(2):107. https://doi.org/10.3390/antiox9020107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Yang JJ, Jiang W (2020) Immune biomarkers alterations in post-traumatic stress disorder: a systematic review and meta-analysis. J Affect Disord 268:39–46. https://doi.org/10.1016/j.jad.2020.02.044

    Article  CAS  PubMed  Google Scholar 

  301. Pan X, Kaminga AC, Wu Wen S, Liu A (2021) Chemokines in post-traumatic stress disorder: a network meta-analysis. Brain Behav Immun 92:115–126. https://doi.org/10.1016/j.bbi.2020.11.033

    Article  CAS  PubMed  Google Scholar 

  302. Morena M, Patel S, Bains JS, Hill MN (2016) Neurobiological interactions between stress and the endocannabinoid system. Neuropsychopharmacology 41(1):80–102. https://doi.org/10.1038/npp.2015.166

    Article  CAS  PubMed  Google Scholar 

  303. Ney L, Stone C, Nichols D, Felmingham K, Bruno R, Matthews A (2021) Endocannabinoid reactivity to acute stress: investigation of the relationship between salivary and plasma levels. Biol Psychol 159:108022. https://doi.org/10.1016/j.biopsycho.2021.108022

    Article  PubMed  Google Scholar 

  304. Hill MN, Bierer LM, Makotkine I, Golier JA, Galea S, McEwen BS, Hillard CJ, Yehuda R (2013) Reductions in circulating endocannabinoid levels in individuals with post-traumatic stress disorder following exposure to the World Trade Center attacks. Psychoneuroendocrinology 38(12):2952–2961. https://doi.org/10.1016/j.psyneuen.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  305. Wilker S, Pfeiffer A, Elbert T, Ovuga E, Karabatsiakis A, Krumbholz A, Thieme D, Schelling G, Kolassa IT (2016) Endocannabinoid concentrations in hair are associated with PTSD symptom severity. Psychoneuroendocrinology 67:198–206. https://doi.org/10.1016/j.psyneuen.2016.02.010

    Article  CAS  PubMed  Google Scholar 

  306. Crombie KM, Leitzelar BN, Brellenthin AG, Hillard CJ, Koltyn KF (2019) Loss of exercise- and stress-induced increases in circulating 2-arachidonoylglycerol concentrations in adults with chronic PTSD. Biol Psychol 145:1–7. https://doi.org/10.1016/j.biopsycho.2019.04.002

    Article  PubMed  Google Scholar 

  307. Dincheva I, Drysdale AT, Hartley CA, Johnson DC, Jing D, King EC, Ra S, Gray JM, Yang R, DeGruccio AM, Huang C, Cravatt BF, Glatt CE, Hill MN, Casey BJ, Lee FS (2015) FAAH genetic variation enhances fronto-amygdala function in mouse and human. Nat Commun 6:6395. https://doi.org/10.1038/ncomms7395

    Article  CAS  PubMed  Google Scholar 

  308. Crombie KM, Sartin-Tarm A, Sellnow K, Ahrenholtz R, Lee S, Matalamaki M, Almassi NE, Hillard CJ, Koltyn KF, Adams TG, Cisler JM (2021) Exercise-induced increases in Anandamide and BDNF during extinction consolidation contribute to reduced threat following reinstatement: preliminary evidence from a randomized controlled trial. Psychoneuroendocrinology 132:105355. https://doi.org/10.1016/j.psyneuen.2021.105355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Neumeister A, Normandin MD, Pietrzak RH, Piomelli D, Zheng MQ, Gujarro-Anton A, Potenza MN, Bailey CR, Lin SF, Najafzadeh S, Ropchan J, Henry S, Corsi-Travali S, Carson RE, Huang Y (2013) Elevated brain cannabinoid CB1 receptor availability in post-traumatic stress disorder: a positron emission tomography study. Mol Psychiatry 18(9):1034–1040. https://doi.org/10.1038/mp.2013.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Hill MN, Campolongo P, Yehuda R, Patel S (2018) Integrating endocannabinoid signaling and cannabinoids into the biology and treatment of posttraumatic stress disorder. Neuropsychopharmacology 43(1):80–102. https://doi.org/10.1038/npp.2017.162

    Article  PubMed  Google Scholar 

  311. Hauer D, Kaufmann I, Strewe C, Briegel I, Campolongo P, Schelling G (2014) The role of glucocorticoids, catecholamines and endocannabinoids in the development of traumatic memories and posttraumatic stress symptoms in survivors of critical illness. Neurobiol Learn Mem 112:68–74. https://doi.org/10.1016/j.nlm.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  312. Bailey CR, Cordell E, Sobin SM, Neumeister A (2013) Recent progress in understanding the pathophysiology of post-traumatic stress disorder: implications for targeted pharmacological treatment. CNS Drugs 27(3):221–232. https://doi.org/10.1007/s40263-013-0051-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Wimalawansa SJ (2014) Mechanisms of developing post-traumatic stress disorder: new targets for drug development and other potential interventions. CNS Neurol Disord Drug Targets 13(5):807–816. https://doi.org/10.2174/1871527313666140711091026

    Article  CAS  PubMed  Google Scholar 

  314. Fragkaki I, Thomaes K, Sijbrandij M (2016) Posttraumatic stress disorder under ongoing threat: a review of neurobiological and neuroendocrine findings. Eur J Psychotraumatol 7:30915. https://doi.org/10.3402/ejpt.v7.30915

    Article  PubMed  Google Scholar 

  315. Sabban EL, Alaluf LG, Serova LI (2016) Potential of neuropeptide Y for preventing or treating post-traumatic stress disorder. Neuropeptides 56:19–24. https://doi.org/10.1016/j.npep.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  316. Briscione MA, Michopoulos V, Jovanovic T, Norrholm SD (2017) Neuroendocrine underpinnings of increased risk for posttraumatic stress disorder in women. Vitam Horm 103:53–83. https://doi.org/10.1016/bs.vh.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  317. DePierro J, Lepow L, Feder A, Yehuda R (2019) Translating molecular and neuroendocrine findings in posttraumatic stress disorder and resilience to novel therapies. Biol Psychiatry 86(6):454–463. https://doi.org/10.1016/j.biopsych.2019.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Malikowska-Racia N, Salat K (2019) Recent advances in the neurobiology of posttraumatic stress disorder: a review of possible mechanisms underlying an effective pharmacotherapy. Pharmacol Res 142:30–49. https://doi.org/10.1016/j.phrs.2019.02.001

    Article  PubMed  Google Scholar 

  319. Ravi M, Stevens JS, Michopoulos V (2019) Neuroendocrine pathways underlying risk and resilience to PTSD in women. Front Neuroendocrinol 55:100790. https://doi.org/10.1016/j.yfrne.2019.100790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Torres-Berrio A, Nava-Mesa MO (2019) The opioid system in stress-induced memory disorders: from basic mechanisms to clinical implications in post-traumatic stress disorder and Alzheimer’s disease. Prog Neuro-Psychopharmacol Biol Psychiatry 88:327–338. https://doi.org/10.1016/j.pnpbp.2018.08.011

    Article  CAS  Google Scholar 

  321. Yoon S, Kim YK (2019) Neuroendocrinological treatment targets for posttraumatic stress disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 90:212–222. https://doi.org/10.1016/j.pnpbp.2018.11.021

    Article  CAS  Google Scholar 

  322. Seligowski AV, Harnett NG, Merker JB, Ressler KJ (2020) Nervous and endocrine system dysfunction in posttraumatic stress disorder: an overview and consideration of sex as a biological variable. Biol Psychiatry Cogn Neurosci Neuroimag 5(4):381–391. https://doi.org/10.1016/j.bpsc.2019.12.006

    Article  Google Scholar 

  323. Thoma MV, Joksimovic L, Kirschbaum C, Wolf JM, Rohleder N (2012) Altered salivary alpha-amylase awakening response in Bosnian War refugees with posttraumatic stress disorder. Psychoneuroendocrinology 37(6):810–817. https://doi.org/10.1016/j.psyneuen.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  324. Morris MC, Rao U (2013) Psychobiology of PTSD in the acute aftermath of trauma: integrating research on coping, HPA function and sympathetic nervous system activity. Asian J Psychiatr 6(1):3–21. https://doi.org/10.1016/j.ajp.2012.07.012

    Article  PubMed  Google Scholar 

  325. Busso DS, McLaughlin KA, Sheridan MA (2014) Media exposure and sympathetic nervous system reactivity predict PTSD symptoms after the Boston marathon bombings. Depress Anxiety 31(7):551–558. https://doi.org/10.1002/da.22282

