Skip to main content

Methods to Synthesize and Assemble Recombinant Keratins

  • Protocol
  • First Online:
Fibrous Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2347))

  • 1300 Accesses

Abstract

Keratin, as one of the most abundant and underexploited protein sources, is a ubiquitous biological material that commonly exists in epithelial cells. Due to the excellent biocompatibility and biodegradability, keratin is widely used in biomedical applications. Previously, these biomaterials were prepared by dissolving and extracting the keratinous materials. However, the keratins obtained by direct extraction is not pure and contain many by-products. Moreover, natural keratins suffer from limited sequence tenability. In comparison, the recombinant keratin proteins produced by recombinant technology can overcome these drawbacks while maintaining the desired chemical and physical characteristics of natural keratins. Accordingly, this chapter mainly introduces the experimental protocols of the recombination of keratin. As these recombinant keratins are often used for assembly of intermediate filaments (IFs) in vitro, assembly protocols are also introduced in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rouse JG, Van Dyke ME (2010) A review of keratin-based biomaterials for biomedical applications. Materials 3:999–1014

    Article  Google Scholar 

  2. Cheng Z, Chen X, Zhai D, Gao F, Wang B (2018) Development of keratin nanoparticles for controlled gastric mucoadhesion and drug release. J Nanobiotechnol 16:1–13

    Article  Google Scholar 

  3. Sawada K, Fujisato T (2012) Keratin protein for biomaterial applications. Sen’i Gakkaishi 68:232–238

    Article  Google Scholar 

  4. Wang RM, Li FY, Wang XJ (2010) The application of feather keratin and its derivatives in treatment of potato starch wastewater. J Funct Mater Lett 3:213–216

    Article  CAS  Google Scholar 

  5. Wang YX, Cao XJ (2012) Extracting keratin from chicken feathers by using a hydrophobic ionic liquid. Process Biochem 47:896–899

    Article  CAS  Google Scholar 

  6. Coulombe PA, Omary MB (2002) Hard’ and ‘soft’ principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol 14:110–122

    Article  CAS  Google Scholar 

  7. Yu J, Yu DW, Checkla DM, Freedberg IM, Bertolino AP (1993) Human hair keratins. J Invest Dermatol 101:56S–59S

    Article  CAS  Google Scholar 

  8. Shavandi A, Silva TH, Bekhit AA, Bekhit AEA (2017) Keratin: dissolution, extraction and biomedical application. Biomater Sci 5:1699–1735

    Article  CAS  Google Scholar 

  9. Korniłłowicz-Kowalska T, Bohacz J (2011) Biodegradation of keratin waste: theory and practical aspects. Waste Manag 31:1689–1701

    Article  Google Scholar 

  10. Torimoto T, Tsuda T, Okazaki KI, Kuwabata S (2010) New Frontiers in materials science opened by ionic liquids. Adv Mater 22:1196–1221

    Article  CAS  Google Scholar 

  11. Xu H, Ma Z, Yang Y (2014) Dissolution and regeneration of wool via controlled disintegration and disentanglement of highly crosslinked keratin. J Mater Sci 49:7513–7521

    Article  CAS  Google Scholar 

  12. Simpson WS, Crawshaw G (2002) Wool: science and technology. Technische Universität Harburg, Hamburg

    Book  Google Scholar 

  13. Tsuda Y, Nomura Y (2014) Properties of alkaline-hydrolyzed waterfowl feather keratin. Anim Sci J 85:180–185

    Article  CAS  Google Scholar 

  14. Yin J, Rastogi S, Terry AE, Popescu C (2007) Self-organization of oligopeptides obtained on dissolution of feather keratins in superheated water. Biomacromolecules 8:800–806

    Article  CAS  Google Scholar 

  15. Sturm GSJ, Verweij MD, Stankiewicz AI, Stefanidis GD (2014) Microwaves and microreactors: design challenges and remedies. Chem Eng J 243:147–158

    Article  CAS  Google Scholar 

  16. Zoccola M, Aluigi A, Patrucco A, Vineis C, Forlini F, Locatelli P, Sacchi MC, Tonin C (2012) Microwave-assisted chemical-free hydrolysis of wool keratin. Text Res J 82:2006–2018

    Article  Google Scholar 

  17. Zhang Y, Zhao W, Yang R (2015) Steam flash explosion assisted dissolution of keratin from feathers. ACS Sustain Chem Eng 3:2036–2042

    Article  CAS  Google Scholar 

  18. Yu Z, Zhang B, Yu F, Xu G, Song A (2012) A real explosion: the requirement of steam explosion pretreatment. Bioresour Technol 121:335–341

    Article  CAS  Google Scholar 

  19. Tonin C, Zoccola M, Aluigi A, Varesano A, Montarsolo A, Vineis C, Zimbardi F (2006) Study on the conversion of wool keratin by steam explosion. Biomacromolecules 7:3499–3504

    Article  CAS  Google Scholar 

  20. Tork SE, Shahein YE, El-Hakim AE, Abdel-Aty AM, Aly MM (2013) Production and characterization of thermostable metallo-keratinase from newly isolated Bacillus subtilis NRC 3. Int J Biol Macromol 55:169–175

    Article  CAS  Google Scholar 

  21. Onifade AA, Al-Sane NA, Al-Musallam AA, Al-Zarban S (1998) A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour Technol 66:1–11

    Article  CAS  Google Scholar 

  22. Sanchez S, Demain AL (2011) Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Org Process Res Dev 15:224–230

    Article  CAS  Google Scholar 

  23. Adav SS, Subbaiaih RS, Kerk SK, Lee AY, Lai HY, Ng KW, Sze SK, Schmidtchen A (2018) Studies on the proteome of human hair - identification of histones and deamidated keratins. Sci Rep 8:1–11

    Article  CAS  Google Scholar 

  24. Parker RN, Roth KL, Kim C, Mccord JP, Van Dyke ME, Grove TZ (2017) Homo- and heteropolymer self-assembly of recombinant trichocytic keratins. Biopolymers 107:e23037

    Article  Google Scholar 

  25. Lee H, Noh K, Lee SC, Kwon I-K, Han D-W, Lee I-S, Hwang Y-S (2014) Human hair keratin and its-based biomaterials for biomedical applications. Tissue Eng Regener Med 11:255–265

    Article  CAS  Google Scholar 

  26. Nakamura A, Arimoto M, Takeuchi K, Fujii T (2002) A rapid extraction procedure of human hair proteins and identification of phosphorylated species. Biol Pharm Bull 25:569–572

    Article  CAS  Google Scholar 

  27. Buchanan JH (1977) A cystine-rich protein fraction from oxidized alpha-keratin. Biochem J 167:489–491

    Article  CAS  Google Scholar 

  28. Gao F, Li W, Deng J, Kan J, Guo T, Wang B, Hao S (2019) Recombinant human hair keratin nanoparticles accelerate dermal wound healing. ACS Appl Mater Interfaces 11:18681–18690

    Article  CAS  Google Scholar 

  29. Guo T, Li W, Wang J, Luo T, Lou D, Wang B, Hao S (2018) Recombinant human hair keratin proteins for halting bleeding. Artif Cells Nanomed Biotechnol 46:456–461

    Article  Google Scholar 

  30. Steinert PM, Steven AC, Roop DR (1983) Structural features of epidermal keratin filaments reassembled in vitro. J Invest Dermatol 81:86s–90s

    Article  CAS  Google Scholar 

  31. Herrmann H, Wedig T, Porter RM, Lane EB, Aebi U (2002) Characterization of early assembly intermediates of recombinant human keratins. J Struct Biol 137:82–96

    Article  CAS  Google Scholar 

  32. Dinjaski N, Kaplan DL (2016) Recombinant protein blends: silk beyond natural design. Curr Opin Biotechnol 39:1–7

    Article  CAS  Google Scholar 

  33. Lin C-Y, Liu JC (2016) Modular protein domains: an engineering approach toward functional biomaterials. Curr Opin Biotechnol 40:56–63

    Article  CAS  Google Scholar 

  34. Lichtenstern T, Mücke N, Aebi U, Mauermann M, Herrmann H (2012) Complex formation and kinetics of filament assembly exhibited by the simple epithelial keratins K8 and K18. J Struct Biol 177:54–62

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, W., Fan, Y. (2021). Methods to Synthesize and Assemble Recombinant Keratins. In: Ling, S. (eds) Fibrous Proteins. Methods in Molecular Biology, vol 2347. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1574-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1574-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1573-7

  • Online ISBN: 978-1-0716-1574-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics