Skip to main content

Engineering the Reductive Glycine Pathway: A Promising Synthetic Metabolism Approach for C1-Assimilation

  • Chapter
  • First Online:
One-Carbon Feedstocks for Sustainable Bioproduction

Abstract

In recent years the reductive glycine pathway (rGlyP) has emerged as a promising pathway for the assimilation of formate and other sustainable C1-feedstocks for future biotechnology. It was originally proposed as an attractive “synthetic pathway” to support formatotrophic growth due to its high ATP efficiency, linear structure, and limited overlap with native pathways in most microbial hosts. Here, we present the current state of research on this pathway including breakthroughs on its engineering. Different variants of the rGlyP are discussed, including its core module for formate to glycine conversion, as well as varying modules for substrate conversion to formate, and glycine assimilation routes. Very recently, the rGlyP has been successfully implemented for synthetic formatotrophic growth, as well as for growth on methanol, in some bacterial hosts. We discuss the engineering strategies employed in these studies, including growth-coupled selection of functional pathway modules. We also compare the rGlyP to other natural and synthetic C1-assimilation pathways. Finally, we provide an outlook on open challenges and opportunities for the rGlyP, including its engineering into more biotechnological hosts, as well as the still-to-be realized production of value-added chemicals via this pathway. We expect that further research on the rGlyP will support the efficient use of sustainable C1-substrates in bioproduction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masson-Delmotte V, Zhai P, Pirani A et al (2021) IPCC, 2021: summary for policymakers. In: Climate change 2021: the physical science basis. Contribution of Working Group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  2. Kätelhön A, Meys R, Deutz S et al (2019) Climate change mitigation potential of carbon capture and utilization in the chemical industry. Proc Natl Acad Sci U S A 166:11187–11194. https://doi.org/10.1073/pnas.1821029116

    Article  CAS  Google Scholar 

  3. Hepburn C, Adlen E, Beddington J et al (2019) The technological and economic prospects for CO2 utilization and removal. Nature 575:87–97. https://doi.org/10.1038/s41586-019-1681-6

    Article  CAS  PubMed  Google Scholar 

  4. Artz J, Mu TE, Thenert K et al (2018) Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem Rev 118:434–504. https://doi.org/10.1021/acs.chemrev.7b00435

    Article  CAS  PubMed  Google Scholar 

  5. Blankenship RE, Tiede DM, Barber J et al (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809. https://doi.org/10.1126/science.1200165

    Article  CAS  PubMed  Google Scholar 

  6. Claassens NJ, Sousa DZ, dos Santos VAPM et al (2016) Harnessing the power of microbial autotrophy. Nat Rev Microbiol 14:692–706. https://doi.org/10.1038/nrmicro.2016.130

    Article  CAS  PubMed  Google Scholar 

  7. Leger D, Matassa S, Noor E et al (2021) Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops. Proc Natl Acad Sci U S A 118. https://doi.org/10.1073/pnas.2015025118

  8. Grim RG, Huang Z, Guarnieri MT et al (2019) Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO2 utilization. Energ Environ Sci 13:472–494. https://doi.org/10.1039/C9EE02410G

    Article  Google Scholar 

  9. Satanowski A, Bar-Even A (2020) A one-carbon path for fixing CO2. EMBO Rep 21:e50273. https://doi.org/10.15252/embr.202050273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Claassens NJ, Cotton CAR, Kopljar D, Bar-Even A (2019) Making quantitative sense of electromicrobial production. Nat Catal 2:437–447. https://doi.org/10.1038/s41929-019-0272-0

    Article  CAS  Google Scholar 

  11. De LP, Hahn C, Higgins D et al (2019) What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364:eaav3506. https://doi.org/10.1126/science.aav3506

    Article  CAS  Google Scholar 

  12. Clomburg JM, Crumbley AM, Gonzalez R (2017) Industrial biomanufacturing: the future of chemical production. Science 355. https://doi.org/10.1126/science.aag0804

  13. Becker J, Wittmann C (2015) Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem Int Ed 54:3328–3350. https://doi.org/10.1002/anie.201409033

    Article  CAS  Google Scholar 

  14. Li H, Opgenorth PH, Wernick DG et al (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335:1596–1596. https://doi.org/10.1126/science.1217643

    Article  CAS  PubMed  Google Scholar 

  15. Sydow A, Krieg T, Ulber R, Holtmann D (2017) Growth medium and electrolyte – how to combine the different requirements on the reaction solution in bioelectrochemical systems using Cupriavidus necator. Eng Life Sci:781–791. https://doi.org/10.1002/elsc.201600252

  16. Stöckl M, Harms S, Dinges I et al (2020) From CO2 to bioplastic – coupling the electrochemical CO2 reduction with a microbial product generation by drop-in electrolysis. ChemSusChem 13:4086–4093. https://doi.org/10.1002/cssc.202001235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yishai O, Lindner SN, Gonzalez de la Cruz J et al (2016) The formate bio-economy. Curr Opin Chem Biol 35:1–9. https://doi.org/10.1016/j.cbpa.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  18. Smith WA, Burdyny T, Vermaas DA, Geerlings H (2019) Pathways to industrial-scale fuel out of thin air from CO2 electrolysis. Joule 3:1822–1834. https://doi.org/10.1016/j.joule.2019.07.009

    Article  CAS  Google Scholar 

  19. Cotton CAR, Claassens NJ, Benito-Vaquerizo S, Bar-Even A (2020) Renewable methanol and formate as microbial feedstocks. Curr Opin Biotechnol 62:168–180. https://doi.org/10.1016/j.copbio.2019.10.002

    Article  CAS  PubMed  Google Scholar 

  20. Bertsch J, Müller V (2015) Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol Biofuels 8. https://doi.org/10.1186/s13068-015-0393-x

  21. Whitaker WB, Sandoval NR, Bennett RK et al (2015) Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization. Curr Opin Biotechnol 33:165–175. https://doi.org/10.1016/j.copbio.2015.01.007

    Article  CAS  PubMed  Google Scholar 

  22. Heux S, Brautaset T, Vorholt JA et al (2018) Synthetic methylotrophy: past, present, and future. In: Kalyuzhnaya MG, Xing X-H (eds) Methane biocatalysis: paving the way to sustainability. Springer, pp 133–1151

    Chapter  Google Scholar 

  23. Bar-Even A, Noor E, Flamholz A, Milo R (2013) Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes. Biochim Biophys Acta Bioenerg 1827:1039–1047. https://doi.org/10.1016/j.bbabio.2012.10.013

    Article  CAS  Google Scholar 

  24. Waber LJ, Wood HG (1979) Mechanism of acetate synthesis from CO2 by Clostridium acidiurici. J Bacteriol 140:468–478

    Article  CAS  Google Scholar 

  25. Durrre P, Andreesen JR (1982) Pathway of carbon dioxide reduction to acetate without a net energy requirement in Clostridium purinolyticum. FEMS Microbiol Lett 15:51–56

    Article  Google Scholar 

  26. Schneeberger A, Frings J, Schink B (1999) Net synthesis of acetate from CO2 by Eubacterium acidaminophilum through the glycine reductase pathway. FEMS Microbiol Lett 177:2–7

    Article  Google Scholar 

  27. Kim S, Lindner SN, Aslan S et al (2020) Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat Chem Biol 16:538–545. https://doi.org/10.1038/s41589-020-0473-5

    Article  CAS  PubMed  Google Scholar 

  28. Claassens NJ, Bordanaba-Florit G, Cotton CAR et al (2020) Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator. Metab Eng 62:30–41. https://doi.org/10.1101/2020.03.11.987487

    Article  CAS  PubMed  Google Scholar 

  29. Bang J, Hwang CH, Ahn JH et al (2020) Escherichia coli is engineered to grow on CO2 and formic acid. Nat Microbiol 5:1459–1463. https://doi.org/10.1038/s41564-020-00793-9

    Article  CAS  PubMed  Google Scholar 

  30. Sánchez-Andrea I, Guedes IAIA, Hornung B et al (2020) The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans. Nat Commun 11:doi.org/10.1038/s41467-020-18906-7 |

    Article  Google Scholar 

  31. Claassens NJ (2021) Reductive glycine pathway: a versatile route for one-carbon biotech. Trends Biotechnol 39:327–329. https://doi.org/10.1016/j.tibtech.2021.02.005