    Article  PubMed  PubMed Central  Google Scholar 

  326. Liberzon I, King AP, Ressler KJ, Almli LM, Zhang P, Ma ST, Cohen GH, Tamburrino MB, Calabrese JR, Galea S (2014) Interaction of the ADRB2 gene polymorphism with childhood trauma in predicting adult symptoms of posttraumatic stress disorder. JAMA Psychiatry 71(10):1174–1182. https://doi.org/10.1001/jamapsychiatry.2014.999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Nicholson EL, Bryant RA, Felmingham KL (2014) Interaction of noradrenaline and cortisol predicts negative intrusive memories in posttraumatic stress disorder. Neurobiol Learn Mem 112:204–211. https://doi.org/10.1016/j.nlm.2013.11.018

    Article  CAS  PubMed  Google Scholar 

  328. Keeshin BR, Strawn JR, Out D, Granger DA, Putnam FW (2015) Elevated salivary alpha amylase in adolescent sexual abuse survivors with posttraumatic stress disorder symptoms. J Child Adolesc Psychopharmacol 25(4):344–350. https://doi.org/10.1089/cap.2014.0034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Pietrzak RH, Sumner JA, Aiello AE, Uddin M, Neumeister A, Guffanti G, Koenen KC (2015) Association of the rs2242446 polymorphism in the norepinephrine transporter gene SLC6A2 and anxious arousal symptoms of posttraumatic stress disorder. J Clin Psychiatry 76(4):e537–e538. https://doi.org/10.4088/JCP.14l09346

    Article  PubMed  PubMed Central  Google Scholar 

  330. Wingenfeld K, Whooley MA, Neylan TC, Otte C, Cohen BE (2015) Effect of current and lifetime posttraumatic stress disorder on 24-h urinary catecholamines and cortisol: results from the Mind Your Heart Study. Psychoneuroendocrinology 52:83–91. https://doi.org/10.1016/j.psyneuen.2014.10.023

    Article  CAS  PubMed  Google Scholar 

  331. Hendrickson RC, Raskind MA (2016) Noradrenergic dysregulation in the pathophysiology of PTSD. Exp Neurol 284:181–195. https://doi.org/10.1016/j.expneurol.2016.05.014

    Article  CAS  PubMed  Google Scholar 

  332. Gupta MA (2017) Recurrent hypersomnia and autonomic dysregulation in posttraumatic stress disorder. J Clin Sleep Med 13(12):1491. https://doi.org/10.5664/jcsm.6860

    Article  PubMed  PubMed Central  Google Scholar 

  333. Park J, Marvar PJ, Liao P, Kankam ML, Norrholm SD, Downey RM, McCullough SA, Le NA, Rothbaum BO (2017) Baroreflex dysfunction and augmented sympathetic nerve responses during mental stress in veterans with post-traumatic stress disorder. J Physiol 595(14):4893–4908. https://doi.org/10.1113/JP274269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Silva L, Katayama PL (2017) Baroreflex-mediated sympathetic overactivation induced by mental stress in post-traumatic stress disorder depends on the type of stressor. J Physiol 595(17):5757–5758. https://doi.org/10.1113/JP274859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Kanady JC, Maguen S, Neylan TC (2018) Further exploring the associations between sympathetic activation, fear of sleep, and insomnia symptoms in posttraumatic stress disorder. J Clin Sleep Med 14(12):2095–2096. https://doi.org/10.5664/jcsm.7552

    Article  PubMed  PubMed Central  Google Scholar 

  336. Naegeli C, Zeffiro T, Piccirelli M, Jaillard A, Weilenmann A, Hassanpour K, Schick M, Rufer M, Orr SP, Mueller-Pfeiffer C (2018) Locus coeruleus activity mediates hyperresponsiveness in posttraumatic stress disorder. Biol Psychiatry 83(3):254–262. https://doi.org/10.1016/j.biopsych.2017.08.021

    Article  PubMed  Google Scholar 

  337. Pan X, Kaminga AC, Wen SW, Liu A (2018) Catecholamines in post-traumatic stress disorder: a systematic review and meta-analysis. Front Mol Neurosci 11:450. https://doi.org/10.3389/fnmol.2018.00450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Ressler KJ (2018) Alpha-adrenergic receptors in PTSD – failure or time for precision medicine? N Engl J Med 378(6):575–576. https://doi.org/10.1056/NEJMe1716724

    Article  PubMed  Google Scholar 

  339. Cohen JR, Thomsen KN, Tu KM, Thakur H, McNeil S, Menon SV (2020) Cardiac autonomic functioning and post-traumatic stress: a preliminary study in youth at-risk for PTSD. Psychiatry Res 284:112684. https://doi.org/10.1016/j.psychres.2019.112684

    Article  PubMed  Google Scholar 

  340. Fonkoue IT, Marvar PJ, Norrholm S, Li Y, Kankam ML, Jones TN, Vemulapalli M, Rothbaum B, Bremner JD, Le NA, Park J (2020) Symptom severity impacts sympathetic dysregulation and inflammation in post-traumatic stress disorder (PTSD). Brain Behav Immun 83:260–269. https://doi.org/10.1016/j.bbi.2019.10.021

    Article  PubMed  Google Scholar 

  341. Fonkoue IT, Michopoulos V, Park J (2020) Sex differences in post-traumatic stress disorder risk: autonomic control and inflammation. Clin Auton Res 30(5):409–421. https://doi.org/10.1007/s10286-020-00729-7

    Article  PubMed  PubMed Central  Google Scholar 

  342. Gupta MA (2020) Nightmare recurrence in patients with post-traumatic stress disorder is likely a primary feature of central sympathetic nervous activation. J Clin Sleep Med 16(11):1995. https://doi.org/10.5664/jcsm.8782

    Article  PubMed  PubMed Central  Google Scholar 

  343. Gupta MA (2020) Hypopneas with arousals: an important feature of central nervous system sympathetic activation in posttraumatic stress disorder. J Clin Sleep Med 16(2):335. https://doi.org/10.5664/jcsm.8198

    Article  PubMed  PubMed Central  Google Scholar 

  344. Ross JA, Van Bockstaele EJ (2020) The role of catecholamines in modulating responses to stress: sex-specific patterns, implications, and therapeutic potential for post-traumatic stress disorder and opiate withdrawal. Eur J Neurosci 52(1):2429–2465. https://doi.org/10.1111/ejn.14714

    Article  PubMed  PubMed Central  Google Scholar 

  345. Schneider M, Schwerdtfeger A (2020) Autonomic dysfunction in posttraumatic stress disorder indexed by heart rate variability: a meta-analysis. Psychol Med 50(12):1937–1948. https://doi.org/10.1017/S003329172000207X

    Article  PubMed  PubMed Central  Google Scholar 

  346. Yoo JK, Badrov MB, Huang M, Bain RA, Dorn RP, Anderson EH, Wiblin JL, Suris A, Shoemaker JK, Fu Q (2020) Abnormal sympathetic neural recruitment patterns and hemodynamic responses to cold pressor test in women with posttraumatic stress disorder. Am J Physiol Heart Circ Physiol 318(5):H1198–H1207. https://doi.org/10.1152/ajpheart.00684.2019

    Article  CAS  PubMed  Google Scholar 

  347. Bicanic IA, Postma RM, Sinnema G, De Roos C, Olff M, Van Wesel F, Van de Putte EM (2013) Salivary cortisol and dehydroepiandrosterone sulfate in adolescent rape victims with post traumatic stress disorder. Psychoneuroendocrinology 38(3):408–415. https://doi.org/10.1016/j.psyneuen.2012.06.015

    Article  CAS  PubMed  Google Scholar 

  348. Dekel S, Ein-Dor T, Gordon KM, Rosen JB, Bonanno GA (2013) Cortisol and PTSD symptoms among male and female high-exposure 9/11 survivors. J Trauma Stress 26(5):621–625. https://doi.org/10.1002/jts.21839

    Article  PubMed  Google Scholar 

  349. Wahbeh H, Oken BS (2013) Salivary cortisol lower in posttraumatic stress disorder. J Trauma Stress 26(2):241–248. https://doi.org/10.1002/jts.21798

    Article  PubMed  Google Scholar 

  350. Walsh K, Nugent NR, Kotte A, Amstadter AB, Wang S, Guille C, Acierno R, Kilpatrick DG, Resnick HS (2013) Cortisol at the emergency room rape visit as a predictor of PTSD and depression symptoms over time. Psychoneuroendocrinology 38(11):2520–2528. https://doi.org/10.1016/j.psyneuen.2013.05.017

    Article  CAS  PubMed  Google Scholar 

  351. van Zuiden M, Kavelaars A, Geuze E, Olff M, Heijnen CJ (2013) Predicting PTSD: pre-existing vulnerabilities in glucocorticoid-signaling and implications for preventive interventions. Brain Behav Immun 30:12–21. https://doi.org/10.1016/j.bbi.2012.08.015

    Article  CAS  PubMed  Google Scholar 

  352. Labonté B, Azoulay N, Yerko V, Turecki G, Brunet A (2014) Epigenetic modulation of glucocorticoid receptors in posttraumatic stress disorder. Transl Psychiatry 4(3):e368. https://doi.org/10.1038/tp.2014.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Lian Y, Xiao J, Wang Q, Ning L, Guan S, Ge H, Li F, Liu J (2014) The relationship between glucocorticoid receptor polymorphisms, stressful life events, social support, and post-traumatic stress disorder. BMC Psychiatry 14:232. https://doi.org/10.1186/s12888-014-0232-9

    Article  PubMed  PubMed Central  Google Scholar 

  354. Vukojevic V, Kolassa IT, Fastenrath M, Gschwind L, Spalek K, Milnik A, Heck A, Vogler C, Wilker S, Demougin P, Peter F, Atucha E, Stetak A, Roozendaal B, Elbert T, Papassotiropoulos A, de Quervain DJ (2014) Epigenetic modification of the glucocorticoid receptor gene is linked to traumatic memory and post-traumatic stress disorder risk in genocide survivors. J Neurosci 34(31):10274–10284. https://doi.org/10.1523/JNEUROSCI.1526-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Kaminsky Z, Wilcox HC, Eaton WW, Van Eck K, Kilaru V, Jovanovic T, Klengel T, Bradley B, Binder EB, Ressler KJ, Smith AK (2015) Epigenetic and genetic variation at SKA2 predict suicidal behavior and post-traumatic stress disorder. Transl Psychiatry 5(8):e627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Steudte-Schmiedgen S, Stalder T, Schönfeld S, Wittchen HU, Trautmann S, Alexander N, Miller R, Kirschbaum C (2015) Hair cortisol concentrations and cortisol stress reactivity predict PTSD symptom increase after trauma exposure during military deployment. Psychoneuroendocrinology 59:123–133. https://doi.org/10.1016/j.psyneuen.2015.05.00

    Article  CAS  PubMed  Google Scholar 

  357. Boks MP, Rutten BP, Geuze E, Houtepen LC, Vermetten E, Kaminsky Z, Vinkers CH (2016) SKA2 methylation is involved in cortisol stress reactivity and predicts the development of post-traumatic stress disorder (PTSD) after military deployment. Neuropsychopharmacology 41(5):1350–1356. https://doi.org/10.1038/npp.2015.286

    Article  CAS  PubMed  Google Scholar 

  358. Castro-Vale I, van Rossum EF, Machado JC, Mota-Cardoso R, Carvalho D (2016) Genetics of glucocorticoid regulation and posttraumatic stress disorder – what do we know? Neurosci Biobehav Rev 63:143–157. https://doi.org/10.1016/j.neubiorev.2016.02.005

    Article  CAS  PubMed  Google Scholar 

  359. Morris MC, Hellman N, Abelson JL, Rao U (2016) Cortisol, heart rate, and blood pressure as early markers of PTSD risk: a systematic review and meta-analysis. Clin Psychol Rev 49:79–91. https://doi.org/10.1016/j.cpr.2016.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  360. Cordero MI, Moser DA, Manini A, Suardi F, Sancho-Rossignol A, Torrisi R, Rossier MF, Ansermet F, Dayer AG, Rusconi-Serpa S, Schechter DS (2017) Effects of interpersonal violence-related post-traumatic stress disorder (PTSD) on mother and child diurnal cortisol rhythm and cortisol reactivity to a laboratory stressor involving separation. Horm Behav 90:15–24. https://doi.org/10.1016/j.yhbeh.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  361. Olff M, van Zuiden M (2017) Neuroendocrine and neuroimmune markers in PTSD: pre-, peri- and post-trauma glucocorticoid and inflammatory dysregulation. Curr Opin Psychol 14:132–137. https://doi.org/10.1016/j.copsyc.2017.01.001

    Article  PubMed  Google Scholar 

  362. Straub J, Klaubert LM, Schmiedgen S, Kirschbaum C, Goldbeck L (2017) Hair cortisol in relation to acute and post-traumatic stress symptoms in children and adolescents. Anxiety Stress Coping 30(6):661–670. https://doi.org/10.1080/10615806.2017.1355458

    Article  PubMed  Google Scholar 

  363. Li Y, Seng JS (2018) Child maltreatment trauma, posttraumatic stress disorder, and cortisol levels in women: a literature review. J Am Psychiatric Nurses Assoc 24(1):35–44. https://doi.org/10.1177/1078390317710313

    Article  Google Scholar 

  364. McNerney MW, Sheng T, Nechvatal JM, Lee AG, Lyons DM, Soman S, Liao CP, O’Hara R, Hallmayer J, Taylor J, Ashford JW, Yesavage J, Adamson MM (2018) Integration of neural and epigenetic contributions to posttraumatic stress symptoms: the role of hippocampal volume and glucocorticoid receptor gene methylation. PLoS One 13(2):e0192222

    Article  PubMed  PubMed Central  Google Scholar 

  365. Szeszko PR, Lehrner A, Yehuda R (2018) Glucocorticoids and hippocampal structure and function in PTSD. Harv Rev Psychiatry 26(3):142–157. https://doi.org/10.1097/HRP.0000000000000188

    Article  PubMed  Google Scholar 

  366. Dunlop BW, Wong A (2019) The hypothalamic-pituitary-adrenal axis in PTSD: pathophysiology and treatment interventions. Prog Neuro-Psychopharmacol Biol Psychiatry 89:361–379. https://doi.org/10.1016/j.pnpbp.2018.10.010

    Article  CAS  Google Scholar 

  367. Schumacher S, Niemeyer H, Engel S, Cwik JC, Laufer S, Klusmann H, Knaevelsrud C (2019) HPA axis regulation in posttraumatic stress disorder: a meta-analysis focusing on potential moderators. Neurosci Biobehav Rev 100:35–57. https://doi.org/10.1016/j.neubiorev.2019.02.005

    Article  CAS  PubMed  Google Scholar 

  368. van den Heuvel LL, Wright S, Suliman S, Stalder T, Kirschbaum C, Seedat S (2019) Cortisol levels in different tissue samples in posttraumatic stress disorder patients versus controls: a systematic review and meta-analysis protocol. Syst Rev 8(1):7. https://doi.org/10.1186/s13643-018-0936-x

    Article  PubMed  PubMed Central  Google Scholar 

  369. Hadad NA, Schwendt M, Knackstedt LA (2020) Hypothalamic-pituitary-adrenal axis activity in post-traumatic stress disorder and cocaine use disorder. Stress 23(6):638–650. https://doi.org/10.1080/10253890.2020.1803824

    Article  CAS  PubMed  Google Scholar 

  370. Metz S, Duesenberg M, Hellmann-Regen J, Wolf OT, Roepke S, Otte C, Wingenfeld K (2020) Blunted salivary cortisol response to psychosocial stress in women with posttraumatic stress disorder. J Psychiatr Res 130:112–119. https://doi.org/10.1016/j.jpsychires.2020.07.014

    Article  PubMed  Google Scholar 

  371. Pan X, Kaminga AC, Wen SW, Wang Z, Wu X, Liu A (2020) The 24-hour urinary cortisol in post-traumatic stress disorder: a meta-analysis. PLoS One 15(1):e0227560. https://doi.org/10.1371/journal.pone.0227560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Sheerin CM, Lind MJ, Bountress KE, Marraccini ME, Amstadter AB, Bacanu SA, Nugent NR (2020) Meta-analysis of associations between hypothalamic-pituitary-adrenal axis genes and risk of posttraumatic stress disorder. J Trauma Stress 33(5):688–698. https://doi.org/10.1002/jts.22484

    Article  PubMed  PubMed Central  Google Scholar 

  373. van den Heuvel LL, Stalder T, du Plessis S, Suliman S, Kirschbaum C, Seedat S (2020) Hair cortisol levels in posttraumatic stress disorder and metabolic syndrome. Stress 23(5):577–589. https://doi.org/10.1080/10253890.2020.1724949

    Article  CAS  PubMed  Google Scholar 

  374. Almeida FB, Pinna G, Barros H (2021) The role of HPA axis and allopregnanolone on the neurobiology of major depressive disorders and PTSD. Int J Mol Sci 22(11):5495. https://doi.org/10.3390/ijms22115495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Danan D, Todder D, Zohar J, Cohen H (2021) Is PTSD-phenotype associated with HPA-axis sensitivity? Feedback inhibition and other modulating factors of glucocorticoid signaling dynamics. Int J Mol Sci 22(11):6050. https://doi.org/10.3390/ijms22116050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Fischer S, Schumacher T, Knaevelsrud C, Ehlert U, Schumacher S (2021) Genes and hormones of the hypothalamic-pituitary-adrenal axis in post-traumatic stress disorder. What is their role in symptom expression and treatment response? J Neural Transm 128(9):1279–1286. https://doi.org/10.1007/s00702-021-02330-2

    Article  PubMed  Google Scholar 

  377. Koumantarou Malisiova E, Mourikis I, Darviri C, Nicolaides NC, Zervas IM, Papageorgiou C, Chrousos GP (2021) Hair cortisol concentrations in mental disorders: a systematic review. Physiol Behav 229:113244. https://doi.org/10.1016/j.physbeh.2020.113244

    Article  CAS  PubMed  Google Scholar 

  378. Schaffter N, Ledermann K, Pazhenkottil AP, Barth J, Schnyder U, Znoj H, Schmid JP, Meister-Langraf RE, von Känel R, Princip M (2021) Serum cortisol as a predictor for posttraumatic stress disorder symptoms in post-myocardial infarction patients. J Affect Disord 292:687–694. https://doi.org/10.1016/j.jad.2021.05.065

    Article  CAS  PubMed  Google Scholar 

  379. Lu AT, Ogdie MN, Järvelin MR, Moilanen IK, Loo SK, McCracken JT, McGough JJ, Yang MH, Peltonen L, Nelson SF, Cantor RM, Smalley SL (2008) Association of the cannabinoid receptor gene (CNR1) with ADHD and post-traumatic stress disorder. Am J Med Genet 147B(8):1488–1494. https://doi.org/10.1002/ajmg.b.30693

    Article  CAS  PubMed  Google Scholar 

  380. Hauer D, Schelling G, Gola H, Campolongo P, Morath J, Roozendaal B, Hamuni G, Karabatsiakis A, Atsak P, Vogeser M, Kolassa IT (2013) Plasma concentrations of endocannabinoids and related primary fatty acid amides in patients with post-traumatic stress disorder. PLoS One 8(5):e62741. https://doi.org/10.1371/journal.pone.0062741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Schaefer C, Enning F, Mueller JK, Bumb JM, Rohleder C, Odorfer TM, Klosterkötter J, Hellmich M, Koethe D, Schmahl C, Bohus M, Leweke FM (2014) Fatty acid ethanolamide levels are altered in borderline personality and complex posttraumatic stress disorders. Eur Arch Psychiatry Clin Neurosci 264(5):459–463. https://doi.org/10.1007/s00406-013-0470-8

    Article  PubMed  Google Scholar 

  382. Mota N, Sumner JA, Lowe SR, Neumeister A, Uddin M, Aiello AE, Wildman DE, Galea S, Koenen KC, Pietrzak RH (2015) The rs1049353 polymorphism in the CNR1 gene interacts with childhood abuse to predict posttraumatic threat symptoms. J Clin Psychiatry 76(12):e1622–e1623. https://doi.org/10.4088/JCP.15l10084

    Article  PubMed  PubMed Central  Google Scholar 

  383. Neumeister A, Seidel J, Ragen BJ, Pietrzak RH (2015) Translational evidence for a role of endocannabinoids in the etiology and treatment of posttraumatic stress disorder. Psychoneuroendocrinology 51:577–584. https://doi.org/10.1016/j.psyneuen.2014.10.012

    Article  CAS  PubMed  Google Scholar 

  384. Berardi A, Schelling G, Campolongo P (2016) The endocannabinoid system and post traumatic stress disorder (PTSD): from preclinical findings to innovative therapeutic approaches in clinical settings. Pharmacol Res 111:668–678. https://doi.org/10.1016/j.phrs.2016.07.024

    Article  CAS  PubMed  Google Scholar 

  385. Spagnolo PA, Ramchandani VA, Schwandt ML, Kwako LE, George DT, Mayo LM, Hillard CJ, Heilig M (2016) FAAH gene variation moderates stress response and symptom severity in patients with posttraumatic stress disorder and comorbid alcohol dependence. Alcohol Clin Exp Res 40(11):2426–2434. https://doi.org/10.1111/acer.13210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Ney LJ, Matthews A, Bruno R, Felmingham KL (2018) Modulation of the endocannabinoid system by sex hormones: implications for posttraumatic stress disorder. Neurosci Biobehav Rev 94:302–320. https://doi.org/10.1016/j.neubiorev.2018.07.006

    Article  CAS  PubMed  Google Scholar 

  387. Sloan ME, Grant CW, Gowin JL, Ramchandani VA, Le Foll B (2019) Endocannabinoid signaling in psychiatric disorders: a review of positron emission tomography studies. Acta Pharmacol Sin 40(3):342–350. https://doi.org/10.1038/s41401-018-0081-z

    Article  CAS  PubMed  Google Scholar 

  388. Lohr JB, Chang H, Sexton M, Palmer BW (2020) Allostatic load and the cannabinoid system: implications for the treatment of physiological abnormalities in post-traumatic stress disorder (PTSD). CNS Spectr 25(6):743–749. https://doi.org/10.1017/S1092852919001093

    Article  PubMed  Google Scholar 

  389. Mayo LM, Asratian A, Lindé J, Holm L, Nätt D, Augier G, Stensson N, Vecchiarelli HA, Balsevich G, Aukema RJ, Ghafouri B, Spagnolo PA, Lee FS, Hill MN, Heilig M (2020) Protective effects of elevated anandamide on stress and fear-related behaviors: translational evidence from humans and mice. Mol Psychiatry 25(5):993–1005. https://doi.org/10.1038/s41380-018-0215-1

    Article  CAS  PubMed  Google Scholar 

  390. Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J (2020) Endocannabinoid system components as potential biomarkers in psychiatry. Front Psychiatry 11:315. https://doi.org/10.3389/fpsyt.2020.00315

    Article  PubMed  PubMed Central  Google Scholar 

  391. Ney LJ, Crombie KM, Mayo LM, Felmingham KL, Bowser T, Matthews A (2022) Translation of animal endocannabinoid models of PTSD mechanisms to humans: where to next? Neurosci Biobehav Rev 132:76–91. https://doi.org/10.1016/j.neubiorev.2021.11.040

    Article  CAS  PubMed  Google Scholar 

  392. Gold PE, Van Buskirk RB (1975) Facilitation of time-dependent memory processes with posttrial epinephrine injections. Behav Biol 13(2):145–153. https://doi.org/10.1016/s0091-6773(75)91784-8

    Article  CAS  PubMed  Google Scholar 

  393. Izquierdo I, Dias RD (1983) Effect of ACTH, epinephrine, beta-endorphin, naloxone, and of the combination of naloxone or beta-endorphin with ACTH or epinephrine on memory consolidation. Psychoneuroendocrinology 8(1):81–87. https://doi.org/10.1016/0306-4530(83)90043-4

    Article  CAS  PubMed  Google Scholar 

  394. Izquierdo I, Netto CA (1985) Factors that influence test session performance measured 0, 3, or 6 h after inhibitory avoidance training. Behav Neural Biol 43(3):260–273. https://doi.org/10.1016/s0163-1047(85)91606-1

    Article  CAS  PubMed  Google Scholar 

  395. Liang KC, Juler RG, McGaugh JL (1986) Modulating effects of posttraining epinephrine on memory: involvement of the amygdala noradrenergic system. Brain Res 368(1):125–133. https://doi.org/10.1016/0006-8993(86)91049-8

    Article  CAS  PubMed  Google Scholar 

  396. Introini-Collison IB, Baratti CM (1986) Opioid peptidergic systems modulate the activity of beta-adrenergic mechanisms during memory consolidation processes. Behav Neural Biol 46(2):227–241. https://doi.org/10.1016/s0163-1047(86)90710-7

    Article  CAS  PubMed  Google Scholar 

  397. Introini-Collison IB, McGaugh JL (1986) Epinephrine modulates long-term retention of an aversively motivated discrimination. Behav Neural Biol 45(3):358–365. https://doi.org/10.1016/s0163-1047(86)80024-3

    Article  CAS  PubMed  Google Scholar 

  398. Introini-Collison IB, McGaugh JL (1987) Naloxone and beta-endorphin alter the effects of post-training epinephrine on memory. Psychopharmacology 92(2):229–235. https://doi.org/10.1007/BF00177921

    Article  CAS  PubMed  Google Scholar 

  399. Introini-Collison IB, McGaugh JL (1988) Modulation of memory by post-training epinephrine: involvement of cholinergic mechanisms. Psychopharmacology 94(3):379–385. https://doi.org/10.1007/BF00174693

    Article  CAS  PubMed  Google Scholar 

  400. Netto CA, Maltchik M (1990) Distinct mechanisms underlying memory modulation after the first and the second session of two avoidance tasks. Behav Neural Biol 53(1):29–38. https://doi.org/10.1016/0163-1047(90)90763-v

