Skip to main content

Machine Learning Models for Predicting Liver Toxicity

  • Protocol
  • First Online:
In Silico Methods for Predicting Drug Toxicity

Abstract

Liver toxicity is a major adverse drug reaction that accounts for drug failure in clinical trials and withdrawal from the market. Therefore, predicting potential liver toxicity at an early stage in drug discovery is crucial to reduce costs and the potential for drug failure. However, current in vivo animal toxicity testing is very expensive and time consuming. As an alternative approach, various machine learning models have been developed to predict potential liver toxicity in humans. This chapter reviews current advances in the development and application of machine learning models for prediction of potential liver toxicity in humans and discusses possible improvements to liver toxicity prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3:673–683. https://doi.org/10.1038/nrd1468

    Article  CAS  PubMed  Google Scholar 

  2. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9:203–214. https://doi.org/10.1038/nrd3078

    Article  CAS  PubMed  Google Scholar 

  3. Wilke RA, Lin DW, Roden DM, Watkins PB, Flockhart D, Zineh I, Giacomini KM, Krauss RM (2007) Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges. Nat Rev Drug Discov 6:904–916. https://doi.org/10.1038/nrd2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bourhia M, Ullah R, Alqahtani AS, Ibenmoussa S (2020) Evidence of drug-induced hepatotoxicity in the Maghrebian population. Drug Chem Toxicol 1–5. https://doi.org/10.1080/01480545.2020.1797088

  5. Russmann S, Kullak-Ublick GA, Grattagliano I (2009) Current concepts of mechanisms in drug-induced hepatotoxicity. Curr Med Chem 16:3041–3053. https://doi.org/10.2174/092986709788803097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Regev A (2014) Drug-induced liver injury and drug development: industry perspective. Semin Liver Dis 34:227–239. https://doi.org/10.1055/s-0034-1375962

    Article  CAS  PubMed  Google Scholar 

  7. Knight A (2007) Systematic reviews of animal experiments demonstrate poor human clinical and toxicological utility. Altern Lab Anim 35:641–659. https://doi.org/10.1177/026119290703500610

    Article  CAS  PubMed  Google Scholar 

  8. Ikeda T (2015) Idiosyncratic drug hepatotoxicity: strategy for prevention and proposed mechanism. Curr Med Chem 22:528–537. https://doi.org/10.2174/0929867321666140916122628

    Article  CAS  PubMed  Google Scholar 

  9. Pizzo F, Lombardo A, Manganaro A, Benfenati E (2016) A new structure-activity relationship (SAR) model for predicting drug-induced liver injury, based on statistical and expert-based structural alerts. Front Pharmacol 7:442. https://doi.org/10.3389/fphar.2016.00442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ozer J, Ratner M, Shaw M, Bailey W, Schomaker S (2008) The current state of serum biomarkers of hepatotoxicity. Toxicology 245:194–205. https://doi.org/10.1016/j.tox.2007.11.021

    Article  CAS  PubMed  Google Scholar 

  11. Tornqvist E, Annas A, Granath B, Jalkesten E, Cotgreave I, Oberg M (2014) Strategic focus on 3R principles reveals major reductions in the use of animals in pharmaceutical toxicity testing. PLoS One 9:e101638. https://doi.org/10.1371/journal.pone.0101638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weaver RJ, Valentin JP (2019) Today’s challenges to de-risk and predict drug safety in human “mind-the-gap”. Toxicol Sci 167:307–321. https://doi.org/10.1093/toxsci/kfy270

    Article  CAS  PubMed  Google Scholar 

  13. Krewski D, Andersen ME, Tyshenko MG, Krishnan K, Hartung T, Boekelheide K, Wambaugh JF, Jones D, Whelan M, Thomas R, Yauk C, Barton-Maclaren T, Cote I (2020) Toxicity testing in the 21st century: progress in the past decade and future perspectives. Arch Toxicol 94:1–58. https://doi.org/10.1007/s00204-019-02613-4

    Article  CAS  PubMed  Google Scholar 

  14. Hamburg MA (2011) Advancing regulatory science. Science 331:987. https://doi.org/10.1126/science.1204432

    Article  PubMed  Google Scholar 

  15. Raschi E, De Ponti F (2017) Drug-induced liver injury: towards early prediction and risk stratification. World J Hepatol 9:30–37. https://doi.org/10.4254/wjh.v9.i1.30

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kling J (2019) Toxicology testing steps towards computers. Lab Anim (NY) 48:40–42. https://doi.org/10.1038/s41684-018-0227-0

    Article  Google Scholar 

  17. DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:20–33. https://doi.org/10.1016/j.jhealeco.2016.01.012

    Article  PubMed  Google Scholar 

  18. Chen M, Bisgin H, Tong L, Hong H, Fang H, Borlak J, Tong W (2014) Toward predictive models for drug-induced liver injury in humans: are we there yet? Biomark Med 8:201–213. https://doi.org/10.2217/bmm.13.146

    Article  CAS  PubMed  Google Scholar 

  19. Saini N, Bakshi S, Sharma S (2018) In-silico approach for drug induced liver injury prediction: recent advances. Toxicol Lett 295:288–295. https://doi.org/10.1016/j.toxlet.2018.06.1216

    Article  CAS  PubMed  Google Scholar 

  20. Nayarisseri A, Khandelwal R, Tanwar P, Madhavi M, Sharma D, Thakur G, Speck-Planche A, Singh SK (2021) Artificial intelligence, big data and machine learning approaches in precision medicine & drug discovery. Curr Drug Targets 22(6):631–655. https://doi.org/10.2174/1389450122999210104205732

    Article  CAS  PubMed  Google Scholar 

  21. Zhu H (2020) Big data and artificial intelligence modeling for drug discovery. Annu Rev Pharmacol Toxicol 60:573–589. https://doi.org/10.1146/annurev-pharmtox-010919-023324

    Article  CAS  PubMed  Google Scholar 

  22. Samuel AL (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev 3:210–229. https://doi.org/10.1147/rd.33.0210

    Article  Google Scholar 

  23. Rokach L, Maimon O (2005) Clustering methods. In: Data mining and knowledge discovery handbook. Springer, Boston, MA, pp 321–352

    Chapter  Google Scholar 

  24. Hartigan JA, Wong MA (1979) Algorithm AS 136: a K-means clustering algorithm. J R Stat Soc Ser C 28:100–108. https://doi.org/10.2307/2346830

    Article  Google Scholar 

  25. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69. https://doi.org/10.1007/BF00337288

    Article  Google Scholar 

  26. Chatzis SP, Kosmopoulos DI (2011) A variational Bayesian methodology for hidden Markov models utilizing Student’s-t mixtures. Pattern Recogn 44:295–306. https://doi.org/10.1016/j.patcog.2010.09.001

    Article  Google Scholar 

  27. Mohri M, Rostamizadeh A, Talwalkar A (2012) Foundations of machine learning. The MIT Press, Cambridge, MA

    Google Scholar 

  28. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117. https://doi.org/10.1016/j.neunet.2014.09.003

    Article  PubMed  Google Scholar 

  29. Maxwell A, Li R, Yang B, Weng H, Ou A, Hong H, Zhou Z, Gong P, Zhang C (2017) Deep learning architectures for multi-label classification of intelligent health risk prediction. BMC Bioinformatics 18:523. https://doi.org/10.1186/s12859-017-1898-z

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen M, Hong H, Fang H, Kelly R, Zhou G, Borlak J, Tong W (2013) Quantitative structure-activity relationship models for predicting drug-induced liver injury based on FDA-approved drug labeling annotation and using a large collection of drugs. Toxicol Sci 136:242–249. https://doi.org/10.1093/toxsci/kft189

    Article  CAS  PubMed  Google Scholar 

  31. Hong H, Thakkar S, Chen M, Tong W (2017) Development of decision forest models for prediction of drug-induced liver injury in humans using a large set of FDA-approved drugs. Sci Rep 7:17311. https://doi.org/10.1038/s41598-017-17701-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ekins S, Williams AJ, Xu JJ (2010) A predictive ligand-based Bayesian model for human drug-induced liver injury. Drug Metab Dispos 38:2302–2308. https://doi.org/10.1124/dmd.110.035113

    Article  CAS  PubMed  Google Scholar 

  33. Williams DP, Lazic SE, Foster AJ, Semenova E, Morgan P (2020) Predicting drug-induced liver injury with Bayesian machine learning. Chem Res Toxicol 33:239–248. https://doi.org/10.1021/acs.chemrestox.9b00264

    Article  CAS  PubMed  Google Scholar 

  34. Nguyen-Vo TH, Nguyen L, Do N, Le PH, Nguyen TN, Nguyen BP, Le L (2020) Predicting drug-induced liver injury using convolutional neural network and molecular fingerprint-embedded features. ACS Omega 5:25432–25439. https://doi.org/10.1021/acsomega.0c03866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu Y, Dai Z, Chen F, Gao S, Pei J, Lai L (2015) Deep learning for drug-induced liver injury. J Chem Inf Model 55:2085–2093. https://doi.org/10.1021/acs.jcim.5b00238

    Article  CAS  PubMed  Google Scholar 

  36. Kim E, Nam H (2017) Prediction models for drug-induced hepatotoxicity by using weighted molecular fingerprints. BMC Bioinformatics 18:227. https://doi.org/10.1186/s12859-017-1638-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang C, Cheng F, Li W, Liu G, Lee PW, Tang Y (2016) In silico prediction of drug induced liver toxicity using substructure pattern recognition method. Mol Inform 35:136–144. https://doi.org/10.1002/minf.201500055

    Article  CAS  PubMed  Google Scholar 

  38. Fourches D, Barnes JC, Day NC, Bradley P, Reed JZ, Tropsha A (2010) Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species. Chem Res Toxicol 23:171–183. https://doi.org/10.1021/tx900326k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu XW, Xin YJ, Chen QH (2016) Chemical and in vitro biological information to predict mouse liver toxicity using recursive random forests. SAR QSAR Environ Res 27:559–572. https://doi.org/10.1080/1062936X.2016.1201142

    Article  CAS  PubMed  Google Scholar 

  40. Liu J, Mansouri K, Judson RS, Martin MT, Hong H, Chen M, Xu X, Thomas RS, Shah I (2015) Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure. Chem Res Toxicol 28:738–751. https://doi.org/10.1021/tx500501h

    Article  CAS  PubMed  Google Scholar 

  41. Ancuceanu R, Hovanet MV, Anghel AI, Furtunescu F, Neagu M, Constantin C, Dinu M (2020) Computational models using multiple machine learning algorithms for predicting drug hepatotoxicity with the DILIrank dataset. Int J Mol Sci 21:2114. https://doi.org/10.3390/ijms21062114

    Article  CAS  PubMed Central  Google Scholar 

  42. He S, Ye T, Wang R, Zhang C, Zhang X, Sun G, Sun X (2019) An in silico model for predicting drug-induced hepatotoxicity. Int J Mol Sci 20:1897. https://doi.org/10.3390/ijms20081897

    Article  CAS  PubMed Central  Google Scholar 

  43. Tong W, Hong H, Fang H, Xie Q, Perkins R (2003) Decision forest: combining the predictions of multiple independent decision tree models. J Chem Inf Comput Sci 43:525–531. https://doi.org/10.1021/ci020058s

    Article  CAS  PubMed  Google Scholar 

  44. Hong H, Tong W, Perkins R, Fang H, Xie Q, Shi L (2004) Multiclass decision forest--a novel pattern recognition method for multiclass classification in microarray data analysis. DNA Cell Biol 23:685–694. https://doi.org/10.1089/dna.2004.23.685

    Article  CAS  PubMed  Google Scholar 

  45. Hong H, Tong W, Xie Q, Fang H, Perkins R (2005) An in silico ensemble method for lead discovery: decision forest. SAR QSAR Environ Res 16:339–347. https://doi.org/10.1080/10659360500203022

    Article  CAS  PubMed  Google Scholar 

  46. Ng HW, Shu M, Luo H, Ye H, Ge W, Perkins R, Tong W, Hong H (2015) Estrogenic activity data extraction and in silico prediction show the endocrine disruption potential of bisphenol a replacement compounds. Chem Res Toxicol 28:1784–1795. https://doi.org/10.1021/acs.chemrestox.5b00243

    Article  CAS  PubMed  Google Scholar 

  47. Ng HW, Doughty SW, Luo H, Ye H, Ge W, Tong W, Hong H (2015) Development and validation of decision forest model for estrogen receptor binding prediction of chemicals using large data sets. Chem Res Toxicol 28:2343–2351. https://doi.org/10.1021/acs.chemrestox.5b00358

    Article  CAS  PubMed  Google Scholar 

  48. Sakkiah S, Selvaraj C, Gong P, Zhang C, Tong W, Hong H (2017) Development of estrogen receptor beta binding prediction model using large sets of chemicals. Oncotarget 8:92989–93000. https://doi.org/10.18632/oncotarget.21723

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sakkiah S, Leggett C, Pan B, Guo W, Valerio LG Jr, Hong H (2020) Development of a nicotinic acetylcholine receptor nAChR α7 binding activity prediction model. J Chem Inf Model 60:2396–2404. https://doi.org/10.1021/acs.jcim.0c00139

    Article  CAS  PubMed  Google Scholar 

  50. Hong H, Zhu J, Chen M, Gong P, Zhang C, Tong W (2018) Quantitative structure–activity relationship models for predicting risk of drug-induced liver injury in humans. In: Chen M, Will Y (eds) Drug-induced liver toxicity. Methods in pharmacology and toxicology. Humana, New York, NY, pp 77–100. https://doi.org/10.1007/978-1-4939-7677-5_5

    Chapter  Google Scholar 

  51. Hong H, Xie Q, Ge W, Qian F, Fang H, Shi L, Su Z, Perkins R, Tong W (2008) Mold2, molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics. J Chem Inf Model 48:1337–1344. https://doi.org/10.1021/ci800038f

    Article  CAS  PubMed  Google Scholar 

  52. Greene N, Fisk L, Naven RT, Note RR, Patel ML, Pelletier DJ (2010) Developing structure-activity relationships for the prediction of hepatotoxicity. Chem Res Toxicol 23:1215–1222. https://doi.org/10.1021/tx1000865

    Article  CAS  PubMed  Google Scholar 

  53. Xu JJ, Henstock PV, Dunn MC, Smith AR, Chabot JR, de Graaf D (2008) Cellular imaging predictions of clinical drug-induced liver injury. Toxicol Sci 105:97–105. https://doi.org/10.1093/toxsci/kfn109

    Article  CAS  PubMed  Google Scholar 

  54. Chen M, Suzuki A, Thakkar S, Yu K, Hu C, Tong W (2016) DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans. Drug Discov Today 21:648–653. https://doi.org/10.1016/j.drudis.2016.02.015

    Article  CAS  PubMed  Google Scholar 

  55. Xia X, Maliski EG, Gallant P, Rogers D (2004) Classification of kinase inhibitors using a Bayesian model. J Med Chem 47:4463–4470. https://doi.org/10.1021/jm0303195

    Article  CAS  PubMed  Google Scholar 

  56. Bender A (2011) Bayesian methods in virtual screening and chemical biology. Methods Mol Biol 672:175–196. https://doi.org/10.1007/978-1-60761-839-3_7

    Article  CAS  PubMed  Google Scholar 

  57. Glick M, Jenkins JL, Nettles JH, Hitchings H, Davies JW (2006) Enrichment of high-throughput screening data with increasing levels of noise using support vector machines, recursive partitioning, and laplacian-modified naive bayesian classifiers. J Chem Inf Model 46:193–200. https://doi.org/10.1021/ci050374h

    Article  CAS  PubMed  Google Scholar 

  58. Minerali E, Foil DH, Zorn KM, Lane TR, Ekins S (2020) Comparing machine learning algorithms for predicting drug-induced liver injury (DILI). Mol Pharm 17:2628–2637. https://doi.org/10.1021/acs.molpharmaceut.0c00326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen M, Zhang J, Wang Y, Liu Z, Kelly R, Zhou G, Fang H, Borlak J, Tong W (2013) The liver toxicity knowledge base: a systems approach to a complex end point. Clin Pharmacol Ther 93:409–412. https://doi.org/10.1038/clpt.2013.16

    Article  CAS  PubMed  Google Scholar 

  60. Chen M, Vijay V, Shi Q, Liu Z, Fang H, Tong W (2011) FDA-approved drug labeling for the study of drug-induced liver injury. Drug Discov Today 16:697–703. https://doi.org/10.1016/j.drudis.2011.05.007

    Article  PubMed  Google Scholar 

  61. Proctor WR, Foster AJ, Vogt J, Summers C, Middleton B, Pilling MA, Shienson D, Kijanska M, Strobel S, Kelm JM, Morgan P, Messner S, Williams D (2017) Utility of spherical human liver microtissues for prediction of clinical drug-induced liver injury. Arch Toxicol 91:2849–2863. https://doi.org/10.1007/s00204-017-2002-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gustafsson F, Foster AJ, Sarda S, Bridgland-Taylor MH, Kenna J (2014) A correlation between the in vitro drug toxicity of drugs to cell lines that express human P450s and their propensity to cause liver injury in human. Toxicol Sci 137:189–211. https://doi.org/10.1093/toxsci/kft22

    Article  CAS  PubMed  Google Scholar 

  63. Zhang L, Tan J, Han D, Zhu H (2017) From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today 22:1680–1685. https://doi.org/10.1016/j.drudis.2017.08.010

    Article  PubMed  Google Scholar 

  64. Cao Y, Geddes T, Yang J, Yang P (2020) Ensemble deep learning in bioinformatics. Nat Machine Intelligence 2:500–508

    Article  Google Scholar 

  65. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  CAS  PubMed  Google Scholar 

  66. Tang B, Pan Z, Yin K, Khateeb A (2019) Recent advances of deep learning in bioinformatics and computational biology. Front Genet 10:214. https://doi.org/10.3389/fgene.2019.00214

    Article  PubMed  PubMed Central  Google Scholar 

  67. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK (2021) Artificial intelligence in drug discovery and development. Drug Discov Today 26:80–93. https://doi.org/10.1016/j.drudis.2020.10.010

    Article  CAS  PubMed  Google Scholar 

  68. Min S, Lee B, Yoon S (2017) Deep learning in bioinformatics. Brief Bioinform 18:851–869. https://doi.org/10.1093/bib/bbw068

    Article  PubMed  Google Scholar 

  69. Ai H, Chen W, Zhang L, Huang L, Yin Z, Hu H, Zhao Q, Zhao J, Liu H (2018) Predicting drug-induced liver injury using ensemble learning methods and molecular fingerprints. Toxicol Sci 165:100–107. https://doi.org/10.1093/toxsci/kfy121

    Article  CAS  PubMed  Google Scholar 

  70. Liew CY, Lim YC, Yap CW (2011) Mixed learning algorithms and features ensemble in hepatotoxicity prediction. J Comput Aided Mol Des 25:855–871. https://doi.org/10.1007/s10822-011-9468-3

    Article  CAS  PubMed  Google Scholar 

  71. Kotsampasakou E, Montanari F, Ecker GF (2017) Predicting drug-induced liver injury: the importance of data curation. Toxicology 389:139–145. https://doi.org/10.1016/j.tox.2017.06.003

    Article  CAS  PubMed  Google Scholar 

  72. Zhang H, Ding L, Zou Y, Hu SQ, Huang HG, Kong WB, Zhang J (2016) Predicting drug-induced liver injury in human with naive Bayes classifier approach. J Comput Aided Mol Des 30:889–898. https://doi.org/10.1007/s10822-016-9972-6

    Article  CAS  PubMed  Google Scholar 

  73. Christmann A, Steinwart I (2008) Support vector machines. Information science and statistics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77242-4_1

    Book  Google Scholar 

  74. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297. https://doi.org/10.1007/BF00994018

    Article  Google Scholar 

  75. Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511801389

    Book  Google Scholar 

  76. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, Tang A, Gabriel G, Ly C, Adamjee S, Dame ZT, Han B, Zhou Y, Wishart DS (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42:D1091–D1097. https://doi.org/10.1093/nar/gkt1068

    Article  CAS  PubMed  Google Scholar 

  77. Durant JL, Leland BA, Henry DR, Nourse JG (2002) Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci 42:1273–1280. https://doi.org/10.1021/ci010132r

    Article  CAS  PubMed  Google Scholar 

  78. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminform 3:33. https://doi.org/10.1186/1758-2946-3-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ancuceanu R, Dinu M, Neaga I, Laszlo FG, Boda D (2019) Development of QSAR machine learning-based models to forecast the effect of substances on malignant melanoma cells. Oncol Lett 17:4188–4196. https://doi.org/10.3892/ol.2019.10068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  81. Cutler DR, Edwards TC Jr, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ (2007) Random forests for classification in ecology. Ecology 88:2783–2792. https://doi.org/10.1890/07-0539.1

    Article  PubMed  Google Scholar 

  82. Strobl C, Boulesteix AL, Kneib T, Augustin T, Zeileis A (2008) Conditional variable importance for random forests. BMC Bioinformatics 9:307. https://doi.org/10.1186/1471-2105-9-307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mora JR, Marrero-Ponce Y, Garcia-Jacas CR, Suarez Causado A (2020) Ensemble models based on QuBiLS-MAS features and shallow learning for the prediction of drug-induced liver toxicity: improving deep learning and traditional approaches. Chem Res Toxicol 33:1855–1873. https://doi.org/10.1021/acs.chemrestox.0c00030

    Article  CAS  PubMed  Google Scholar 

  84. Hong H, Chen M, Ng HW, Tong W (2016) QSAR models at the US FDA/NCTR. Methods Mol Biol 1425:431–459. https://doi.org/10.1007/978-1-4939-3609-0_18

    Article  CAS  PubMed  Google Scholar 

  85. Cheng A, Dixon SL (2003) In silico models for the prediction of dose-dependent human hepatotoxicity. J Comput Aided Mol Des 17:811–823. https://doi.org/10.1023/b:jcam.0000021834.50768.c6

    Article  CAS  PubMed  Google Scholar 

  86. Low Y, Uehara T, Minowa Y, Yamada H, Ohno Y, Urushidani T, Sedykh A, Muratov E, Kuz’min V, Fourches D, Zhu H, Rusyn I, Tropsha A (2011) Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches. Chem Res Toxicol 24:1251–1262. https://doi.org/10.1021/tx200148a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ambe K, Ishihara K, Ochibe T, Ohya K, Tamura S, Inoue K, Yoshida M, Tohkin M (2018) In silico prediction of chemical-induced hepatocellular hypertrophy using molecular descriptors. Toxicol Sci 162:667–675. https://doi.org/10.1093/toxsci/kfx287

    Article  CAS  PubMed  Google Scholar 

  88. Liu Y, Gao H, He YD (2020) A compound attributes-based predictive model for drug induced liver injury in humans. PLoS One 15:e0231252. https://doi.org/10.1371/journal.pone.0231252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Huang SH, Tung CW, Fulop F, Li JH (2015) Developing a QSAR model for hepatotoxicity screening of the active compounds in traditional Chinese medicines. Food Chem Toxicol 78:71–77. https://doi.org/10.1016/j.fct.2015.01.020

    Article  CAS  PubMed  Google Scholar 

  90. Zhang H, Liu CT, Mao J, Shen C, Xie RL, Mu B (2020) Development of novel in silico prediction model for drug-induced ototoxicity by using naive Bayes classifier approach. Toxicol In Vitro 65:104812. https://doi.org/10.1016/j.tiv.2020.104812

    Article  CAS  PubMed  Google Scholar 

  91. Dragovic S, Vermeulen NP, Gerets HH, Hewitt PG, Ingelman-Sundberg M, Park BK, Juhila S, Snoeys J, Weaver RJ (2016) Evidence-based selection of training compounds for use in the mechanism-based integrated prediction of drug-induced liver injury in man. Arch Toxicol 90:2979–3003. https://doi.org/10.1007/s00204-016-1845-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Longo DM, Yang Y, Watkins PB, Howell BA, Siler SQ (2016) Elucidating differences in the hepatotoxic potential of Tolcapone and Entacapone with DILIsym®, a mechanistic model of drug-induced liver injury. CPT Pharmacometrics Syst Pharmacol 5:31–39. https://doi.org/10.1002/psp4.12053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474. https://doi.org/10.1002/jcc.21707

    Article  CAS  PubMed  Google Scholar 

  94. Cao DS, Xu QS, Hu QN, Liang YZ (2013) ChemoPy: freely available python package for computational biology and chemoinformatics. Bioinformatics 29:1092–1094. https://doi.org/10.1093/bioinformatics/btt105

    Article  CAS  PubMed  Google Scholar 

  95. Liu Z, Shi Q, Ding D, Kelly R, Fang H, Tong W (2011) Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps). PLoS Comput Biol 7:e1002310. https://doi.org/10.1371/journal.pcbi.1002310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Valdes-Martini JR, Marrero-Ponce Y, Garcia-Jacas CR, Martinez-Mayorga K, Barigye SJ, Vaz d’Almeida YS, Pham-The H, Perez-Gimenez F, Morell CA (2017) QuBiLS-MAS, open source multi-platform software for atom- and bond-based topological (2D) and chiral (2.5D) algebraic molecular descriptors computations. J Cheminform 9:35. https://doi.org/10.1186/s13321-017-0211-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xu JJ, Diaz D, O’Brien PJ (2004) Applications of cytotoxicity assays and pre-lethal mechanistic assays for assessment of human hepatotoxicity potential. Chem Biol Interact 150:115–128. https://doi.org/10.1016/j.cbi.2004.09.011

    Article  CAS  PubMed  Google Scholar 

  98. Emara Y, Fantke P, Judson R, Chang X, Pradeep P, Lehmann A, Siegert MW, Finkbeiner M (2020) Integrating endocrine-related health effects into comparative human toxicity characterization. Sci Total Environ 762:143874. https://doi.org/10.1016/j.scitotenv.2020.143874

    Article  CAS  PubMed  Google Scholar 

  99. Judson RS, Magpantay FM, Chickarmane V, Haskell C, Tania N, Taylor J, Xia M, Huang R, Rotroff DM, Filer DL, Houck KA, Martin MT, Sipes N, Richard AM, Mansouri K, Setzer RW, Knudsen TB, Crofton KM, Thomas RS (2015) Integrated model of chemical perturbations of a biological pathway using 18 in vitro high-throughput screening assays for the estrogen receptor. Toxicol Sci 148:137–154. https://doi.org/10.1093/toxsci/kfv168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sipes NS, Martin MT, Reif DM, Kleinstreuer NC, Judson RS, Singh AV, Chandler KJ, Dix DJ, Kavlock RJ, Knudsen TB (2011) Predictive models of prenatal developmental toxicity from ToxCast high-throughput screening data. Toxicol Sci 124:109–127. https://doi.org/10.1093/toxsci/kfr220

    Article  CAS  PubMed  Google Scholar 

  101. Martin MT, Knudsen TB, Reif DM, Houck KA, Judson RS, Kavlock RJ, Dix DJ (2011) Predictive model of rat reproductive toxicity from ToxCast high throughput screening. Biol Reprod 85:327–339. https://doi.org/10.1095/biolreprod.111.090977

    Article  CAS  PubMed  Google Scholar 

  102. Xu T, Ngan DK, Ye L, Xia M, Xie HQ, Zhao B, Simeonov A, Huang R (2020) Predictive models for human organ toxicity based on in vitro bioactivity data and chemical structure. Chem Res Toxicol 33:731–741. https://doi.org/10.1021/acs.chemrestox.9b00305

    Article  CAS  PubMed  Google Scholar 

  103. Liu J, Patlewicz G, Williams AJ, Thomas RS, Shah I (2017) Predicting organ toxicity using in vitro bioactivity data and chemical structure. Chem Res Toxicol 30:2046–2059. https://doi.org/10.1021/acs.chemrestox.7b00084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Vahle JL, Anderson U, Blomme EAG, Hoflack JC, Stiehl DP (2018) Use of toxicogenomics in drug safety evaluation: current status and an industry perspective. Regul Toxicol Pharmacol 96:18–29. https://doi.org/10.1016/j.yrtph.2018.04.011

    Article  CAS  PubMed  Google Scholar 

  105. Rusyn I, Sedykh A, Low Y, Guyton KZ, Tropsha A (2012) Predictive modeling of chemical hazard by integrating numerical descriptors of chemical structures and short-term toxicity assay data. Toxicol Sci 127:1–9. https://doi.org/10.1093/toxsci/kfs095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Judson R, Houck K, Martin M, Knudsen T, Thomas RS, Sipes N, Shah I, Wambaugh J, Crofton K (2014) In vitro and modelling approaches to risk assessment from the U.S. Environmental Protection Agency ToxCast programme. Basic Clin Pharmacol Toxicol 115:69–76. https://doi.org/10.1111/bcpt.12239

    Article  CAS  PubMed  Google Scholar 

  107. Judson RS, Houck KA, Kavlock RJ, Knudsen TB, Martin MT, Mortensen HM, Reif DM, Rotroff DM, Shah I, Richard AM, Dix DJ (2010) In vitro screening of environmental chemicals for targeted testing prioritization: the ToxCast project. Environ Health Perspect 118:485–492. https://doi.org/10.1289/ehp.0901392

    Article  CAS  PubMed  Google Scholar 

  108. Zang Q, Rotroff DM, Judson RS (2013) Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods. J Chem Inf Model 53:3244–3261. https://doi.org/10.1021/ci400527b

    Article  CAS  PubMed  Google Scholar 

  109. Thoolen B, Maronpot RR, Harada T, Nyska A, Rousseaux C, Nolte T, Malarkey DE, Kaufmann W, Kuttler K, Deschl U, Nakae D, Gregson R, Vinlove MP, Brix AE, Singh B, Belpoggi F, Ward JM (2010) Proliferative and nonproliferative lesions of the rat and mouse hepatobiliary system. Toxicol Pathol 38:5S–81S. https://doi.org/10.1177/0192623310386499

    Article  PubMed  Google Scholar 

  110. Hoofnagle JH, Serrano J, Knoben JE, Navarro VJ (2013) LiverTox: a website on drug-induced liver injury. Hepatology 57:873–874. https://doi.org/10.1002/hep.26175

    Article  PubMed  Google Scholar 

  111. Li Y, Huang C, Ding L, Li Z, Pan Y, Gao X (2019) Deep learning in bioinformatics: introduction, application, and perspective in the big data era. Methods 166:4–21. https://doi.org/10.1016/j.ymeth.2019.04.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Gwenn Merry in the Office of Research at the National Center for Toxicological Research for her review and outstanding editing of the manuscript. This work was supported in part by an appointment to the Research Participation Program at the National Center for Toxicological Research (Zuowei Ji) administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and the US Food and Drug Administration.

Disclaimer: This chapter reflects the views of the authors and does not necessarily reflect those of the US Food and Drug Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huixiao Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, J. et al. (2022). Machine Learning Models for Predicting Liver Toxicity. In: Benfenati, E. (eds) In Silico Methods for Predicting Drug Toxicity. Methods in Molecular Biology, vol 2425. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1960-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1960-5_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1959-9

  • Online ISBN: 978-1-0716-1960-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics