Skip to main content

Random Amplified Polymorphic DNA (RAPD) and Derived Techniques

  • Protocol
  • First Online:
Molecular Plant Taxonomy

Abstract

Understanding biology and genetics at molecular level has become very important for dissection and manipulation of genome architecture for addressing evolutionary and taxonomic questions. Knowledge of genetic variation and genetic relationship among genotypes is an important consideration for classification, utilization of germplasm resources, and breeding. Molecular markers have contributed significantly in this respect and have been widely used in plant science in a number of ways, including genetic fingerprinting, diagnostics, identification of duplicates and selection of core collections, determination of genetic distances, genome analysis, development of molecular maps, and identification of markers associated with desirable breeding traits. The application of molecular markers largely depends on the type of markers employed, distribution of markers in the genome, type of loci they amplify, level of polymorphism, and reproducibility of products. Among many DNA markers available, random amplified polymorphic DNA (RAPD) is the simplest, is cost-effective, and can be performed in a moderate laboratory for most of its applications. In addition, RAPDs can touch much of the genome and has the advantage that no prior knowledge of the genome under research is necessary. The recent improvements in the RAPD technique like arbitrarily primed polymerase chain reaction (AP-PCR), sequence characterized amplified region (SCAR), DNA amplification fingerprinting (DAF), sequence-related amplified polymorphism (SRAP), cleaved amplified polymorphic sequences (CAPS), random amplified microsatellite polymorphism (RAMPO), and random amplified hybridization microsatellites (RAHM) can complement the shortcomings of RAPDs and have enhanced the utility of this simple technique for specific applications. Simple protocols for these techniques are presented along with the applications of RAPD in genetic diversity analysis, mapping, varietal identification, genetic fidelity testing, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams JG, Kubelik AR, Livak KJ et al (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vos P, Hogers R, Bleaker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Article  Google Scholar 

  4. Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80:524–535

    CAS  Google Scholar 

  5. Robinson JP, Harris SA (1999) Which DNA marker for which purpose. In: Gillet EM (ed) . Institut für Forstgenetik und Forstpflanzenzüchtung, Universität Göttingen, Göttingen, Germany

    Google Scholar 

  6. Vierling RA, Nguyen HT (1992) Use of RAPD markers to determine the genetic diversity of diploid, wheat genotypes. Theor Appl Genet 84:835–838

    Article  CAS  PubMed  Google Scholar 

  7. dos Santos JB, Nienhuis J, Skroch P et al (1994) Comparison of RAPD and RFLP genetic markers in determining genetic similarity among Brassica oleracea L. genotypes. Theor Appl Genet 87:909–915

    Article  PubMed  Google Scholar 

  8. Maria D, Angela P, Chialexei L et al (2008) Characteristics of RAPD markers inbreeding of Cucumis sativus L. Roum. Biotechnol Lett 13:3843–3850

    CAS  Google Scholar 

  9. Khadari B, Breton C, Moutier N et al (2003) The use of molecular markers for germplasm management in a French olive collection. Theor Appl Genet 106:521–529

    Article  CAS  PubMed  Google Scholar 

  10. Tinker NA, Fortin MG, Mather DE et al (1993) Random amplified polymorphic DNA and pedigree relationships in spring barley. Theor Appl Genet 85:976

    Article  CAS  PubMed  Google Scholar 

  11. Mailer RJ, Scarth R, Fristensk B et al (1994) Discrimination among cultivars of rapeseed (Brassica napus L.) using DNA polymorphism amplified from arbitrary primers. Theor Appl Genet 87:697–704

    Article  CAS  PubMed  Google Scholar 

  12. Rajesh MK, Jerard BA, Preethi P et al (2014) Application of RAPD markers in hybrid verification in coconut. Crop Breed Applied Biotechnol 14(1):36–41

    Article  CAS  Google Scholar 

  13. Congiu L, Chicca M, Cella R et al (2000) The use of randomly amplified polymorphic DNA (RAPD) markers to identify strawberry varieties: a forensic application. Mol Ecol 9:229–232

    Article  CAS  PubMed  Google Scholar 

  14. Bligh HFJ (2000) Detection of adulteration of basmati rice with non-premium long grain rice. Int J Food Sci Technol 35:257–265

    Article  CAS  Google Scholar 

  15. Adams RP, Demeke T (1993) Systematic relationships in junipers based on random amplified polymorphic DNA. Taxon 42:553–571

    Article  Google Scholar 

  16. Wilkie SE, Issac PG, Slater RJ et al (1993) Random amplified polymorphic DNA (RAPD) markers for genetic analysis in allium. Theor Appl Genet 86:497–504

    Article  CAS  PubMed  Google Scholar 

  17. Isabel N, Tremblay L, Michaud M et al (1993) RAPDs as an aid to evaluate the genetic integrity of somatic embryogenesis-derived populations of Picea mariana (Mill.) B.S.P. Theor Appl Genet 86:81–87

    Article  CAS  PubMed  Google Scholar 

  18. Lewis PO, Snow AA (1992) Deterministic paternity exclusion using RAPD markers. Mol Ecol 1:155–160

    Article  CAS  PubMed  Google Scholar 

  19. Crawford DJ, Brauner S, Cosner MB et al (1993) Use of RAPD markers to document the origin of inter generic hybrid Margyracaena skottsbergii (Rosaceae) on the Juan Fernandez Islands. Am J Bot 80:89–92

    Article  CAS  Google Scholar 

  20. Waugh R, Baird E, Powell W (1992) The use of RAPD markers for the detection of gene introgression in potato. Plant Cell Rep 11:466–469

    Article  CAS  PubMed  Google Scholar 

  21. Halima HS, Bahy AA, Tian-Hua H et al (2007) Use of random amplified polymorphic DNA analysis for economically important food crops. J Integr Plant Biol 49(12):1670–1680

    Article  CAS  Google Scholar 

  22. Hedrick P (1992) Shooting the RAPDs. Nature 355:679–680

    Article  Google Scholar 

  23. Challahan LM, Weaver KR, Caetano-Anolles G et al (1993) DNA fingerprinting of turf grass. Int Turfgrass Soc Res J 7:761–767

    Google Scholar 

  24. Caetano-Anollés G, Gresshoff PM (1994) DNA amplification fingerprinting using arbitrary mini-hairpin oligonucleotide primers. Biotech 12:619–623

    Google Scholar 

  25. Michelmore RW, Paran I, Kesseli RV et al (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martin GB, Williams JGK, Tanksley SD et al (1991) Rapid identification of markers linked to a pseudomonas resistance gene in tomato by using random primers and near-isogenic lines. Proc Natl Acad Sci U S A 88:2336–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rafalski JA, Tingey SV (1993) Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines. Trends Genet 9:275–280

    Article  CAS  PubMed  Google Scholar 

  28. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Welsh J, Honeycutt RS, McClelland M et al (1991) Parentage determination in maize hybrids using the arbitrarily primed polymerase chain reaction (AP-PCR). Theor Appl Genet 82:473–476

    Article  CAS  PubMed  Google Scholar 

  30. Caetano-Anollés G, Bassam BJ, Gresshoff PM et al (1991) DNA amplification finger printing using short arbitrary oligonucleotide primers. Biotech 9:553–557

    Google Scholar 

  31. Somsri S, Bussabakornkul S (2008) Identification of certain papaya cultivars and sex identification in papaya by DNA amplification fingerprinting (DAF). Acta Hort (ISHS) 787:197–206

    Article  CAS  Google Scholar 

  32. Luro S (1995) DNA amplified fingerprinting, a useful tool for determination of genetic origin and diversity analysis in citrus. HortScience 30(5):1063–1067