    Article  CAS  PubMed  Google Scholar 

  401. Introini-Collison I, Saghafi D, Novack GD, McGaugh JL (1992) Memory-enhancing effects of post-training dipivefrin and epinephrine: involvement of peripheral and central adrenergic receptors. Brain Res 572(1–2):81–86. https://doi.org/10.1016/0006-8993(92)90454-h

    Article  CAS  PubMed  Google Scholar 

  402. Costa-Miserachs D, Portell-Cortés I, Aldavert-Vera L, Torras-García M, Morgado-Bernal I (1993) Facilitation of a distributed shuttlebox conditioning with post-training epinephrine in rats. Behav Neural Biol 60(1):75–78. https://doi.org/10.1016/0163-1047(93)90755-7

    Article  CAS  PubMed  Google Scholar 

  403. Williams CL, McGaugh JL (1993) Reversible lesions of the nucleus of the solitary tract attenuate the memory-modulating effects of posttraining epinephrine. Behav Neurosci 107(6):955–962

    Article  CAS  PubMed  Google Scholar 

  404. Costa-Miserachs D, Portell-Cortés I, Aldavert-Vera L, Torras-García M, Morgado-Bernal I (1994) Long-term memory facilitation in rats by posttraining epinephrine. Behav Neurosci 108(3):469–474. https://doi.org/10.1037//0735-7044.108.3.469

    Article  CAS  PubMed  Google Scholar 

  405. Torras-Garcia M, Portell-Cortés I, Costa-Miserachs D, Morgado-Bernal I (1997) Long-term memory modulation by posttraining epinephrine in rats: differential effects depending on the basic learning capacity. Behav Neurosci 111(2):301–308. https://doi.org/10.1037/0735-7044.111.2.301

    Article  CAS  PubMed  Google Scholar 

  406. Torras-Garcia M, Costa-Miserachs D, Portell-Cortés I, Morgado-Bernal I (1998) Posttraining epinephrine and memory consolidation in rats with different basic learning capacities. The role of the stria terminalis. Exp Brain Res 121(1):20–28. https://doi.org/10.1007/s002210050432

    Article  CAS  PubMed  Google Scholar 

  407. Nordby T, Torras-Garcia M, Portell-Cortés I, Costa-Miserachs D (2006) Posttraining epinephrine treatment reduces the need for extensive training. Physiol Behav 89(5):718–723. https://doi.org/10.1016/j.physbeh.2006.08.010

    Article  CAS  PubMed  Google Scholar 

  408. Tuon L, Comim CM, Petronilho F, Barichello T, Izquierdo I, Quevedo J, Dal-Pizzol F (2008) Memory-enhancing treatments reverse the impairment of inhibitory avoidance retention in sepsis-surviving rats. Crit Care 12(5):R133. https://doi.org/10.1186/cc7103

    Article  PubMed  PubMed Central  Google Scholar 

  409. Roozendaal B, Mirone G (2020) Opposite effects of noradrenergic and glucocorticoid activation on accuracy of an episodic-like memory. Psychoneuroendocrinology 114:104588. https://doi.org/10.1016/j.psyneuen.2020.104588

    Article  CAS  PubMed  Google Scholar 

  410. Gold PE, Van Buskirk R (1976) Enhancement and impairment of memory processes with post-trial injections of adrenocorticotrophic hormone. Behav Biol 16(4):387–400. https://doi.org/10.1016/s0091-6773(76)91539-x

    Article  CAS  PubMed  Google Scholar 

  411. Flood JF, Vidal D, Bennett EL, Orme AE, Vasquez S, Jarvik ME (1978) Memory facilitating and anti-amnesic effects of corticosteroids. Pharmacol Biochem Behav 8(1):81–87. https://doi.org/10.1016/0091-3057(78)90127-2

    Article  CAS  PubMed  Google Scholar 

  412. Cabib S, Castellano C, Patacchioli FR, Cigliana G, Angelucci L, Puglisi-Allegra S (1996) Opposite strain-dependent effects of post-training corticosterone in a passive avoidance task in mice: role of dopamine. Brain Res 729(1):110–118

    Article  CAS  PubMed  Google Scholar 

  413. Roozendaal B, McGaugh JL (1996a) Amygdaloid nuclei lesions differentially affect glucocorticoid-induced memory enhancement in an inhibitory avoidance task. Neurobiol Learn Mem 65(1):1–8. https://doi.org/10.1006/nlme.1996.0001

    Article  CAS  PubMed  Google Scholar 

  414. Roozendaal B, McGaugh JL (1996b) The memory-modulatory effects of glucocorticoids depend on an intact stria terminalis. Brain Res 709(2):243–250. https://doi.org/10.1016/0006-8993(95)01305-9

    Article  CAS  PubMed  Google Scholar 

  415. Quirarte GL, Roozendaal B, McGaugh JL (1997) Glucocorticoid enhancement of memory storage involves noradrenergic activation in the basolateral amygdala. Proc Natl Acad Sci U S A 94(25):14048–14053. https://doi.org/10.1073/pnas.94.25.14048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  416. Setlow B, Roozendaal B, McGaugh JL (2000) Involvement of a basolateral amygdala complex-nucleus accumbens pathway in glucocorticoid-induced modulation of memory consolidation. Eur J Neurosci 12(1):367–375. https://doi.org/10.1046/j.1460-9568.2000.00911.x

    Article  CAS  PubMed  Google Scholar 

  417. Zorawski M, Killcross S (2002) Posttraining glucocorticoid receptor agonist enhances memory in appetitive and aversive Pavlovian discrete-cue conditioning paradigms. Neurobiol Learn Mem 78(2):458–464. https://doi.org/10.1006/nlme.2002.4075

    Article  CAS  PubMed  Google Scholar 

  418. Hui GK, Figueroa IR, Poytress BS, Roozendaal B, McGaugh JL, Weinberger NM (2004) Memory enhancement of classical fear conditioning by post-training injections of corticosterone in rats. Neurobiol Learn Mem 81(1):67–74. https://doi.org/10.1016/j.nlm.2003.09.002

    Article  CAS  PubMed  Google Scholar 

  419. Venturella R, Lessa D, Luft T, Roozendaal B, Schwartsmann G, Roesler R (2005) Dexamethasone reverses the memory impairment induced by antagonism of hippocampal gastrin-releasing peptide receptors. Peptides 26(5):821–825. https://doi.org/10.1016/j.peptides.2004.12.010

    Article  CAS  PubMed  Google Scholar 

  420. Roozendaal B, Hui GK, Hui IR, Berlau DJ, McGaugh JL, Weinberger NM (2006) Basolateral amygdala noradrenergic activity mediates corticosterone-induced enhancement of auditory fear conditioning. Neurobiol Learn Mem 86(3):249–255. https://doi.org/10.1016/j.nlm.2006.03.003

    Article  CAS  PubMed  Google Scholar 

  421. Miranda MI, Quirarte GL, Rodriguez-Garcia G, McGaugh JL, Roozendaal B (2008) Glucocorticoids enhance taste aversion memory via actions in the insular cortex and basolateral amygdala. Learn Mem 15(7):468–476. https://doi.org/10.1101/lm.964708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  422. Roozendaal B, Barsegyan A, Lee S (2008) Adrenal stress hormones, amygdala activation, and memory for emotionally arousing experiences. Prog Brain Res 167:79–97. https://doi.org/10.1016/S0079-6123(07)67006-X

    Article  CAS  PubMed  Google Scholar 

  423. Abrari K, Rashidy-Pour A, Semnanian S, Fathollahi Y, Jadid M (2009) Post-training administration of corticosterone enhances consolidation of contextual fear memory and hippocampal long-term potentiation in rats. Neurobiol Learn Mem 91(3):260–265. https://doi.org/10.1016/j.nlm.2008.10.008

    Article  CAS  PubMed  Google Scholar 

  424. Campolongo P, Roozendaal B, Trezza V, Hauer D, Schelling G, McGaugh JL, Cuomo V (2009) Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory. Proc Natl Acad Sci U S A 106(12):4888–4893. https://doi.org/10.1073/pnas.0900835106

    Article  PubMed  PubMed Central  Google Scholar 

  425. Kaouane N, Porte Y, Vallée M, Brayda-Bruno L, Mons N, Calandreau L, Marighetto A, Piazza PV, Desmedt A (2012) Glucocorticoids can induce PTSD-like memory impairments in mice. Science 335(6075):1510–1513. https://doi.org/10.1126/science.1207615

    Article  CAS  PubMed  Google Scholar 

  426. Liao Y, Shi YW, Liu QL, Zhao H (2013) Glucocorticoid-induced enhancement of contextual fear memory consolidation in rats: involvement of D1 receptor activity of hippocampal area CA1. Brain Res 1524:26–33. https://doi.org/10.1016/j.brainres.2013.05.030

    Article  CAS  PubMed  Google Scholar 

  427. Zalachoras I, Houtman R, Atucha E, Devos R, Tijssen AM, Hu P, Lockey PM, Datson NA, Belanoff JK, Lucassen PJ, Joëls M, de Kloet ER, Roozendaal B, Hunt H, Meijer OC (2013) Differential targeting of brain stress circuits with a selective glucocorticoid receptor modulator. Proc Natl Acad Sci U S A 110(19):7910–7915. https://doi.org/10.1073/pnas.1219411110

    Article  PubMed  PubMed Central  Google Scholar 

  428. Yang C, Liu JF, Chai BS, Fang Q, Chai N, Zhao LY, Xue YX, Luo YX, Jian M, Han Y, Shi HS, Lu L, Wu P, Wang JS (2013) Stress within a restricted time window selectively affects the persistence of long-term memory. PLoS One 8(3):e59075. https://doi.org/10.1371/journal.pone.0059075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  429. McReynolds JR, Holloway-Erickson CM, Parmar TU, McIntyre CK (2014) Corticosterone-induced enhancement of memory and synaptic Arc protein in the medial prefrontal cortex. Neurobiol Learn Mem 112:148–157. https://doi.org/10.1016/j.nlm.2014.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  430. Kashefi A, Rashidy-Pour A (2014) Effects of corticosterone on contextual fear consolidation in intact and ovariectomized female rats. Neurobiol Learn Mem 114:236–241. https://doi.org/10.1016/j.nlm.2014.06.013

    Article  CAS  PubMed  Google Scholar 

  431. Souza RR, Dal Bó S, de Kloet ER, Oitzl MS, Carobrez AP (2014) Paradoxical mineralocorticoid receptor-mediated effect in fear memory encoding and expression of rats submitted to an olfactory fear conditioning task. Neuropharmacology 79:201–211. https://doi.org/10.1016/j.neuropharm.2013.11.017

    Article  CAS  PubMed  Google Scholar 

  432. Xiong H, Cassé F, Zhou Y, Zhou M, Xiong ZQ, Joëls M, Martin S, Krugers HJ (2015) mTOR is essential for corticosteroid effects on hippocampal AMPA receptor function and fear memory. Learn Mem 22(12):577–583. https://doi.org/10.1101/lm.039420.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  433. Siller-Pérez C, Fuentes-Ibañez A, Sotelo-Barrera EL, Serafín N, Prado-Alcalá RA, Campolongo P, Roozendaal B, Quirarte GL (2019) Glucocorticoid interactions with the dorsal striatal endocannabinoid system in regulating inhibitory avoidance memory. Psychoneuroendocrinology 99:97–103. https://doi.org/10.1016/j.psyneuen.2018.08.021

    Article  CAS  PubMed  Google Scholar 

  434. Santucci AC, Kanof PD, Haroutunian V (1989) Effect of physostigmine on memory consolidation and retrieval processes in intact and nucleus basalis-lesioned rats. Psychopharmacology 99(1):70–74. https://doi.org/10.1007/BF00634455

    Article  CAS  PubMed  Google Scholar 

  435. Young SL, Bohenek DL, Fanselow MS (1995) Scopolamine impairs acquisition and facilitates consolidation of fear conditioning: differential effects for tone vs context conditioning. Neurobiol Learn Mem 63(2):174–180. https://doi.org/10.1006/nlme.1995.1018

    Article  CAS  PubMed  Google Scholar 

  436. Castellano C, Cabib S, Puglisi-Allegra S, Gasbarri A, Sulli A, Pacitti C, Introini-Collison IB, McGaugh JL (1999) Strain-dependent involvement of D1 and D2 dopamine receptors in muscarinic cholinergic influences on memory storage. Behav Brain Res 98(1):17–26. https://doi.org/10.1016/s0166-4328(98)00046-1

    Article  CAS  PubMed  Google Scholar 

  437. Castellano C, Cestari V, Cabib S, Puglisi-Allegra S (1991) Post-training dopamine receptor agonists and antagonists affect memory storage in mice irrespective of their selectivity for D1 or D2 receptors. Behav Neural Biol 56(3):283–291. https://doi.org/10.1016/0163-1047(91)90439-w

    Article  CAS  PubMed  Google Scholar 

  438. Puglisi-Allegra S, Cestari V, Cabib S, Castellano C (1994) Strain-dependent effects of post-training cocaine or nomifensine on memory storage involve both D1 and D2 dopamine receptors. Psychopharmacology 115(1–2):157–162. https://doi.org/10.1007/BF02244766

    Article  CAS  PubMed  Google Scholar 

  439. Castellano C, Zocchi A, Cabib S, Puglisi-Allegra S (1996) Strain-dependent effects of cocaine on memory storage improvement induced by post-training physostigmine. Psychopharmacology 123(4):340–345. https://doi.org/10.1007/BF02246644

    Article  CAS  PubMed  Google Scholar 

  440. Cestari V, Castellano C (1996) Caffeine and cocaine interaction on memory consolidation in mice. Arch Int Pharmacodyn Ther 331(1):94–104

    CAS  PubMed  Google Scholar 

  441. Flood JF, Cherkin A (1987) Fluoxetine enhances memory processing in mice. Psychopharmacology 93(1):36–43. https://doi.org/10.1007/BF02439584

    Article  CAS  PubMed  Google Scholar 

  442. Montezinho LP, Miller S, Plath N, Jensen NH, Karlsson JJ, Witten L, Mørk A (2010) The effects of acute treatment with escitalopram on the different stages of contextual fear conditioning are reversed by atomoxetine. Psychopharmacology 212(2):131–143. https://doi.org/10.1007/s00213-010-1917-5

    Article  CAS  PubMed  Google Scholar 

  443. Zhang G, Ásgeirsdóttir HN, Cohen SJ, Munchow AH, Barrera MP, Stackman RW Jr (2013) Stimulation of serotonin 2A receptors facilitates consolidation and extinction of fear memory in C57BL/6J mice. Neuropharmacology 64(1):403–413. https://doi.org/10.1016/j.neuropharm.2012.06.007

    Article  CAS  PubMed  Google Scholar 

  444. Charlier Y, Tirelli E (2011) Differential effects of histamine H(3) receptor inverse agonist thioperamide, given alone or in combination with the N-methyl-d-aspartate receptor antagonist dizocilpine, on reconsolidation and consolidation of a contextual fear memory in mice. Neuroscience 193:132–142. https://doi.org/10.1016/j.neuroscience.2011.07.034

    Article  CAS  PubMed  Google Scholar 

  445. Charlier Y, Brabant C, Serrano ME, Lamberty Y, Tirelli E (2013) The prototypical histamine H3 receptor inverse agonist thioperamide improves multiple aspects of memory processing in an inhibitory avoidance task. Behav Brain Res 253:121–127. https://doi.org/10.1016/j.bbr.2013.07.016

    Article  CAS  PubMed  Google Scholar 

  446. Brabant C, Charlier Y, Tirelli E (2013) The histamine H3-receptor inverse agonist pitolisant improves fear memory in mice. Behav Brain Res 243:199–204. https://doi.org/10.1016/j.bbr.2012.12.063

    Article  CAS  PubMed  Google Scholar 

  447. Kim DH, Lee Y, Lee HE, Park SJ, Jeon SJ, Jeon SJ, Cheong JH, Shin CY, Son KH, Ryu JH (2014) Oroxylin A enhances memory consolidation through the brain-derived neurotrophic factor in mice. Brain Res Bull 108:67–73. https://doi.org/10.1016/j.brainresbull.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  448. Wetzel W, Matthies H (1982) Effect of substance P on the retention of a brightness discrimination task in rats. Acta Biol Med German 41(7–8):647–652

    CAS  PubMed  Google Scholar 

  449. Fulginiti S, Cancela LM (1983) Effect of naloxone and amphetamine on acquisition and memory consolidation of active avoidance responses in rats. Psychopharmacology 79(1):45–48. https://doi.org/10.1007/BF00433015

    Article  CAS  PubMed  Google Scholar 

  450. Castellano C, Pavone F (1984) Effects of DL-allylglycine, alone or in combination with morphine, on passive avoidance behaviour in C57BL/6 mice. Arch Int Pharmacodyn Ther 267(1):141–148

    CAS  PubMed  Google Scholar 

  451. Castellano C, Introini-Collison IB, Pavone F, McGaugh JL (1989) Effects of naloxone and naltrexone on memory consolidation in CD1 mice: involvement of GABAergic mechanisms. Pharmacol Biochem Behav 32(2):563–567. https://doi.org/10.1016/0091-3057(89)90197-4

    Article  CAS  PubMed  Google Scholar 

  452. del Cerro S, Borrell J (1990) Dynorphin1-17 can enhance or impair retention of an inhibitory avoidance response in rats. Life Sci 47(16):1453–1462. https://doi.org/10.1016/0024-3205(90)90524-u

    Article  PubMed  Google Scholar 

  453. Castellano C, Ventura R, Cabib S, Puglisi-Allegra S (1999) Strain-dependent effects of anandamide on memory consolidation in mice are antagonized by naltrexone. Behav Pharmacol 10(5):453–457. https://doi.org/10.1097/00008877-199909000-00003

    Article  CAS  PubMed  Google Scholar 

  454. Leri F, Nahas E, Henderson K, Limebeer CL, Parker LA, White NM (2013) Effects of post-training heroin and d-amphetamine on consolidation of win-stay learning and fear conditioning. J Psychopharmacol 27(3):292–301. https://doi.org/10.1177/0269881112472566

    Article  CAS  PubMed  Google Scholar 

  455. Brioni JD, McGaugh JL (1988) Post-training administration of GABAergic antagonists enhances retention of aversively motivated tasks. Psychopharmacology 96(4):505–510. https://doi.org/10.1007/BF02180032

    Article  CAS  PubMed  Google Scholar 

  456. Castellano C, Populin R (1990) Effect of ethanol on memory consolidation in mice: antagonism by the imidazobenzodiazepine Ro 15-4513 and decrement by familiarization with the environment. Behav Brain Res 40(1):67–72. https://doi.org/10.1016/0166-4328(90)90044-f

    Article  CAS  PubMed  Google Scholar 

  457. Castellano C, Cestari V, Cabib S, Puglisi-Allegra S (1993) Strain-dependent effects of post-training GABA receptor agonists and antagonists on memory storage in mice. Psychopharmacology 111(2):134–138. https://doi.org/10.1007/BF02245514

    Article  CAS  PubMed  Google Scholar 

  458. Kopf SR, Melani A, Pedata F, Pepeu G (1999) Adenosine and memory storage: effect of A(1) and A(2) receptor antagonists. Psychopharmacology 146(2):214–219. https://doi.org/10.1007/s002130051109

    Article  CAS  PubMed  Google Scholar 

  459. Viu E, Zapata A, Capdevila J, Skolnick P, Trullas R (2000) Glycine(B) receptor antagonists and partial agonists prevent memory deficits in inhibitory avoidance learning. Neurobiol Learn Mem 74(2):146–160. https://doi.org/10.1006/nlme.1999.3947

    Article  CAS  PubMed  Google Scholar 

  460. Gould TJ, McCarthy MM, Keith RA (2002) MK-801 disrupts acquisition of contextual fear conditioning but enhances memory consolidation of cued fear conditioning. Behav Pharmacol 13(4):287–294. https://doi.org/10.1097/00008877-200207000-00005

    Article  CAS  PubMed  Google Scholar 

  461. Kruk-Slomka M, Biala G (2016) CB1 receptors in the formation of the different phases of memory-related processes in the inhibitory avoidance test in mice. Behav Brain Res 301:84–95. https://doi.org/10.1016/j.bbr.2015.12.023

    Article  CAS  PubMed  Google Scholar 

  462. Morena M, Berardi A, Peloso A, Valeri D, Palmery M, Trezza V, Schelling G, Campolongo P (2017) Effects of ketamine, dexmedetomidine and propofol anesthesia on emotional memory consolidation in rats: consequences for the development of post-traumatic stress disorder. Behav Brain Res 329:215–220. https://doi.org/10.1016/j.bbr.2017.04.048

    Article  CAS  PubMed  Google Scholar 

  463. Morena M, Colucci P, Mancini GF, De Castro V, Peloso A, Schelling G, Campolongo P (2021) Ketamine anesthesia enhances fear memory consolidation via noradrenergic activation in the basolateral amygdala. Neurobiol Learn Mem 178:107362. https://doi.org/10.1016/j.nlm.2020.107362

    Article  CAS  PubMed  Google Scholar 

  464. Campolongo P, Roozendaal B, Trezza V, Cuomo V, Astarita G, Fu J, McGaugh JL, Piomelli D (2009) Fat-induced satiety factor oleoylethanolamide enhances memory consolidation. Proc Natl Acad Sci U S A 106(19):8027–8031. https://doi.org/10.1073/pnas.0903038106

    Article  PubMed  PubMed Central  Google Scholar 

  465. Ratano P, Petrella C, Forti F, Passeri PP, Morena M, Palmery M, Trezza V, Severini C, Campolongo P (2018) Pharmacological inhibition of 2-arachidonoilglycerol hydrolysis enhances memory consolidation in rats through CB2 receptor activation and mTOR signaling modulation. Neuropharmacology 138:210–218. https://doi.org/10.1016/j.neuropharm.2018.05.030

    Article  CAS  PubMed  Google Scholar 

  466. Frye CA, Lacey EH (2001) Posttraining androgens’ enhancement of cognitive performance is temporally distinct from androgens’ increases in affective behavior. Cogn Affect Behav Neurosci 1(2):172–182. https://doi.org/10.3758/cabn.1.2.172

    Article  CAS  PubMed  Google Scholar 

  467. Arteni NS, Lavinsky D, Rodrigues AL, Frison VB, Netto CA (2002) Agmatine facilitates memory of an inhibitory avoidance task in adult rats. Neurobiol Learn Mem 78(2):465–469. https://doi.org/10.1006/nlme.2002.4076

    Article  CAS  PubMed  Google Scholar 

  468. Janezic EM, Uppalapati S, Nagl S, Contreras M, French ED, Fellous JM (2016) Beneficial effects of chronic oxytocin administration and social co-housing in a rodent model of post-traumatic stress disorder. Behav Pharmacol 27(8):704–717. https://doi.org/10.1097/FBP.0000000000000270

    Article  CAS  PubMed  Google Scholar 

  469. Scavuzzo CJ, Rakotovao I, Dickson CT (2020) Differential effects of L- and D-lactate on memory encoding and consolidation: potential role of HCAR1 signaling. Neurobiol Learn Mem 168:107151. https://doi.org/10.1016/j.nlm.2019.107151

    Article  CAS  PubMed  Google Scholar 

  470. Camera K, Mello CF, Ceretta AP, Rubin MA (2007) Systemic administration of polyaminergic agents modulate fear conditioning in rats. Psychopharmacology 192(4):457–464. https://doi.org/10.1007/s00213-007-0734-y

    Article  CAS  PubMed  Google Scholar 

  471. Bazin MA, El Kihel L, Boulouard M, Bouët V, Rault S (2009) The effects of DHEA, 3beta-hydroxy-5alpha-androstane-6,17-dione, and 7-amino-DHEA analogues on short term and long term memory in the mouse. Steroids 74(12):931–937. https://doi.org/10.1016/j.steroids.2009.06.010

    Article  CAS  PubMed  Google Scholar 

  472. Hauer D, Ratano P, Morena M, Scaccianoce S, Briegel I, Palmery M, Cuomo V, Roozendaal B, Schelling G, Campolongo P (2011) Propofol enhances memory formation via an interaction with the endocannabinoid system. Anesthesiology 114(6):1380–1388. https://doi.org/10.1097/ALN.0b013e31821c120e

    Article  CAS  PubMed  Google Scholar 

  473. Amiri S, Jafari-Sabet M, Keyhanfar F, Falak R, Shabani M, Rezayof A (2020) Hippocampal and prefrontal cortical NMDA receptors mediate the interactive effects of olanzapine and lithium in memory retention in rats: the involvement of CAMKII-CREB signaling pathways. Psychopharmacology 237(5):1383–1396. https://doi.org/10.1007/s00213-020-05465-4

    Article  CAS  PubMed  Google Scholar 

  474. Kopf SR, Opezzo JW, Baratti CM (1993) Glucose enhancement of memory is not state-dependent. Behav Neural Biol 60(3):192–195. https://doi.org/10.1016/0163-1047(93)90333-d

    Article  CAS  PubMed  Google Scholar 

  475. Quartermain D, Hawxhurst A, Ermita B, Puente J (1993) Effect of the calcium channel blocker amlodipine on memory in mice. Behav Neural Biol 60(3):211–219. https://doi.org/10.1016/0163-1047(93)90390-4

    Article  CAS  PubMed  Google Scholar 

  476. Boccia MM, Acosta GB, Baratti CM (2001) Memory improving actions of gabapentin in mice: possible involvement of central muscarinic cholinergic mechanism. Neurosci Lett 311(3):153–156. https://doi.org/10.1016/s0304-3940(01)02181-4

    Article  CAS  PubMed  Google Scholar 

  477. Baldi E, Bucherelli C, Schunack W, Cenni G, Blandina P, Passani MB (2005) The H3 receptor protean agonist proxyfan enhances the expression of fear memory in the rat. Neuropharmacology 48(2):246–251. https://doi.org/10.1016/j.neuropharm.2004.09.009

    Article  CAS  PubMed  Google Scholar 

  478. Navarrete A, Flores-Machorro FX, Téllez-Ballesteros RI, Alfaro-Romero A, Balderas JL, Reyes A (2014) Study on action mechanism of 1-(4-methoxy-2-methylphenyl)piperazine (MMPP) in acquisition, formation, and consolidation of memory in mice. Drug Dev Res 75(2):59–67. https://doi.org/10.1002/ddr.21094

    Article  CAS  PubMed  Google Scholar 

  479. Al Abed AS, Ducourneau EG, Bouarab C, Sellami A, Marighetto A, Desmedt A (2020) Preventing and treating PTSD-like memory by trauma contextualization. Nat Commun 11(1):4220. https://doi.org/10.1038/s41467-020-18002-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  480. Kolodziejczyk MH, Fendt M (2020) Corticosterone treatment and incubation time after contextual fear conditioning synergistically induce fear memory generalization in neuropeptide S receptor-deficient mice. Front Neurosci 14:128. https://doi.org/10.3389/fnins.2020.00128

    Article  PubMed  PubMed Central  Google Scholar 

  481. Lesuis SL, Brosens N, Immerzeel N, van der Loo RJ, Mitrić M, Bielefeld P, Fitzsimons CP, Lucassen PJ, Kushner SA, van den Oever MC, Krugers HJ (2021) Glucocorticoids promote fear generalization by increasing the size of a dentate gyrus engram cell population. Biol Psychiatry 90(7):494–504. https://doi.org/10.1016/j.biopsych.2021.04.010

    Article  CAS  PubMed  Google Scholar 

  482. Zhu RT, Liu XH, Shi YW, Wang XG, Xue L, Zhao H (2018) Propranolol can induce PTSD-like memory impairments in rats. Brain Behav 8(2):e00905. https://doi.org/10.1002/brb3.905

    Article  PubMed  PubMed Central  Google Scholar 

  483. De Bundel D, Zussy C, Espallergues J, Gerfen CR, Girault JA, Valjent E (2016) Dopamine D2 receptors gate generalization of conditioned threat responses through mTORC1 signaling in the extended amygdala. Mol Psychiatry 21(11):1545–1553. https://doi.org/10.1038/mp.2015.210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  484. Lynch JF, Winiecki P, Gilman TL, Adkins JM, Jasnow AM (2017) Hippocampal GABAB(1a) receptors constrain generalized contextual fear. Neuropsychopharmacology 42(4):914–924. https://doi.org/10.1038/npp.2016.255

    Article  CAS  PubMed  Google Scholar 

  485. Vanvossen AC, Portes M, Scoz-Silva R, Reichmann HB, Stern C, Bertoglio LJ (2017) Newly acquired and reactivated contextual fear memories are more intense and prone to generalize after activation of prelimbic cortex NMDA receptors. Neurobiol Learn Mem 137:154–162. https://doi.org/10.1016/j.nlm.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  486. Bayer H, Bertoglio LJ (2020) Infralimbic cortex controls fear memory generalization and susceptibility to extinction during consolidation. Sci Rep 10(1):15827. https://doi.org/10.1038/s41598-020-72856-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  487. Kritman M, Maroun M (2013) Inhibition of the PI3 kinase cascade in corticolimbic circuit: temporal and differential effects on contextual fear and extinction. Int J Neuropsychopharmacol 16(4):825–833. https://doi.org/10.1017/S1461145712000636

    Article  CAS  PubMed  Google Scholar 

  488. Adamec R, Muir C, Grimes M, Pearcey K (2007) Involvement of noradrenergic and corticoid receptors in the consolidation of the lasting anxiogenic effects of predator stress. Behav Brain Res 179(2):192–207. https://doi.org/10.1016/j.bbr.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  489. Atsak P, Roozendaal B, Campolongo P (2012) Role of the endocannabinoid system in regulating glucocorticoid effects on memory for emotional experiences. Neuroscience 204:104–116. https://doi.org/10.1016/j.neuroscience.2011.08.047

    Article  CAS  PubMed  Google Scholar 

  490. Akirav I (2013) Cannabinoids and glucocorticoids modulate emotional memory after stress. Neurosci Biobehav Rev 37(10 Pt 2):2554–2563. https://doi.org/10.1016/j.neubiorev.2013.08.002

    Article  CAS  PubMed  Google Scholar 

  491. Busquets-Garcia A, Gomis-González M, Srivastava RK, Cutando L, Ortega-Alvaro A, Ruehle S, Remmers F, Bindila L, Bellocchio L, Marsicano G, Lutz B, Maldonado R, Ozaita A (2016) Peripheral and central CB1 cannabinoid receptors control stress-induced impairment of memory consolidation. Proc Natl Acad Sci U S A 113(35):9904–9909. https://doi.org/10.1073/pnas.1525066113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  492. Zerbes G, Kausche FM, Müller JC, Wiedemann K, Schwabe L (2019) Glucocorticoids, noradrenergic arousal, and the control of memory retrieval. J Cogn Neurosci 31(2):288–298. https://doi.org/10.1162/jocn_a_01355

    Article  PubMed  Google Scholar 

  493. Bahtiyar S, Gulmez Karaca K, Henckens MJAG, Roozendaal B (2020) Norepinephrine and glucocorticoid effects on the brain mechanisms underlying memory accuracy and generalization. Mol Cell Neurosci 108:103537. https://doi.org/10.1016/j.mcn.2020.103537

    Article  CAS  PubMed  Google Scholar 

  494. Warren WG, Papagianni EP, Stevenson CW, Stubbendorff C (2022) In it together? The case for endocannabinoid-noradrenergic interactions in fear extinction. Eur J Neurosci 55(4):952–970. https://doi.org/10.1111/ejn.15200

    Article  CAS  PubMed  Google Scholar 

  495. Berardi A, Trezza V, Palmery M, Trabace L, Cuomo V, Campolongo P (2014) An updated animal model capturing both the cognitive and emotional features of post-traumatic stress disorder (PTSD). Front Behav Neurosci 8:142. https://doi.org/10.3389/fnbeh.2014.00142

    Article  PubMed  PubMed Central  Google Scholar 

  496. Flandreau EI, Toth M (2018) Animal models of PTSD: a critical review. Curr Top Behav Neurosci 38:47–68. https://doi.org/10.1007/7854_2016_65

    Article  PubMed  Google Scholar 

  497. Hefner K, Whittle N, Juhasz J, Norcross M, Karlsson RM, Saksida LM, Bussey TJ, Singewald N, Holmes A (2008) Impaired fear extinction learning and cortico-amygdala circuit abnormalities in a common genetic mouse strain. J Neurosci 28(32):8074–8085. https://doi.org/10.1523/JNEUROSCI.4904-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  498. Andero R, Heldt SA, Ye K, Liu X, Armario A, Ressler KJ (2011) Effect of 7,8-dihydroxyflavone, a small-molecule TrkB agonist, on emotional learning. Am J Psychiatr 168(2):163–172. https://doi.org/10.1176/appi.ajp.2010.10030326

    Article  PubMed  Google Scholar 

  499. Ortiz V, Giachero M, Espejo PJ, Molina VA, Martijena ID (2015) The effect of midazolam and propranolol on fear memory reconsolidation in ethanol-withdrawn rats: influence of d-cycloserine. Int J Neuropsychopharmacol 18(4):pyu082. https://doi.org/10.1093/ijnp/pyu082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  500. Espejo PJ, Ortiz V, Martijena ID, Molina VA (2016) Stress-induced resistance to the fear memory labilization/reconsolidation process. Involvement of the basolateral amygdala complex. Neuropharmacology 109:349–356. https://doi.org/10.1016/j.neuropharm.2016.06.033

    Article  CAS  PubMed  Google Scholar 

  501. Deslauriers J, Toth M, Der-Avakian A, Risbrough VB (2018) Current status of animal models of posttraumatic stress disorder: behavioral and biological phenotypes, and future challenges in improving translation. Biol Psychiatry 83(10):895–907. https://doi.org/10.1016/j.biopsych.2017.11.019

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lucas Gazarini or Cristina A. J. Stern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gazarini, L., Stern, C.A.J., Bertoglio, L.J. (2023). Associating Aversive Task Exposure with Pharmacological Intervention to Model Traumatic Memories in Laboratory Rodents. In: Pinna, G. (eds) Translational Methods for PTSD Research. Neuromethods, vol 198. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3218-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3218-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3217-8

  • Online ISBN: 978-1-0716-3218-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics