Skip to main content
Log in

Rational Engineering of Formate Dehydrogenase Substrate/Cofactor Affinity for Better Performance in NADPH Regeneration

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Formate dehydrogenases are critical tools for nicotinamide cofactor regeneration, but their limited catalytic efficiency (kcat/Km) is a major drawback. A formate dehydrogenase from Burkholderia stabilis 15516 (BstFDH) was the first native NADP+-dependent formate dehydrogenase reported and has the highest kcat/Km toward NADP+ (kcat/KmNADP+) compared with other FDHs that can utilize NADP+ as a hydrogen acceptor. However, the substrate and cofactor affinities of BstFDH are inferior to those of other FDHs, making its practical application difficult. Herein, we engineered recombinant BstFDH to enhance its HCOO and NADP+ affinities. Based on sequence information analysis and homologous modeling results, I124, G146, S262, and A287 were found to affect the binding affinity for HCOO and NADP+. By combining these mutations, we identified a BstFDH variant (G146M/A287G) that reduced KmNADP+ to 0.09 mM, with a concomitant decrease in KmHCOO−, and gave 1.6-fold higher kcat/KmNADP+ than the wild type (WT). Furthermore, BstFDH I124V/G146H/A287G, with the lowest KmHCOO− of 8.51 mM, showed a catalytic efficiency that was 2.3-fold higher than that of the wild type and a decreased KmNADP+ of 0.11 mM. These results are beneficial for improving the performance of NADP+-dependent formate dehydrogenase in the NADPH regeneration of various bioreductive reactions and provide a useful guide for engineering of the substrate and cofactor affinity of other enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Matsuda, T., Yamanaka, R., & Nakamura, K. (2009). Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron-Asymmetry, 20(5), 513–557.

    CAS  Google Scholar 

  2. Fischer, T., & Pietruszka, J. (2010). Key building blocks via enzyme mediated synthesis. Topics in Current Chemistry, 297, 1–43.

    PubMed  CAS  Google Scholar 

  3. Wohlgemuth, R. (2010). Asymmetric biocatalysis with microbial enzymes and cells. Current Opinion in Microbiology, 13(3), 283–292.

    PubMed  CAS  Google Scholar 

  4. Wei, P., Cui, Y. H., Zong, M. H., Xu, P., Zhou, J., & Lou, W. Y. (2017). Enzymatic characterization of a recombinant carbonyl reductase from Acetobacter sp. CCTCC M209061. Bioresour Bioprocess, 4(1), 39.

    PubMed  PubMed Central  Google Scholar 

  5. Donk, W. A. V. D., & Zhao, H. (2003). Recent developments in pyridine nucleotide regeneration. Current Opinion in Biotechnology, 14(4), 421–426.

    PubMed  Google Scholar 

  6. Wichmann, R., & Vasic-Racki, D. (2005). Cofactor regeneration at the lab scale. Advances in Biochemical Engineering/Biotechnology, 92, 225–260.

    PubMed  CAS  Google Scholar 

  7. Zhao, H., & Donk, W. A. V. D. (2003). Regeneration of cofactors for use in biocatalysis. Current Opinion in Biotechnology, 14(6), 583–589.

    PubMed  CAS  Google Scholar 

  8. Tishkov, V. I., & Popov, V. O. (2006). Protein engineering of formate dehydrogenase. Biomolecular Engineering, 23(2–3), 89–110.

    PubMed  CAS  Google Scholar 

  9. Bommarius, A. S., Schwarm, M., Stingl, K., Kottenhahn, M., Huthmacher, K., & Drauz, K. (1995). Synthesis and use of enantiometrically pure tert-leucine. Tetrahedron-Asymmetry, 6(12), 2851–2888.

    CAS  Google Scholar 

  10. Gul-Karaguler, N., Sessions, R. B., Clarke, A. R., & Holbrook, J. J. (2001). A single mutation in the NAD-specific formate dehydrogenase from Candida methylica allows the enzyme to use NADP. Biotechnology Letters, 23(4), 283–287.

    CAS  Google Scholar 

  11. Mitsuhashi, K., Yamamoto, H., & Kimoto, N. (2004). Mutants of microbacterium vaccae-derived formate dehydrogenase and uses thereof. US6830907–B2.

  12. Andreadeli, A., Platis, D., Tishkov, V., Popov, V., & Labrou, N. E. (2008). Structure-guided alteration of coenzyme specificity of formate dehydrogenase by saturation mutagenesis to enable efficient utilization of NADP. The FEBS Journal, 275(15), 3859–3869.

    PubMed  CAS  Google Scholar 

  13. Alekseeva, A. A., Fedorchuk, V. V., Zarubina, S. A., Sadykhov, E. G., Matorin, A. D., Savin, S. S., & Tishkov, V. I. (2015). Role of Ala198 in stability and coenzyme specificity of bacterial formate dehydrogenases. Acta Naturae, 7(1), 60–69.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Slusarczyk, H., Felber, S., Kula, M. R., & Pohl, M. (2003). Novel mutants of formate dehydrogenase from Candida boidinii. US20030157664–A1.

  15. Alekseeva, A. A., Serenko, A. A., Kargov, I. S., Savin, S. S., Kleymenov, S. Y., & Tishkov, V. I. (2012). Engineering catalytic properties and thermal stability of plant formate dehydrogenase by single-point mutations. Protein Engineering, Design & Selection, 11(25), 781–788.

    Google Scholar 

  16. Kargov, I. S., Kleymenov, S. Y., Savin, S. S., Tishkov, V. I., & Alekseeva, A. A. (2015). Improvement of the soy formate dehydrogenase properties by rational design. Protein Engineering, Design & Selection, 28(6), 171–178.

    CAS  Google Scholar 

  17. Jiang, W., Lin, P., Yang, R., & Fang, B. (2016). Identification of catalysis, substrate, and coenzyme binding sites and improvement catalytic efficiency of formate dehydrogenase from Candida boidinii. Applied Microbiology and Biotechnology, 100(19), 8425–8437.

    PubMed  CAS  Google Scholar 

  18. Hoelsch, K., Sührer, I., Heusel, M., & Weuster-Botz, D. (2013). Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability. Applied Microbiology and Biotechnology, 97(6), 2473–2481.

    PubMed  CAS  Google Scholar 

  19. Hatrongjit, R., & Packdibamrung, K. (2010). A novel NADP+-dependent formate dehydrogenase from Burkholderia stabilis 15516: screening, purification and characterization. Enzyme and Microbial Technology, 46(7), 557–561.

    CAS  Google Scholar 

  20. Fogal, S., Beneventi, E., Cendron, L., & Bergantino, E. (2015). Structural basis for double cofactor specificity in a new formate dehydrogenase from the acidobacterium Granulicella mallensis MP5ACTX8. Applied Microbiology and Biotechnology, 99(22), 9541–9554.

    PubMed  CAS  Google Scholar 

  21. Wu, W., Zhu, D., & Hua, L. (2009). Site-saturation mutagenesis of formate dehydrogenase from Candida bodinii creating effective NADP+-dependent FDH enzymes. Journal of Molecular Catalysis B: Enzymatic, 61(3–4), 157–116.

    CAS  Google Scholar 

  22. Guo, Q., Gakhar, L., Wickersham, K., Francis, K., Vardi-Kilshtain, A., Major, D. T., Cheatum, C. M., & Kohen, A. (2016). Structural and kinetic studies of formate dehydrogenase from Candida boidinii. Biochemistry, 55(19), 2760–2771.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Sun, Z., Salas, P. T., Siirola, E., Lonsdale, R., & Reetz, M. T. (2016). Exploring productive sequence space in directed evolution using binary patterning versus conventional mutagenesis strategies. Bioresour Bioprocess, 3(1), 44.

    Google Scholar 

  24. Cahn, J. K. B., Baumschlager, A., Brinkmann-Chen, S., & Arnold, F. H. (2015). Mutations in adenine-binding pockets enhance catalytic properties of NAD(P)H-dependent enzymes. Protein Engineering, Design & Selection, 29(1), 31–38.

    Google Scholar 

  25. You, Z. N., Chen, Q., Shi, S. C., Zheng, M. M., Pan, J., Qian, X. L., Li, C. X., & Xu, J. H. (2019). Switching cofactor dependence of 7β-hydroxysteroid dehydrogenase for cost-effective production of ursodeoxycholic acid. ACS Catalysis, 9(1), 466–473.

    CAS  Google Scholar 

  26. Lamzin, V. S., Aleshin, A. E., Strokopytov, B. V., Yukhnevich, M. G., Popov, V. O., Harutyunyan, E. H., & Wilson, K. S. (1992). Crystal structure of NAD-dependent formate dehydrogenase. European Journal of Biochemistry, 206(2), 441–452.

    PubMed  CAS  Google Scholar 

  27. Torres, R. A., Schiøtt, B., & Bruice, T. C. (1999). Molecular dynamics simulations of ground and transition states for the hydride transfer from formate to NAD+ in the active site of formate dehydrogenase. Journal of the American Chemical Society, 121(36), 8164–8173.

    CAS  Google Scholar 

  28. Tishkov, V. I., & Popov, V. O. (2004). Catalytic mechanism and application of formate dehydrogenase. Biochemistry, 69(11), 1252–1267.

    PubMed  CAS  Google Scholar 

  29. Alpdağştas, S., Yücel, S., Kapkaç, H. A., Liu, S., & Binay, B. (2018). Discovery of an acidic, thermostable and highly NADP+ dependent formate dehydrogenase from Lactobacillus buchneri NRRL B-30929. Biotechnology Letters, 40(7), 1135–1147.

    Google Scholar 

  30. Serov, A. E., Popova, A. S., Fedorchuk, V. V., & Tishkov, V. I. (2002). Engineering of coenzyme specificity of formate dehydrogenase from Saccharomyces cerevisiae. The Biochemical Journal, 367(3), 841–847.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Benjamin Guy, D., Ayhan, C., Gideon John, D., & Karen Mary, R. (2010). Novel enzyme. WO2010041055–A2.

  32. Ding, H. T., Liu, D. F., Li, Z. L., Du, Y. Q., Xu, X. H., & Zhao, Y. H. (2011). Characterization of a thermally stable and organic solvent–adaptative NAD+-dependent formate dehydrogenase from Bacillus sp. F1. Journal of Applied Microbiology, 111(5), 1075–1085.

    PubMed  CAS  Google Scholar 

  33. Andreadeli, A., Flemetakis, E., Axarli, I., Dimou, M., Udvardi, M. K., Katinakis, P., & Labrou, N. E. (2009). Cloning and characterization of Lotus japonicas formate dehydrogenase: A possible correlation with hypoxia. Biochimica et Biophysica Acta, 1794(6), 976–984.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Simon Partridge, Ph.D., from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Funding

This work was financially supported by the National Natural Science Foundation of China (Nos. 21536004, 21871085, and 21878085), the National Key Research and Development Program of China (No. 2018YFC1706200), and the Fundamental Research Funds for the Central Universities (No. 22221818014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gao-Wei Zheng or Jian-He Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 946 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, HW., Chen, Q., Pan, J. et al. Rational Engineering of Formate Dehydrogenase Substrate/Cofactor Affinity for Better Performance in NADPH Regeneration. Appl Biochem Biotechnol 192, 530–543 (2020). https://doi.org/10.1007/s12010-020-03317-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03317-7

Keywords

Navigation