    Article  CAS  Google Scholar 

  33. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in brassica. Theor Appl Genet 103:455–546

    Article  CAS  Google Scholar 

  34. Cifarelli RA, Gallitelli M, Cellini F et al (1995) Random amplified hybridization microsatellites (RAHM): isolation of a new class of microsatellite containing DNA clones. Nucleic Acid Res 23:3802–3803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Richardson T, Cato S, Ramser J et al (1995) Hybridization of microsatellites to RAPD: a new source of polymorphic markers. Nucleic Acids Res 23:3798–3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Koniecyzn A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-economically important pathogen based markers. Plant J 4:403–410

    Article  Google Scholar 

  37. Jarvis P, Lister C, Szabo V et al (1994) Integration of CAPS markers into the RFLP map generated using recombinant inbred lines of Arabidopsis thaliana. Plant Mol Biol 24:685–687

    Article  CAS  PubMed  Google Scholar 

  38. Ranade SA, Farooqui N, Bhattacharya E et al (2001) Gene tagging with random amplified polymorphic DNA (RAPD) markers for molecular breeding in plants. Crit Rev Plant Sci 20(3):251–275

    Article  CAS  Google Scholar 

  39. Gould AR (1986) Factors controlling generation of variability in vitro in: Vasil IK (ed) cell culture and somatic cell genetics in plants, plant regeneration and genetic variability, 3rd edn. Academic Press, Orlando

    Google Scholar 

  40. Wang S, Chen X, Han F et al (2016) Genetic diversity and population structure of ginseng in China based on RAPD analysis. Open Life Sci 11(1):387–390

    Article  CAS  Google Scholar 

  41. Rohela GK, Jogam P, Bylla P et al (2019) Indirect regeneration and assessment of genetic fidelity of acclimated plantlets by SCoT, ISSR, and RAPD markers in Rauwolfia tetraphylla L.: an endangered medicinal plant. Biomed Res Int 2019:3698742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ali EM, Tohidfar M, Karimi M et al (2015) Determination of genetic uniformity in transgenic cotton plants using DNA markers (RAPD and ISSR) and SDS-PAGE. J Plant Mol Breed 3(2):36–43

    Google Scholar 

  43. Tingey SV, del Tufo JP (1993) Genetic analysis with random amplified polymorphic DNA markers. Plant Physiol 101:349–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Powell W, Morgante M, Andre C et al (1996) The unity of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  45. Bardacki F (2001) Random amplified polymorphic DNA (RAPD) markers. Turk J Biol 25:185–196

    Google Scholar 

  46. Chao S (2006) Application of molecular marker technologies on cereal crops improvement. Paper presented at the American oat workers conference, Fargo, ND

    Google Scholar 

  47. Jiang GL (2013) Molecular markers and marker-assisted breeding in plants. In: Sven BA (ed) Plant breeding from laboratories to fields. Intech, London

    Google Scholar 

  48. Shivashankar M (2014) Random amplified polymorphic DNA (RAPD) markers in anticancer drug plants. Int J Curr Microbiol App Sci 3(7):1091–1101

    Google Scholar 

  49. Kordrostami M, Rahimi M (2015) Molecular markers in plants: concepts and applications. Paper presented at conference on Genetics in the Third Millennium Vol. 13, pp 4024–4031

    Google Scholar 

  50. Selvakumari E, Jenifer J, Priyadharshini S et al (2017) Application of DNA fingerprinting for plant identification. J Acad Ind Res 5(10)

    Google Scholar 

  51. Nadeem MA, Nawaz MA, Shahid MQ et al (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip 32(2):261–285

    Article  CAS  Google Scholar 

  52. Arul S, Selvakumar R (2019) Genetic diversity and application of DNA markers in garden pea-review. Acta Sci Agric 3(2):153–161

    Google Scholar 

  53. Cho KH, Noh JH, Park SJ et al (2015) Development of sequence characterized amplified region markers for the identification of grapevine cultivars. Hort Sci 50(12):1744–1750