    Article  CAS  PubMed  Google Scholar 

  32. Mejillano MR, Jahansouz H, Matsunaga TO et al (1989) Formation and utilization of formyl phosphate by N10-formyltetrahydrofolate synthetase: evidence for formyl phosphate as an intermediate in the reaction. Biochemistry 28:5136–5145. https://doi.org/10.1021/bi00438a034

    Article  CAS  PubMed  Google Scholar 

  33. Bar-Even A (2016) Formate assimilation: the metabolic architecture of natural and synthetic pathways. Biochemistry 55:3851–3863. https://doi.org/10.1021/acs.biochem.6b00495

    Article  CAS  PubMed  Google Scholar 

  34. Christensen KE, MacKenzie RE (2008) Chapter 14 mitochondrial methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase, and formyltetrahydrofolate synthetases. Vitam Horm 79:393–410. https://doi.org/10.1016/S0083-6729(08)00414-7

    Article  CAS  PubMed  Google Scholar 

  35. Dev IK, Harvey RJ (1978) A complex of N5,N10-methylentetrahydrofolate dehydrogenase and N5,N10-methenyltetrahydrofolate cyclohydrolase in Escherichia coli. Purification subunit structure, and allosteric inhibition by N10-formyltetrahydrofolate. J Biol Chem 253:4245–4253. https://doi.org/10.1016/s0021-9258(17)34711-7

    Article  CAS  PubMed  Google Scholar 

  36. Tashiro Y, Hirano S, Matson MM et al (2018) Electrical-biological hybrid system for CO2 reduction. Metab Eng 47:211–218. https://doi.org/10.1016/j.ymben.2018.03.015

    Article  CAS  PubMed  Google Scholar 

  37. Kikuchi G, Motokawa Y, Yoshida T, Hiraga K (2008) Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proc Jpn Acad Ser B 84:246–263. https://doi.org/10.2183/pjab/84.246

    Article  CAS  Google Scholar 

  38. Hong Y, Ren J, Zhang X et al (2020) Quantitative analysis of glycine related metabolic pathways for one-carbon synthetic biology. Curr Opin Biotechnol 64:70–78. https://doi.org/10.1016/j.copbio.2019.10.001

    Article  CAS  PubMed  Google Scholar 

  39. Tibbetts AS, Appling DR (2010) Compartmentalization of mammalian folate-mediated one-carbon metabolism. Annu Rev Nutr 30:57–81. https://doi.org/10.1146/annurev.nutr.012809.104810

    Article  CAS  PubMed  Google Scholar 

  40. Hassan F, Syed A, Ahmad B (2014) Folate: metabolism, gene, polymorphisms and the associated diseases. Gene 533:11–20. https://doi.org/10.1016/j.gene.2013.09.063

    Article  CAS  Google Scholar 

  41. Flamholz A, Noor E, Bar-Even A, Milo R (2012) EQuilibrator – the biochemical thermodynamics calculator. Nucleic Acids Res 40:D770–D775. https://doi.org/10.1093/nar/gkr874

    Article  CAS  PubMed  Google Scholar 

  42. Song Y, Lee JS, Shin J et al (2020) Functional cooperation of the glycine synthasereductase and Wood-Ljungdahl pathways for autotrophic growth of Clostridium drakei. Proc Natl Acad Sci U S A 117:7516–7523. https://doi.org/10.1073/pnas.1912289117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gonzalez J, Cruz D, Machens F et al (2019) Core catalysis of the reductive glycine pathway demonstrated in yeast. ACS Synth Biol 8:911–917. https://doi.org/10.1021/acssynbio.8b00464

    Article  CAS  Google Scholar 

  44. Steiert PS, Stauffer LT, Stauffer GV (1990) The lpd gene product functions as the L protein in the Escherichia coli glycine cleavage enzyme system. J Bacteriol 172:6142–6144. https://doi.org/10.1128/jb.172.10.6142-6144.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hartwich K, Poehlein A, Daniel R (2012) The purine-utilizing bacterium Clostridium acidurici 9a: a genome-guided metabolic reconsideration. PLoS One 7. https://doi.org/10.1371/journal.pone.0051662

  46. Zhang X, Li M, Xu Y et al (2019) Quantitative study of H protein lipoylation of the glycine cleavage system and a strategy to increase its activity by co-expression of LplA. J Biol Eng 13. https://doi.org/10.1186/s13036-019-0164-5

  47. Bar-Even A, Milo R, Noor E, Yishai O (2018) Use of the reductive glycine pathway for generating formatotrophic and autotrophic microorganisms. US Patent 10155933B2

    Google Scholar 

  48. Ren J, Zhou L, Wang C et al (2018) An unnatural pathway for efficient 5 – aminolevulinic acid biosynthesis with glycine from glyoxylate based on retrobiosynthetic design. ACS Synth Biol 7:2750–2757. https://doi.org/10.1021/acssynbio.8b00354

    Article  CAS  PubMed  Google Scholar 

  49. Claassens NJ, Scarinci G, Fischer A et al (2020) Phosphoglycolate salvage in a chemolithoautotroph using the Calvin cycle. Proc Natl Acad Sci U S A 117:22452–22461. https://doi.org/10.1073/pnas.2012288117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao Z, Liu H (2008) A quantum mechanical/molecular mechanical study on the catalysis of the pyridoxal 5′-phosphate-dependent enzyme L-serine dehydratase. J Phys Chem B 112:13091–13100. https://doi.org/10.1021/jp802262m

    Article  CAS  PubMed  Google Scholar 

  51. Mehta PK, Hale TI, Christen P (1993) Aminotransferases: demonstration of homology and division into evolutionary subgroups. Eur J Biochem 214:549–561. https://doi.org/10.1111/j.1432-1033.1993.tb17953.x

    Article  CAS  PubMed  Google Scholar 

  52. Yu H, Liao JC (2018) A modified serine cycle in Escherichia coli coverts methanol and CO2 to two-carbon compounds. Nat Commun 9. https://doi.org/10.1038/s41467-018-06496-4

  53. Kleiner D (1985) Bacterial ammonium transport. FEMS Microbiol Rev 32:87–100

    Article  CAS  Google Scholar 

  54. Kim J, Copley SD (2012) Inhibitory cross-talk upon introduction of a new metabolic pathway into an existing metabolic network. Proc Natl Acad Sci U S A 109:16766–16767. https://doi.org/10.1073/pnas.1208509109

    Article  Google Scholar 

  55. Ferguson SJ (2010) ATP synthase: from sequence to ring size to the P/O ratio. Proc Natl Acad Sci U S A 107:16755–16756. https://doi.org/10.1073/pnas.1012260107

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hinkle PC (2005) P/O ratios of mitochondrial oxidative phosphorylation. Biochim Biophys Acta Bioenerg 1706:1–11. https://doi.org/10.1016/j.bbabio.2004.09.004

    Article  CAS  Google Scholar 

  57. Nakamura Y, Tolbert NE (1983) Serine:glyoxylate, alanine:glyoxylate, and glutamate:glyoxylate aminotransferase reactions in peroxisomes from spinach leaves. J Biol Chem 258:7631–7638. https://doi.org/10.1016/s0021-9258(18)32225-7

    Article  CAS  PubMed  Google Scholar 

  58. Job V, Marcone GL, Pilone MS, Pollegioni L (2002) Glycine oxidase from Bacillus subtilis. J Biol Chem 277:6985–6993. https://doi.org/10.1074/jbc.M111095200

    Article  CAS  PubMed  Google Scholar 

  59. Von Borzyskowski LS, Severi F, Krüger K et al (2019) Marine Proteobacteria metabolize glycolate via the β-hydroxyaspartate cycle. Nature 575:500–504. https://doi.org/10.1038/s41586-019-1748-4

    Article  CAS  Google Scholar 

  60. Kornberg HL, Morris JG (1965) The utilization of glycollate by Micrococcus Denitrificans: the beta-hydroxyaspartate pathway. Biochem J 95:577–586

    Article  CAS  Google Scholar 

  61. Claassens NJ, Sánchez-Andrea I, Sousa DZ, Bar-Even A (2018) Towards sustainable feedstocks: a guide to electron donors for microbial carbon fixation. Curr Opin Biotechnol 50:195–205. https://doi.org/10.1016/j.copbio.2018.01.019

    Article  CAS  PubMed  Google Scholar 

  62. Figueroa IA, Barnum TP, Somasekhar PY et al (2017) Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway. Proc Natl Acad Sci 115:E92–E101. https://doi.org/10.1073/pnas.1715549114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Maia LB, Moura JJG, Moura I (2015) Molybdenum and tungsten – dependent formate dehydrogenases. J Biol Inorg Chem 20:287–309. https://doi.org/10.1007/s00775-014-1218-2

    Article  CAS  PubMed  Google Scholar 

  64. Tishkov VI, Popov VO (2006) Protein engineering of formate dehydrogenase. Biomol Eng 23:89–110. https://doi.org/10.1016/j.bioeng.2006.02.003

    Article  CAS  PubMed  Google Scholar 

  65. Sauer U, Canonaco F, Heri S et al (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279:6613–6619. https://doi.org/10.1074/jbc.M311657200

    Article  CAS  PubMed  Google Scholar 

  66. Liliana Calzadiaz-Ramirez CC-T, Stoffel GMM, Lindner SN et al (2020) In vivo selection for formate dehydrogenases with high efficiency and specificity toward NADP+. ACS Catal 10:7512–7525. https://doi.org/10.1021/acscatal.0c01487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jiang H, Chen Q, Pan J et al (2020) Rational engineering of formate dehydrogenase substrate/cofactor affinity for better performance in NADPH regeneration. Appl Biochem Biotechnol 192:530–543. https://doi.org/10.1007/s12010-020-03317-7

    Article  CAS  PubMed  Google Scholar 

  68. Rousset M, Liebgott P (2014) Engineering hydrogenases for H2 production: bolts and goals. In: Zannoni D, De Philippis R (eds) Microbial BioEnergy: hydrogen production, Advances in photosynthesis and respiration. Springer, Dordrecht, pp 43–77. https://doi.org/10.1007/978-94-017-8554-9

    Chapter  Google Scholar 

  69. Hong Y, Arbter P, Wang W et al (2020) Introduction of glycine synthase enables uptake of exogenous formate and strongly impacts the metabolism in clostridium pasteurianum. Biotechnol Bioeng 1–15. https://doi.org/10.1002/bit.27658

  70. Buckel W, Thauer RK (2013) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim Biophys Acta Bioenerg 1827:94–113. https://doi.org/10.1016/j.bbabio.2012.07.002

    Article  CAS  Google Scholar 

  71. Schuchmann K, Müller V (2014) Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12:809–821. https://doi.org/10.1038/nrmicro3365

    Article  CAS  PubMed  Google Scholar 

  72. Liew FM, Martin ME, Tappel RC et al (2016) Gas fermentation-A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.00694

  73. Fuchs G (1986) CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol Lett 39:181–213. https://doi.org/10.1016/0378-1097(86)90446-5

    Article  CAS  Google Scholar 

  74. Braakman R, Smith E (2012) The emergence and early evolution of biological carbon-fixation. PLoS Comput Biol 8. https://doi.org/10.1371/journal.pcbi.1002455

  75. Cotton CAR, Edlich-Muth C, Bar-Even A (2018) Reinforcing carbon fixation: CO2 reduction replacing and supporting carboxylation. Curr Opin Biotechnol 49:49–56. https://doi.org/10.1016/j.copbio.2017.07.014

    Article  CAS  PubMed  Google Scholar 

  76. Calzadiaz-Ramirez L, Meyer AS (2022) Formate dehydrogenases for CO2 utilization. Curr Opin Biotechnol 73:95–100. https://doi.org/10.1016/j.copbio.2021.07.011

    Article  CAS  PubMed  Google Scholar 

  77. Schuchmann K, Mueller V (2013) Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 342:1382–1386. https://doi.org/10.1126/science.1244758

    Article  CAS  PubMed  Google Scholar 

  78. Yu X, Niks D, Ge X et al (2019) Synthesis of formate from CO2 gas catalyzed by an O2-tolerant NAD-dependent formate dehydrogenase and glucose dehydrogenase. Biochemistry 58:1861–1868. https://doi.org/10.1021/acs.biochem.8b01301

    Article  CAS  PubMed  Google Scholar 

  79. Maia LB, Fonseca L, Moura I, Moura JJG (2016) Reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase: a kinetic and mechanistic study. J Am Chem Soc 138:8834–8846. https://doi.org/10.1021/jacs.6b03941

    Article  CAS  PubMed  Google Scholar 

  80. Leo F, Schwarz FM, Schuchmann K, Müller V (2021) Capture of carbon dioxide and hydrogen by engineered Escherichia coli: hydrogen-dependent CO2 reduction to formate. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-021-11463-z

  81. Löwe H, Kremling A (2021) In-depth computational analysis of natural and artificial carbon fixation pathways. BioDesign Res. https://doi.org/10.34133/2021/9898316

  82. Huang J, Yu Z, Groom J et al (2019) Rare earth element alcohol dehydrogenases widely occur among globally distributed, numerically abundant and environmentally important microbes. ISME J 13:2005–2017. https://doi.org/10.1038/s41396-019-0414-z

    Article  PubMed  PubMed Central  Google Scholar 

  83. Chistoserdova L (2011) Modularity of methylotrophy, revisited. Environ Microbiol 13:2603–2622. https://doi.org/10.1111/j.1462-2920.2011.02464.x

    Article  CAS  PubMed  Google Scholar 

  84. Yurimoto H, Oku M, Sakai Y (2011) Yeast methylotrophy: metabolism, gene regulation and peroxisome homeostasis. Int J Microbiol 2011. https://doi.org/10.1155/2011/101298

  85. Krog A, Heggeset TMB, Mueller JEN et al (2013) Methylotrophic bacillus methanolicus encodes two chromosomal and one plasmid born NAD+ dependent methanol dehydrogenase paralogs with different catalytic and biochemical properties. PLoS One 8:e59188. https://doi.org/10.1371/journal.pone.0059188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Meyer F, Keller P, Hartl J et al (2018) Methanol-essential growth of Escherichia coli. Nat Commun 9. https://doi.org/10.1038/s41467-018-03937-y

  87. Wu TY, Chen CT, Liu JTJ et al (2016) Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1. Appl Microbiol Biotechnol 100:4969–4983. https://doi.org/10.1007/s00253-016-7320-3

    Article  CAS  PubMed  Google Scholar 

  88. Chen FY, Jung H, Tsuei C, Liao JC (2020) Converting Escherichia coli to a synthetic methylotroph growing solely on methanol. Cell 182:1–14. https://doi.org/10.1016/j.cell.2020.07.010

    Article  CAS  Google Scholar 

  89. Keller P, Noor E, Meyer F et al (2020) Methanol-dependent Escherichia coli strains with a complete ribulose monophosphate cycle. Nat Commun 11. https://doi.org/10.1038/s41467-020-19235-5

  90. Smith TJ, Nichol T (2018) Engineering soluble methane monooxygenase for biocatalysis. In: Kalyuzhnaya MG, Xing X-H (eds) Methane biocatalysis: paving the way to sustainability. Springer, pp 153–168

    Chapter  Google Scholar 

  91. Kim HJ, Huh J, Kwon YW et al (2019) Biological conversion of methane to methanol through genetic reassembly of native catalytic domains. Nat Catal 2:342–353. https://doi.org/10.1038/s41929-019-0255-1

    Article  CAS  Google Scholar 

  92. Bennett RK, Dzvova N, Dillon M et al (2021) Expression of soluble methane monooxygenase in Escherichia coli enables methane conversion. bioRxiv. https://doi.org/10.1101/2021.08.05.455234

  93. Claassens NJ, He H, Bar-even A (2019) Synthetic methanol and formate assimilation via modular engineering and selection. Curr Issues Mol Biol 33:237–248. https://doi.org/10.21775/9781912530045.14

    Article  CAS  PubMed  Google Scholar 

  94. Wenk S, Yishai O, Lindner SN (2018) An engineering approach for rewiring microbial metabolism. In: Methods in enzymology1st edn. Elsevier, pp 1–39

    Google Scholar 

  95. Sandberg TE, Salazar MJ, Weng LL et al (2019) The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab Eng 56:1–16. https://doi.org/10.1016/j.ymben.2019.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Neidhardt FC, Ingraham JL, Schaechter M (1990) Building blocks needed to produce 1g of E. coli protoplasm. In: Physiology of the bacterial cell: a molecular approach, pp 134–143

    Google Scholar 

  97. Yishai O, Goldbach L, Tenenboim H et al (2017) Engineered assimilation of exogenous and endogenous formate in Escherichia coli. ACS Synth Biol 6:1722–1731. https://doi.org/10.1021/acssynbio.7b00086

    Article  CAS  PubMed  Google Scholar 

  98. Yishai O, Bouzon M, Döring V, Bar-Even A (2018) In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli. ACS Synth Biol 7:2023–2028. https://doi.org/10.1021/acssynbio.8b00131

    Article  CAS  PubMed  Google Scholar 

  99. Antonovsky N, Gleizer S, Noor E et al (2016) Sugar synthesis from CO2 in Escherichia coli. Cell 166:1–11. https://doi.org/10.1016/j.cell.2016.05.064

    Article  CAS  Google Scholar 

  100. Bang J, Yup S, Lee SY (2018) Assimilation of formic acid and CO2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways. Proc Natl Acad Sci 115:E9271–E9279. https://doi.org/10.1073/pnas.1810386115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Song S, Timm S, Lindner SN et al (2020) Expression of formate-tetrahydrofolate ligase did not improve growth but interferes with nitrogen and carbon metabolism of Synechocystis sp. PCC 6803. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.01650

  102. Döring V, Darii E, Yishai O et al (2018) Implementation of a reductive route of one-carbon assimilation in Escherichia coli through directed evolution. ACS Synth Biol 7:2029–2036. https://doi.org/10.1021/acssynbio.8b00167

    Article  CAS  PubMed  Google Scholar 

  103. Bar-Even A, Noor E, Lewis NE, Milo R (2010) Design and analysis of synthetic carbon fixation pathways. Proc Natl Acad Sci U S A 107:8889–8894. https://doi.org/10.1073/pnas.0907176107

    Article  PubMed  PubMed Central  Google Scholar 

  104. Schwander T, Schada von Borzyskowski L, Burgener S et al (2016) A synthetic pathway for the fixation of carbon dioxide in vitro. Science 354:900–904. https://doi.org/10.1126/science.aah5237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yang X, Yuan Q, Luo H et al (2019) Systematic design and in vitro validation of novel one-carbon assimilation pathways. Metab Eng 56:142–153. https://doi.org/10.1016/j.ymben.2019.09.001

    Article  CAS  PubMed  Google Scholar 

  106. Siegel JB, Smith AL, Poust S et al (2015) Computational protein design enables a novel one-carbon assimilation pathway. Proc Natl Acad Sci 112:3704–3709. https://doi.org/10.1073/pnas.1500545112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gleizer S, Ben-Nissan R, Bar-on YM et al (2019) Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179:1255–1263. https://doi.org/10.1016/j.cell.2019.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Berg IA (2011) Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 77:1925–1936. https://doi.org/10.1128/AEM.02473-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang J, Anderson K, Wang J et al (2021) Enzyme engineering and in vivo testing of a formate-reduction pathway. bioRxiv. https://doi.org/10.1101/2021.02.15.431286

  110. He H, Höper R, Dodenhöft M et al (2020) An optimized methanol assimilation pathway relying on promiscuous formaldehyde-condensing aldolases in E. coli. Metab Eng 60:1–13. https://doi.org/10.1016/j.ymben.2020.03.002

    Article  CAS  PubMed  Google Scholar 

  111. Lu X, Liu Y, Yang Y et al (2019) Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design. Nat Commun 10. https://doi.org/10.1038/s41467-019-09095-z

  112. Müller V (2019) New horizons in acetogenic conversion of one-carbon substrates and biological hydrogen storage. Trends Biotechnol 37:1344–1354. https://doi.org/10.1016/j.tibtech.2019.05.008

    Article  CAS  PubMed  Google Scholar 

  113. Erb TJ (2011) Carboxylases in natural and synthetic microbial pathways. Appl Environ Microbiol 77:8466–8477. https://doi.org/10.1128/AEM.05702-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Miller TE, Beneyton T, Schwander T et al (2020) Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts. Science 368:649–654. https://doi.org/10.1126/science.aaz6802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Satanowski A, Dronsella B, Noor E et al (2020) Awakening a latent carbon fixation cycle in Escherichia coli. Nat Commun 11. https://doi.org/10.1101/2020.05.18.102244

  116. Gassler T, Sauer M, Gasser B et al (2020) The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nat Biotechnol 38:210–216. https://doi.org/10.1038/s41587-019-0363-0

    Article  CAS  PubMed  Google Scholar 

  117. Mall A, Sobotta J, Huber C et al (2018) Reversibility of citrate synthase allows autotrophic growth of a thermophilic bacterium. Science 359:563–567. https://doi.org/10.1126/science.aao2410

    Article  CAS  PubMed  Google Scholar 

  118. Nunoura T, Chikaraishi Y, Izaki R et al (2018) A primordial and reversible TCA cycle in a facultatively chemolithoautotrophic thermophile. Science 563:559–563. https://doi.org/10.1126/science.aao3407

    Article  CAS  Google Scholar 

  119. Noor E, Flamholz A, Bar-Even A et al (2016) The protein cost of metabolic fluxes: prediction from enzymatic rate laws and cost minimization. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1005167

  120. Zhang H, Li Y, Nie J et al (2020) Structure-based dynamic analysis of the glycine cleavage system suggests key residues for control of a key reaction step. Commun Biol 3. https://doi.org/10.1038/s42003-020-01401-6

  121. Bocanegra JA, Scrutton NS, Perham RN (1993) Creation of an NADP-dependent pyruvate dehydrogenase multienzyme complex by protein engineering. Biochemistry 32:2737–2740. https://doi.org/10.1021/bi00062a001

    Article  CAS  PubMed  Google Scholar 

  122. Lindner SN, Calzadiaz Ramirez L, Krü JL et al (2018) NADPH-Auxotrophic E. coli: a sensor strain for testing in vivo regeneration of NADPH. ACS Synth Biol 7:2742–2749. https://doi.org/10.1021/acssynbio.8b00313

    Article  CAS  PubMed  Google Scholar 

  123. Pontrelli S, Chiu T, Lan EI, et al (2018) Escherichia coli as a host for metabolic engineering. Metab Eng 50:16–46. https://doi.org/10.1016/j.ymben.2018.04.008

  124. Panich J, Fong B, Singer SW (2021) Metabolic engineering of Cupriavidus necator H16 for sustainable biofuels from CO2. Trends Biotechnol 39:412–424. https://doi.org/10.1016/j.tibtech.2021.01.001

    Article  CAS  PubMed  Google Scholar 

  125. Bar-Even A (2018) Daring metabolic designs for enhanced plant carbon fixation. Plant Sci 1–13. https://doi.org/10.1016/j.plantsci.2017.12.007

  126. Barenholz U, Davidi D, Reznik E et al (2017) Design principles of autocatalytic cycles constrain enzyme kinetics and force low substrate saturation at flux branch points. Elife 6:1–32. https://doi.org/10.7554/eLife.20667.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to their mentor Arren Bar-Even. He was supposed to act as an editor and contribute a chapter for this book, which he could sadly not do anymore due to his unexpected, early demise in September 2020. He inspired us and many others to work on the reductive glycine pathway and the C1-bio-economy. In the spirit of Arren we want to further carry his brilliant ideas and work in this research area. NJC acknowledges support from the VENI grant awarded to him by the Dutch Science Organization (NWO) (VI.Veni.192.156). SY is supported by the NWO-Gravitation Project BaSyC (024.003.019). EO and BD are supported by the German Ministry of Education and Research (BMBF) grant Transformate (033RC023G­). AS, VB, VR, SW, and SL acknowledge funding by the Max Planck Society.

Declaration of Interests

The authors have no competing interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico J. Claassens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Claassens, N.J. et al. (2022). Engineering the Reductive Glycine Pathway: A Promising Synthetic Metabolism Approach for C1-Assimilation. In: Zeng, AP., Claassens, N.J. (eds) One-Carbon Feedstocks for Sustainable Bioproduction. Advances in Biochemical Engineering/Biotechnology, vol 180. Springer, Cham. https://doi.org/10.1007/10_2021_181

Download citation

Publish with us

Policies and ethics