    CAS  Google Scholar 

  54. Cao X, Wu Z, Zhou R et al (2015) A novel random amplified polymorphic DNA-based strategy for genetic diversity analysis and identification of tomatoes. Genet Mol Res 14(1):1650–1661

    Article  CAS  PubMed  Google Scholar 

  55. Tanikawa T, Takagi M, Ichii M et al (2002) Cultivar identification and genetic diversity in onion (Allium cepa L.) as evaluated by random amplified polymorphic DNA (RAPD) analysis. J Japan Soc Hort Sci 71(2):249–251

    Article  Google Scholar 

  56. Vaio CD, Villano C, Marallo N et al (2015) Molecular analysis of native cultivars of sweet cherry in southern Italy. Hort Sci 42(3):114–118

    Google Scholar 

  57. Besnard G, Breton C, Baradat P et al (2001) Cultivar identification in olive based on RAPD markers. J Amer Soc Hort Sci 126(6):668–675

    Article  CAS  Google Scholar 

  58. Arumugam T, Jayapriya G, Sekar T et al (2019) Molecular fingerprinting of the Indian medicinal plant Strychnos minor Dennst. Biotechnol Rep 21:00318

    Google Scholar 

  59. Lee YM, Ji Y, Kang YM et al (2016) Molecular authentication of Pinelliae tuber and its common adulterants using RAPD-derived multiplex sequence characterized amplified region (multiplex-SCAR) markers. Int J Clin Exp Med 9(1):40–50

    CAS  Google Scholar 

  60. Yang L, Khan MA, Mei Z et al (2014) Development of RAPD-SCAR markers for Lonicera japonica (Caprifoliaceae) variety authentication by improved RAPD and DNA cloning. Rev Biol Trop 62(4):1649–1657

    Article  PubMed  Google Scholar 

  61. Yang L, Fu S, Khan MA et al (2013) Molecular cloning and development of RAPD-SCAR markers for Dimocarpus longan variety authentication. Springerplus 2:501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Cheng J, Long Y, Khan MA et al (2015) Development and significance of RAPD-SCAR markers for the identification of Litchi chinensis Sonn. By improved RAPD amplification and molecular cloning. Electron J Biotechnol 18:35–39

    Article  Google Scholar 

  63. Boyd M, Panoyan MA, Michael P et al (2019) Development and characterization of species-diagnostic ISSR and SCAR DNA markers for differentiating red maple (Acer rubrum) and silver maple (A. saccharinum). Genome 62:527–535

    Article  CAS  PubMed  Google Scholar 

  64. Moctezuma VE, Lopez AL, Pardo CVT et al (2018) Usefulness of three DNA-PCR techniques to differentiate Jalapeño pepper varieties. Indian J Biotechnol 17:527–532

    Google Scholar 

  65. Cheng JL, Li J, Qi YM et al (2016) Development of novel SCAR markers for genetic characterization of Lonicera japonica from high GC-RAMP-PCR and DNA cloning. Genet Mol Res 15:10.4238

    Google Scholar 

  66. Mei Z, Zhang C, Khan AM et al (2015) Efficiency of improved RAPD and ISSR markers in assessing genetic diversity and relationships in Angelica sinensis (Oliv.) Diels varieties of China. Electron J Biotechnol 18(2):96–102

    Article  Google Scholar 

  67. Paran I, Kesseli R, Michelmore R et al (1991) Identification of restriction fragment-length-polymorphism and random amplified polymorphic DNA markers linked to downy mildew resistance genes in lettuce, using near isogenic lines. Genome 34:1021–1027

    Article  CAS  PubMed  Google Scholar 

  68. Hoshi Y, Shirakawa J, Takeo M et al (2010) A molecular genetics of Drosera spatulata complex by using RAPD analysis. Chromosome Bot 5:23–26

    Article  Google Scholar 

  69. Mudge J, Andersen WR, Kehrer RL et al (1996) A RAPD genetic map of Saccharum officinarum. Crop Sci 36(5):1362–1366

    Article  CAS  Google Scholar 

  70. Padmakar B, Sailaja D, Aswath C et al (2015) Molecular exploration of guava (Psidium guajava L.) genome using SSR and RAPD markers: a step towards establishing linkage map. J Hort Sci 10(2):130–135

    Google Scholar 

  71. Moulin MM, Rodrigues R, Ramos HCC et al (2015) Construction of an integrated genetic map for Capsicum baccatum L. Genet Mol Res 14(2):6683–6694

    Article  CAS  PubMed  Google Scholar 

  72. Wanga G, Guoa Y, Zhaoa Y et al (2015) Construction of a molecular genetic map for hawthorn based on SRAP markers. Biotechnol Biotechnol Equip 29(3):441–447

    Article  CAS  Google Scholar 

  73. Ferreira TGT, Penha HA, Zuchhi MI et al (2010) Outcrossing rate in sweet passion fruit based on molecular markers. Plant Breed 129:727–730

    Article  CAS  Google Scholar 

  74. Trame AM, Coddington AJ, Paige KN et al (1995) Field and genetic studies testing optimal outcrossing in Agave schottii, a long-lived clonal plant. Oecologia 104(1):93–100

    Article  PubMed  Google Scholar 

  75. Teklewold A, Velaso L, Becker HC (2013) Estimation of outcrossing in Ethiopian mustard (B. carinata) using RAPD markers. Int J Plant Breed 7(1):1–11

    Google Scholar 

  76. Kobayashi M, Lin J, Davis J et al (2000) Quantitative analysis of avocado outcrossing and yield in California using RAPD markers. Sci Hortic 86:135–149

    Article  Google Scholar 

  77. Hazem AO, Naheif EMM, Khaled AGA et al (2015) Inbreeding, outbreeding and RAPD markers studies of faba bean (Vicia faba L.) crop. J Adv Res 6:859–868

    Article  Google Scholar 

  78. Sarmast MK, Salehi H, Ramezani A et al (2012) RAPD fingerprint to appraise the genetic fidelity of in vitro propagated Araucaria excelsa R. Br. var. glauca plantlets. Mol Biotechnol 50(3):181–188

    Article  CAS  PubMed  Google Scholar 

  79. Razaq M, Heikrujam M, Chetri SK et al (2013) In vitro clonal propagation and genetic fidelity of the regenerants of Spilanthes calva DC. Using RAPD and ISSR marker. Physiol Mol Biol Plants 19(2):251–260

    Article  CAS  PubMed  Google Scholar 

  80. Kawiak A, Lojkowska E (2004) Application of RAPD in the determination of genetic fidelity in micro propagated Drosera plantlets. In Vitro Cell Dev Biol Plant 40(6):592–595

    Article  CAS  Google Scholar 

  81. Sharma V, Belwal N, Kamal B et al (2016) Assessment of genetic Fidelity of in vitro raised plants in Swertia chirayita through ISSR, RAPD analysis and peroxidase profiling during organogenesis. Braz Arch Biol Technol 59:16160389

    Google Scholar 

  82. Baghel S, Bansal YK (2017) In vitro regeneration of Guizotia abyssinica Cass. And evaluation of genetic fidelity through RAPD markers. S Afr J Bot 109:294–307

    Article  CAS  Google Scholar 

  83. Venkatachalam L, Sreedhar RV, Neelwarne B et al (2007) Micro propagation in banana using high levels of cytokinins does not involve any genetic changes as revealed by RAPD and ISSR markers. Plant Growth Regul 51:193–205

    Article  CAS  Google Scholar 

  84. Alizadeh M, Singh S (2009) Molecular assessment of clonal fidelity in micro propagated grape (Vitis spp.) rootstock genotypes using RAPD and ISSR markers. Iranian J Biotechnol 7(1):37–44

    CAS  Google Scholar 

  85. Mohanty S, Joshi RS, Subudhi E et al (2012) Genetic stability assessment of micro propagated mango ginger (Curcuma amada Roxb.) through RAPD and ISSR markers. Res J Med Plants 6:529–536

    Article  CAS  Google Scholar 

  86. Tiwari JK, Chandel P, Gupta S et al (2013) Analysis of genetic stability of in vitro propagated potato micro tubers using DNA markers. Physiol Mol Biol Plants 19(4):587–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Thakur J, Dwivedi MD, Sourabh P et al (2016) Genetic homogeneity revealed using SCoT, ISSR and RAPD markers in micro propagated Pittosporum eriocarpum Royle- an endemic and endangered medicinal plant. PLoS One 11(7):0159050

    Google Scholar 

  88. Yadav A, Kothari SL, Kachhwaha S et al (2019) In vitro propagation of chia (Salvia hispanica L.) and assessment of fidelity using random amplified polymorphic DNA and inter simple sequence repeat molecular markers. J Appl Biol Biotechnol 7(1):42–47

    Article  CAS  Google Scholar 

  89. Borsai O, Clapa D, Fira A et al (2018). Evaluation of the genetic fidelity of in vitro-propagated blackberry plants (Rubus fruticosus L.) using molecular markers. Paper presented at XXX international horticultural congress, Istanbul, Turkey. 12–16 August, 2018

    Google Scholar 

  90. Zakiyah N, Handoyo T, Kim KM et al (2019) Genetic diversity analysis of Indonesian aromatic rice varieties (Oryza sativa L.) using RAPD. J Crop Sci Biotechnol 22:55–63

    Article  Google Scholar 

  91. Patwardhan A, Ray S, Roy A et al (2014) Phylogenetics and evolutionary biology molecular markers in phylogenetic studies - a review. Phylogenetics Evol Biol 57

    Google Scholar 

  92. Kibria K, Begum S, Islam M et al (2009) Molecular marker based genetic diversity analysis in aromatic rice genotypes using SSR and RAPD markers. Int J Sustain Crop Prod 4

    Google Scholar 

  93. Patel HK, Fougat RS, Kumar S et al (2015) Detection of genetic variation in Ocimum species using RAPD and ISSR markers. 3. Biotech 5:697

    Google Scholar 

  94. Konzen ER, Peron R, Ito MA et al (2017) Molecular identification of bamboo genera and species based on RAPD-RFLP markers. Silva Fennica 51(4):1691

    Article  Google Scholar 

  95. Qin J, Yang Y, Jiang J et al (2012) Comparison of lignocellulose composition in four major species of Miscanthus. Afr J Biotechnol 11

    Google Scholar 

  96. Moulin MM, Rodrigues R, Gonçalves LSA et al (2012) A comparison of RAPD and ISSR markers reveals genetic diversity among sweet potato landraces (Ipomoea batatas (L.) lam.). Acta Sci Agron 34(2):139–147

    Article  Google Scholar 

  97. Ma X, Chen SY, Bai SQ et al (2012) RAPD analysis of genetic diversity and population structure of Elymus sibiricus (Poaceae) native to the southeastern Qinghai-Tibet plateau, China. Genet Mol Res 11(3):2708–2718

    Article  CAS  PubMed  Google Scholar 

  98. Muzila M, Werlemark G, Ortiz R et al (2014) Assessment of diversity in Harpagophytum with RAPD and ISSR markers provides evidence of introgression. Hereditas 151(4-5):91–101

    Article  PubMed  Google Scholar 

  99. Bhatt J, Kumar S, Patel S et al (2017) Sequence-related amplified polymorphism (SRAP) markers based genetic diversity analysis of cumin genotypes. Ann Agrar Sci 15:434–438

    Article  Google Scholar 

  100. Ge D, Daizhen Z (2015) Application of sequence-related amplified polymorphism to genetic diversity analysis in Limonium sinense. J Genet 94:35–38

    Article  Google Scholar 

  101. Hou S, Zhu GZ, Li Y, Li WX et al (2018) Genome-wide association studies reveal genetic variation and candidate genes of drought stress related traits in cotton (Gossypium hirsutum L.). Front Plant Sci 9:1276

    Article  PubMed  PubMed Central  Google Scholar 

  102. Arif M, Aristya G, Kasiamdari R (2019) Genetic diversity of strawberry cultivars in Banyuroto, Magelang, Indonesia based on cleaved amplified polymorphic sequence. 10:13057

    Google Scholar 

  103. Sharafi A, Abkenar A, Sharafi A (2017) Molecular genetic diversity assessment of citrus species grown in Iran revealed by SSR, ISSR and CAPS molecular markers. J Sci Res 2(22):22–27

    Google Scholar 

  104. Taspinar MS, Guleray A, Nalan Y et al (2009) Evaluation of selenium effect on cadmium genotoxicity in Vicia faba using RAPD. J Food Agric Environ 7(3&4):857–860

    CAS  Google Scholar 

  105. Rai P, Dayal S (2009) RAPD-PCR based analysis of genetic variation induced in Triticum aestivum under chromium stress. Int J Adv Sci Eng Inf Technol 4(4):117–120

    Google Scholar 

  106. Sameer H, Qari M (2010) DNA-RAPD fingerprinting and cytogenetic screening of genotoxic and anti-genotoxic effects of aqueous extracts of Costus speciosus (Koen.). JKAU Sci 22(1):133–152

    Article  Google Scholar 

  107. Fu Y (2006) Redundancy and distinctness in flax germplasm as revealed by RAPD dissimilarity. Plant Genet Res 4(2):117–124

    Article  Google Scholar 

  108. Virk PS, Newbury HJ, Jackson MT et al (1995) The identification of duplicate accessions within a rice germplasm collection using RAPD analysis. Theor Appl Genet 90:1049

    Article  CAS  PubMed  Google Scholar 

  109. Vekariya S, Taviad K, Acharya RN et al (2017) Development of random amplified polymorphic DNA markers for authentication of Croton tiglium Linn. J Phytopharmacol 6(3):164–166

    Google Scholar 

  110. Shinde VM, Dhalwal K, Mahadik KR et al (2007) RAPD analysis for determination of components in herbal medicine. Evid Based Complement Alternat Med 4:21–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Weder JK (2002) Identification of plant food raw material by RAPD-PCR: legumes. J Agric Food Chem 50(16):4456–4463

    Article  CAS  PubMed  Google Scholar 

  112. Sarwat M, Srivastava S, Khan TH et al (2016) RAPD and ISSR polymorphism in the medicinal plants: Ocimum sanctum, O basilicum and O gratissimum. IJPPR 8(8):1417–1424

    Google Scholar 

  113. Solanki S, Richards J, Ameen G et al (2019) Characterization of genes required for both Rpg1 and rpg4-mediated wheat stem rust resistance in barley. BMC Genomics 20:495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Li Y, Zou J, Ma L et al (2012) Development of head smut resistance-linked sequence characterized amplified regions markers in sorghum. Int J Agric Biol:14

    Google Scholar 

  115. Barua UM, Chalmers KJ, Thomas WT et al (1993) Molecular mapping of genes determining height, time to heading, and growth habit in barley (Hordeum vulgare). Genome 36(6):1080–1087

    Article  CAS  PubMed  Google Scholar 

  116. Baird E, Cooper-Bland S, Waugh R et al (1992) Molecular characterization of inter- and intra-specific somatic hybrids of potato using randomly amplified polymorphic DNA (RAPD) markers. Mol Gen Genet 233(3):469–475

    Article  CAS  PubMed  Google Scholar 

  117. Yaycili O, Alikamanoglu S (2012) Induction of salt-tolerant potato (Solanum tuberosum L.) mutants with gamma irradiation and characterization of genetic variations via RAPD-PCR analysis. Turk J Biol 36:405–412

    CAS  Google Scholar 

  118. Barakat MN, Abdel Fattah RS, Badr M (2010) In vitro mutagenesis and identification of new variants via RAPD markers for improving Chrysanthemum morifolium. African J Agric Res 5(8):748–757

    Google Scholar 

  119. Penner GA, Bush A, Wise R (1993) Reproducibility of random amplified polymorphic DNA (RAPD) analysis among laboratories. PCR Methods Appl 2:341–345

    Article  CAS  PubMed  Google Scholar 

  120. Aly MAM, El-Hewiety AY (2009) DNA fingerprint of UAE grown date palm varieties. In: proc. 10th annual UAE university research conference. United Arab Emirates University Al-Ain, UAE

    Google Scholar 

  121. Garcia AAF, Benchimol LL, Barbosa AMM (2004) Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Genet Mol Biol 27:579–588

    Article  CAS  Google Scholar 

  122. Sedra MH, Lashermes P, Trouslot P et al (1998) Identification and genetic diversity analysis of date palm (Phoenix dactylifera L.) varieties from Morocco using RAPD markers. Euphytica 103:75

    Article  CAS  Google Scholar 

  123. Trifi M, Rhouma A, Marrakchi M et al (2000) Phylogenetic relationships in Tunisian date-palms (Phoenix dactylifera L.) germplasm collection using DNA amplification fingerprinting. Agronomie 20:665–671

    Article  Google Scholar 

  124. Doyle JJ, Doyle LJ (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  125. Rohlf FJ (1998) NTSYS-pc numerical taxonomy and multivariate analysis system. Version 2.02. Exeter publications Setauket, New York

    Google Scholar 

  126. Wolff K, Schoen ED, Peters-Van Rijn J (1993) Optimizing the generation of random amplified polymorphic DNA in chrysanthemum. Theor Appl Genet 86:1033–1037

    Article  CAS  PubMed  Google Scholar 

  127. Demeke T, Adams RP (1994) The use of RAPD-PCR analysis in plant taxonomy and evolution. In: Griffin HG, Griffin AM (eds) PCR technology: current innovations. CRC Press, Boca Raton, FL

    Google Scholar 

  128. Skroch P, Nienhuis J (1995) Qualitative and quantitative characterization of RAPD variation among snap bean (Phaseolus vulgaris) genotypes. Theor Appl Genet 91:1078–1085

    Article  CAS  PubMed  Google Scholar 

  129. Lamboy WF (1994a) Computing genetic similarity coefficients from RAPD data: the effects of PCR artifacts. PCR Methods Appl 4:31–37

    Article  CAS  PubMed  Google Scholar 

  130. Lamboy WF (1994b) Computing genetic similarity coefficients from RAPD data: correcting for the effects of PCR artifacts caused by variation in experimental conditions. PCR Methods Appl 4:38–43

    Article  CAS  PubMed  Google Scholar 

  131. Hernandez P, Martin A, Dorado G (1999) Development of SCARs by direct sequencing of RAPD products: a practical tool for introgression and marker- assisted selection of wheat. Mol Breed 5:245–253

    Article  CAS  Google Scholar 

  132. Davis MJJ, Bailey CS, Smith CK (1997) Increased informativeness of RAPD analysis by detection of microsatellite motifs. BioTechniques 23:285–290

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Babu, K.N. et al. (2021). Random Amplified Polymorphic DNA (RAPD) and Derived Techniques. In: Besse, P. (eds) Molecular Plant Taxonomy. Methods in Molecular Biology, vol 2222. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0997-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0997-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0996-5

  • Online ISBN: 978-1-0716-0997-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics