Skip to main content

Advertisement

Log in

Recent progress of tungsten- and molybdenum-based semiconductor materials for solar-hydrogen production

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Semiconductor-based solar water splitting is regarded as one of the most promising technologies for clean hydrogen production. The rational design of semiconductor materials is critically important to achieve high solar-to-hydrogen (STH) conversion efficiencies towards practical applications. A rich family of tungsten- and molybdenum-based materials have been developed as both photocatalysts and cocatalysts for solar-hydrogen production in the past years, providing more opportunities to achieve high solar-to-hydrogen (STH) efficiencies. In this review article, we comprehensively review the recent progress of tungsten- and molybdenum-based materials for solar-hydrogen production. In particular, the strengths and drawbacks of each material system are critically discussed, followed by an overview of the emerging strategies to improve their performances. Finally, the key challenges and possible research directions of tungsten- and molybdenum-based materials are presented, which would provide useful information for the design of efficient semiconductor materials for solar-hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

References

  1. Yao TT, An XR, Han HX, Chen JQ, Li C. Photoelectrocatalytic materials for solar water splitting. Adv Energy Mater 2018;8(21):1800210.

    Article  CAS  Google Scholar 

  2. Yao B, Zhang J, Fan XL, He JP, Li Y. Surface engineering of nanomaterials for photo-electrochemical water splitting. Small. 2019;15(1):1803746.

    Article  CAS  Google Scholar 

  3. Wang Z, Li C, Domen K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem Soc Rev. 2019;48(7):2109.

    Article  CAS  Google Scholar 

  4. Faunce T, Styring S, Wasielewski MR, Brudvig GW, Rutherford AW, Messinger J, Lee AF, Hill CL, deGroot H, Fontecave M, MacFarlane DR, Hankamer B, Nocera DG, Tiede DM, Dau H, Hillier W, Wang LZ, Amal R. Artificial photosynthesis as a frontier technology for energy sustainability. Energy Environ Sci. 2013;6(4):1074.

    Article  Google Scholar 

  5. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238(5358):37.

    Article  CAS  Google Scholar 

  6. Butburee T, Bai Y, Wang HJ, Chen HJ, Wang ZL, Liu G, Zou J, Khemthong P, Lu GQ, Wang LZ. 2D porous TiO2 single-crystalline nanostructure demonstrating high photo-electrochemical water splitting performance. Adv Mater. 2018;30(21):1705666.

    Article  CAS  Google Scholar 

  7. Tian H, Wang SC, Zhang C, Veder JP, Pan J, Jaroniec M, Wang LZ, Liu J. Design and synthesis of porous ZnTiO3/TiO2 nanocages with heterojunctions for enhanced photocatalytic H2 production. J Mater Chem A. 2017;5(23):11615.

    Article  CAS  Google Scholar 

  8. Wang LZ, Sasaki T. Titanium oxide nanosheets: graphene analogues with versatile functionalities. Chem Rev. 2014;114(19):9455.

    Article  CAS  Google Scholar 

  9. Liu G, Yang HG, Pan J, Yang YQ, Lu GQ, Cheng HM. Titanium dioxide crystals with tailored facets. Chem Rev. 2014;114(19):9559.

    Article  CAS  Google Scholar 

  10. Bignozzi CA, Caramori S, Cristino V, Argazzi R, Meda L, Tacca A. Nanostructured photoelectrodes based on WO3: applications to photooxidation of aqueous electrolytes. Chem Soc Rev. 2013;42(6):2228.

    Article  CAS  Google Scholar 

  11. Wang SC, Chen HJ, Gao GP, Butburee T, Lyu MQ, Thaweesak S, Yun JH, Du AJ, Liu G, Wang LZ. Synergistic crystal facet engineering and structural control of WO3 films exhibiting unprecedented photoelectrochemical performance. Nano Energy. 2016;24:94.

    Article  CAS  Google Scholar 

  12. Zhao ZF, Zhou H, Zheng LX, Niu P, Yang G, Hu WW, Ran JR, Qiao SZ, Wang JG, Zheng HJ. Molecules interface engineering derived external electric field for effective charge separation in photoelectrocatalysis. Nano Energy. 2017;42:90.

    Article  CAS  Google Scholar 

  13. Sarnowska M, Bienkowski K, Barczuk PJ, Solarska R, Augustynski J. Highly efficient and stable solar water splitting at (Na)WO3 photoanodes in acidic electrolyte assisted by non-noble metal oxygen evolution catalyst. Adv Energy Mater. 2016;6(14):1600526.

    Article  CAS  Google Scholar 

  14. Peerakiatkhajohn P, Yun JH, Chen HJ, Lyu MQ, Butburee T, Wang LZ. Stable hematite nanosheet photoanodes for enhanced photoelectrochemical water splitting. Adv Mater. 2016;28(30):6405.

    Article  CAS  Google Scholar 

  15. Zong X, Thaweesak S, Xu HY, Xing Z, Zou J, Lu GQ, Wang LZ. A scalable colloidal approach to prepare hematite films for efficient solar water splitting. Phys Chem Chem Phys. 2013;15(29):12314.

    Article  CAS  Google Scholar 

  16. Wang ZL, Mao X, Chen P, Xiao M, Monny SA, Wang SC, Konarova M, Du AJ, Wang LZ. Understanding the roles of oxygen vacancies in hematite-based photoelectrochemical processes. Angew Chem Int Ed. 2019;58(4):1030.

    Article  CAS  Google Scholar 

  17. Li CC, Luo ZB, Wang T, Gong JL. Surface, bulk, and interface: rational design of hematite architecture toward efficient photo-electrochemical water splitting. Adv Mater. 2018;30(30):1707502.

    Article  CAS  Google Scholar 

  18. Peerakiatkhajohn P, Butburee T, Yun JH, Chen HJ, Richards RM, Wang LZ. A hybrid photoelectrode with plasmonic Au@TiO2 nanoparticles for enhanced photoelectrochemical water splitting. J. Mater. Chem. A. 2015;3(40):20127.

    Article  CAS  Google Scholar 

  19. Chen RT, Pang S, An HY, Zhu J, Ye S, Gao YY, Fan FT, Li C. Charge separation via asymmetric illumination in photocatalytic Cu2O particles. Nat Energy. 2018;3(8):655.

    Article  CAS  Google Scholar 

  20. Pan LF, Kim JH, Mayer MT, Son MK, Ummadisingu A, Lee JS, Hagfeldt A, Luo JS, Gratzel M. Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nat Catal. 2018;1(6):412.

    Article  CAS  Google Scholar 

  21. Wang SC, Chen P, Yun JH, Hu YX, Wang LZ. An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting. Angew Chem Int Ed. 2017;56(29):8500.

    Article  CAS  Google Scholar 

  22. Wang SC, Chen P, Bai Y, Yun JH, Liu G, Wang LZ. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Adv Mater. 2018;30(20):1800486.

    Article  CAS  Google Scholar 

  23. Wang SC, He TW, Yun JH, Hu YX, Xiao M, Du AJ, Wang LZ. New iron-cobalt oxide catalysts promoting BiVO4 films for photoelectrochemical water splitting. Adv Funct Mater. 2018;28(34):1802685.

    Article  CAS  Google Scholar 

  24. Lee DK, Choi KS. Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nat Energy. 2018;3(1):53.

    Article  CAS  Google Scholar 

  25. Xiao M, Luo B, Lyu MQ, Wang SC, Wang LZ. Single-crystalline nanomesh tantalum nitride photocatalyst with improved hydrogen-evolving performance. Adv Energy Mater. 2018;8(1):1701605.

    Article  CAS  Google Scholar 

  26. Wang Z, Inoue Y, Hisatomi T, Ishikawa R, Wang Q, Takata T, Chen SS, Shibata N, Ikuhara Y, Domen K. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat Catal. 2018;1(10):756.

    Article  CAS  Google Scholar 

  27. Xiao M, Wang SC, Thaweesak S, Luo B, Wang LZ. Tantalum (oxy)nitride: narrow bandgap photocatalysts for solar hydrogen generation. Engineering. 2017;3(3):365.

    Article  Google Scholar 

  28. Zhen C, Chen RZ, Wang LZ, Liu G, Cheng HM. Tantalum (oxy)nitride based photoanodes for solar-driven water oxidation. J Mater Chem A. 2016;4(8):2783.

    Article  CAS  Google Scholar 

  29. Xiao M, Wang ZL, Luo B, Wang SC, Wang LZ. Enhancing photocatalytic activity of tantalum nitride by rational suppression of bulk, interface and surface charge recombination. Appl Catal B. 2019;246:195.

    Article  CAS  Google Scholar 

  30. Yang YL, Wang SC, Jiao YL, Wang ZL, Xiao M, Du AJ, Li YL, Wang JS, Wang LZ. An unusual red carbon nitride to boost the photoelectrochemical performance of wide bandgap photoanodes. Adv Funct Mater. 2018;28(47):1805698.

    Article  CAS  Google Scholar 

  31. Xiao M, Luo B, Wang SC, Wang LZ. Solar energy conversion on g-C3N4 photocatalyst: light harvesting, charge separation, and surface kinetics. J Energy Chem. 2018;27(4):1111.

    Article  Google Scholar 

  32. Yang YL, Wang SC, Li YL, Wang JS, Wang LZ. Strategies for efficient solar water splitting using carbon nitride. Chem Asian J. 2017;12(13):1421.

    Article  CAS  Google Scholar 

  33. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev. 2016;116(12):7159.

    Article  CAS  Google Scholar 

  34. Thaweesak S, Wang SC, Lyu MQ, Xiao M, Peerakiatkhajohn P, Wang LZ. Boron-doped graphitic carbon nitride nanosheets for enhanced visible light photocatalytic water splitting. Dalton Trans. 2017;46(32):10714.

    Article  CAS  Google Scholar 

  35. Thaweesak S, Lyu MQ, Peerakiatkhajohn P, Butburee T, Luo B, Chen HJ, Wang LZ. Two-dimensional g-C3N4/Ca2Nb2TaO10 nanosheet composites for efficient visible light photocatalytic hydrogen evolution. Appl Catal B. 2017;202:184.

    Article  CAS  Google Scholar 

  36. Huang ZF, Song J, Pan L, Zhang X, Wang L, Zou JJ. Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv Mater. 2015;27(36):5309.

    Article  CAS  Google Scholar 

  37. Mai LQ, Yang F, Zhao YL, Xu X, Xu L, Hu B, Luo YZ, Liu HY. Molybdenum oxide nanowires: synthesis & properties. Mater Today. 2011;14(7–8):346.

    Article  CAS  Google Scholar 

  38. Tiwari AP, Kim D, Kim Y, Prakash O, Lee H. Highly active and stable layered ternary transition metal chalcogenide for hydrogen evolution reaction. Nano Energy. 2016;28:366.

    Article  CAS  Google Scholar 

  39. Yang Y, Fei HL, Ruan GD, Li YL, Tour JM. Vertically aligned WS2 nanosheets for water splitting. Adv Funct Mater. 2015;25(39):6199.

    Article  CAS  Google Scholar 

  40. Lhermitte CR, Bartlett BM. Advancing the chemistry of CuWO4 for photoelectrochemical water oxidation. Acc Chem Res. 2016;49(6):1121.

    Article  CAS  Google Scholar 

  41. Yi H, Qin L, Huang DL, Zeng GM, Lai C, Liu XG, Li BS, Wang H, Zhou CY, Huang FL, Liu SY, Guo XY. Nano-structured bismuth tungstate with controlled morphology: fabrication, modification, environmental application and mechanism insight. Chem Eng J. 2019;358:480.

    Article  CAS  Google Scholar 

  42. Peng YH, Zhang Y, Tian FH, Zhang JQ, Yu JQ. Structure tuning of Bi2MoO6 and their enhanced visible light photocatalytic performances. Crit Rev Solid State Mater Sci. 2017;42(5):347.

    Article  CAS  Google Scholar 

  43. Ikeda S, Itani T, Nango K, Matsumura M. Overall water splitting on tungsten-based photocatalysts with defect pyrochlore structure. Catal Lett. 2004;98(4):229.

    Article  CAS  Google Scholar 

  44. Wang YO, Suzuki H, Xie JJ, Tomita O, Martin DJ, Higashi M, Kong D, Abe R, Tang JW. Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. Chem Rev. 2018;118(10):5201.

    Article  CAS  Google Scholar 

  45. Lee DK, Lee D, Lumley MA, Choi KS. Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting. Chem Soc Rev. 2019;48(7):2126.

    Article  CAS  Google Scholar 

  46. Jian J, Jiang GS, van de Krol R, Wei BQ, Wang HQ. Recent advances in rational engineering of multinary semiconductors for photoelectrochemical hydrogen generation. Nano Energy. 2018;51:457.

    Article  CAS  Google Scholar 

  47. Xiao M, Wang ZL, Lyu MQ, Luo B, Wang SC, Liu G, Cheng HM, Wang LZ. Hollow nanostructures for photocatalysis: advantages and challenges. Adv Mater. 2018:1801369.

  48. Wang SC, Tang FQ, Wang LZ. Visible light responsive metal oxide photoanodes for photoelectrochemical water splitting: a comprehensive review on rational materials design. J Inorg Mater. 2018;33(2):173.

    Article  Google Scholar 

  49. Liu G, Zhen C, Kang YY, Wang LZ, Cheng HM. Unique physicochemical properties of two-dimensional light absorbers facilitating photocatalysis. Chem Soc Rev. 2018;47(16):6410.

    Article  CAS  Google Scholar 

  50. Wang PL, Wang SC, Wang HQ, Wu ZB, Wang LZ. Recent progress on photo-electrocatalytic reduction of carbon dioxide. Part Part Syst Charact. 2018;35:1700371.

    Article  CAS  Google Scholar 

  51. Zhang L, Zhao ZJ, Wang T, Gong JL. Nano-designed semiconductors for electro- and photoelectro-catalytic conversion of carbon dioxide. Chem Soc Rev. 2018;47(14):5423.

    Article  CAS  Google Scholar 

  52. Mei B, Mul G, Seger B. Beyond water splitting: efficiencies of photo-electrochemical devices producing hydrogen and valuable oxidation products. Adv Sustain Syst. 2017;1(1–2):1600035.

    Article  CAS  Google Scholar 

  53. Garcia-Segura S, Brillas E. Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J Photochem Photobiol C. 2017;31:1.

    Article  CAS  Google Scholar 

  54. Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev. 2009;38(1):253.

    Article  CAS  Google Scholar 

  55. Seo J, Nishiyama H, Yamada T, Domen K. Visible-light-responsive photoanodes for highly active, stable water oxidation. Angew Chem Int Ed. 2018;57(28):8396.

    Article  CAS  Google Scholar 

  56. Ran JR, Zhang J, Yu JG, Jaroniec M, Qiao SZ. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev. 2014;43(22):7787.

    Article  CAS  Google Scholar 

  57. Mi QX, Zhanaidarova A, Brunschwig BS, Gray HB, Lewis NS. A quantitative assessment of the competition between water and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes. Energy Environ Sci. 2012;5(2):5694.

    Article  CAS  Google Scholar 

  58. Li WJ, Da PM, Zhang YY, Wang YC, Lin X, Gong XG, Zheng GF. WO3 nanoflakes for enhanced photoelectrochemical conversion. ACS Nano. 2014;8(11):11770.

    Article  CAS  Google Scholar 

  59. Seabold JA, Choi KS. Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem Mater. 2011;23(5):1105.

    Article  CAS  Google Scholar 

  60. Chen XY, Zhou Y, Liu Q, Li ZD, Liu JG, Zou ZG. Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light. ACS Appl Mater Interfaces. 2012;4(7):3372.

    Article  CAS  Google Scholar 

  61. Xie YP, Liu G, Yin LC, Cheng HM. Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion. J Mater Chem. 2012;22(14):6746.

    Article  CAS  Google Scholar 

  62. Wang SC, Yun JH, Luo B, Butburee T, Peerakiatkhajohn P, Thaweesak S, Xiao M, Wang LZ. Recent progress on visible light responsive heterojunctions for photocatalytic applications. J Mater Sci Technol. 2017;33(1):1.

    Article  CAS  Google Scholar 

  63. Maeda K, Higashi M, Lu DL, Abe R, Domen K. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc. 2010;132(16):5858.

    Article  CAS  Google Scholar 

  64. Sasaki Y, Nemoto H, Saito K, Kudo A. Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J Phys Chem C. 2009;113(40):17536.

    Article  CAS  Google Scholar 

  65. Sayama K, Yoshida R, Kusama H, Okabe K, Abe Y, Arakawa H. Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system. Chem Phys Lett. 1997;277(4):387.

    Article  CAS  Google Scholar 

  66. Song ZM, Hisatomi T, Chen SS, Wang Q, Ma GJ, Li SK, Zhu XD, Sun S, Domen K. Visible-light-driven photocatalytic Z-scheme overall water splitting in La5Ti2AgS5O7-based powder-suspension system. ChemSusChem. 2019. https://doi.org/10.1002/cssc.201802306.

    Article  Google Scholar 

  67. Yang YR, Qiu M, Li L, Pi YM, Yan GM, Yang L. A direct Z-scheme Van Der Waals heterojunction (WO3·H2O/g-C3N4) for high efficient overall water splitting under visible-light. Sol RRL. 2018;2(9):1800148.

    Article  CAS  Google Scholar 

  68. Iwase Y, Tomita O, Naito H, Higashi M, Abe R. Molybdenum-substituted polyoxometalate as stable shuttle redox mediator for visible light driven Z-scheme water splitting system. J Photochem Photobiol A. 2018;356:347.

    Article  CAS  Google Scholar 

  69. Jia YS, Zhao D, Li MR, Han HX, Li C. La and Cr Co-doped SrTiO3 as an H2 evolution photocatalyst for construction of a Z-scheme overall water splitting system. Chin J Catal. 2018;39(3):421.

    Article  CAS  Google Scholar 

  70. Suzuki H, Nitta S, Tomita O, Higashi M, Abe R. Highly dispersed RuO2 hydrates prepared via simple adsorption as efficient cocatalysts for visible-light-driven Z-scheme water splitting with an IO3/I redox mediator. ACS Catal. 2017;7(7):4336.

    Article  CAS  Google Scholar 

  71. Miseki Y, Fujiyoshi S, Gunji T, Sayama K. Photocatalytic Z-scheme water splitting for independent H2/O2 production via a stepwise operation employing a vanadate redox mediator under visible light. J Phys Chem C. 2017;121(18):9691.

    Article  CAS  Google Scholar 

  72. Qi Y, Chen SS, Li MR, Ding Q, Li Z, Cui JY, Dong BB, Zhang FX, Li C. Achievement of visible-light-driven Z-scheme overall water splitting using barium-modified Ta3N5 as a H2-evolving photocatalyst. Chem Sci. 2017;8(1):437.

    Article  CAS  Google Scholar 

  73. Ma GJ, Chen SS, Kuang YB, Akiyama S, Hisatomi T, Nakabayashi M, Shibata N, Katayama M, Minegishi T, Domen K. Visible light-driven Z-scheme water splitting using oxysulfide H2 evolution photocatalysts. J Phys Chem Lett. 2016;7(19):3892.

    Article  CAS  Google Scholar 

  74. Chen W, Liu H, Li XY, Liu S, Gao L, Mao LQ, Fan ZY, Shangguan WF, Fang WJ, Liu YS. Polymerizable complex synthesis of SrTiO3:(Cr/Ta) photocatalysts to improve photocatalytic water splitting activity under visible light. Appl Catal B. 2016;192:145.

    Article  CAS  Google Scholar 

  75. Tsuji K, Tomita O, Higashi M, Abe R. Manganese-substituted polyoxometalate as an effective shuttle redox mediator in Z-scheme water splitting under visible light. Chemsuschem. 2016;9(16):2201.

    Article  CAS  Google Scholar 

  76. Yan JQ, Wu H, Chen H, Zhang YX, Zhang FX, Liu SZ. Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Appl Catal B. 2016;191:130.

    Article  CAS  Google Scholar 

  77. Suzuki H, Tomita O, Higashi M, Abe R. Z-scheme water splitting into H2 and O2 using tungstic acid as an oxygen-evolving photocatalyst under visible light irradiation. Chem Lett. 2015;44(8):1134.

    Article  CAS  Google Scholar 

  78. Wang D, Guo ZN, Peng Y, Yuan WX. Visible light induced photocatalytic overall water splitting over micro-SiC driven by the Z-scheme system. Catal Commun. 2015;61:53.

    Article  CAS  Google Scholar 

  79. Zhao GX, Huang XB, Fina F, Zhang G, Irvine JTS. Facile structure design based on C3N4 for mediator-free Z-scheme water splitting under visible light. Catal Sci Technol. 2015;5(6):3416.

    Article  CAS  Google Scholar 

  80. Abe R, Shinmei K, Koumura N, Hara K, Ohtani B. Visible-light-induced water splitting based on two-step photoexcitation between dye-sensitized layered niobate and tungsten oxide photocatalysts in the presence of a triiodide/iodide shuttle redox mediator. J Am Chem Soc. 2013;135(45):16872.

    Article  CAS  Google Scholar 

  81. Maeda K, Lu DL, Domen K. Solar-driven Z-scheme water splitting using modified BaZrO3-BaTaO2N solid solutions as photocatalysts. ACS Catal. 2013;3(5):1026.

    Article  CAS  Google Scholar 

  82. Sasaki Y, Kato H, Kudo A. [Co(bpy)3](3+/2+) and [Co(phen)3](3+/2+) electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. J Am Chem Soc. 2013;135(14):5441.

    Article  CAS  Google Scholar 

  83. Miseki Y, Fujiyoshi S, Gunji T, Sayama K. Photocatalytic water splitting under visible light utilizing I3/I and IO3/I redox mediators by Z-scheme system using surface treated PtOx/WO3 as O2 evolution photocatalyst. Catal Sci Technol. 2013;3(7):1750.

    Article  CAS  Google Scholar 

  84. Lo CC, Huang CW, Liao CH, Wu JCS. Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting. Int J Hydrogen Energy. 2010;35(4):1523.

    Article  CAS  Google Scholar 

  85. Maeda K, Terashima H, Kase K, Higashi M, Tabata M, Domen K. Surface modification of TaON with monoclinic ZrO2 to produce a composite photocatalyst with enhanced hydrogen evolution activity under visible light. Bull Chem Soc Jpn. 2008;81(8):927.

    Article  CAS  Google Scholar 

  86. Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H. A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. J Photochem Photobiol A. 2002;148(1–3):71.

    Article  CAS  Google Scholar 

  87. Hodes G, Cahen D, Manassen J. Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC). Nature. 1976;260(5549):312.

    Article  CAS  Google Scholar 

  88. Augustynski J, Solarska R, Hagemann H, Santato C. Nanostructured thin-film tungsten trioxide photoanodes for solar water and sea-water splitting. In: Proceedings of the Solar Hydrogen and Nanotechnology. San Diego, California, United States; 2006. p. 63400J.

  89. Huang JW, Ding Y, Luo X, Feng YY. Solvation effect promoted formation of p–n junction between WO3 and FeOOH: a high performance photoanode for water oxidation. J Catal. 2016;333:200.

    Article  CAS  Google Scholar 

  90. Huang JW, Zhang Y, Ding Y. Rationally designed/constructed CoOx/WO3 anode for efficient photoelectrochemical water oxidation. ACS Catal. 2017;7(3):1841.

    Article  CAS  Google Scholar 

  91. Fan XL, Gao B, Wang T, Huang XL, Gong H, Xue HR, Guo H, Song L, Xia W, He JP. Layered double hydroxide modified WO3 nanorod arrays for enhanced photoelectrochemical water splitting. Appl Catal A. 2016;528:52.

    Article  CAS  Google Scholar 

  92. Liu R, Lin YJ, Chou LY, Sheehan SW, He WS, Zhang F, Hou HJ, Wang DW. Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst. Angew Chem Int Ed. 2011;50(2):499.

    Article  CAS  Google Scholar 

  93. Liu Y, Li J, Li WZ, Liu Q, Yang YH, Li YM, Chen QY. Enhanced photoelectrochemical performance of WO3 film with HfO2 passivation layer. Int J Hydrogen Energy. 2015;40(29):8856.

    Article  CAS  Google Scholar 

  94. Yang YH, Xie RR, Liu Y, Li J, Li WZ. Effect of surface passivation on photoelectrochemical water splitting performance of WO3 vertical plate-like films. Catalysts. 2015;5(4):2024.

    Article  CAS  Google Scholar 

  95. Su JZ, Feng XJ, Sloppy JD, Guo LJ, Grimes CA. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Lett. 2011;11(1):203.

    Article  CAS  Google Scholar 

  96. Zhao ZF, Butburee T, Lyv MQ, Peerakiatkhajohn P, Wang SC, Wang LZ, Zheng HJ. Etching treatment of vertical WO3 nanoplates as a photoanode for enhanced photoelectrochemical performance. RSC Adv. 2016;6(72):68204.

    Article  CAS  Google Scholar 

  97. Liu Y, Zhao L, Su JZ, Li MT, Guo LJ. Fabrication and properties of a branched (NH4)xWO3 nanowire array film and a porous WO3 nanorod array film. ACS Appl Mater Interfaces. 2015;7(6):3532.

    Article  CAS  Google Scholar 

  98. Wang N, Wang DG, Li MR, Shi JY, Li C. Photoelectrochemical water oxidation on photoanodes fabricated with hexagonal nanoflower and nanoblock WO3. Nanoscale. 2014;6(4):2061.

    Article  CAS  Google Scholar 

  99. Amano F, Li D, Ohtani B. Fabrication and photoelectrochemical property of tungsten(vi) oxide films with a flake-wall structure. Chem Commun. 2010;46(16):2769.

    Article  CAS  Google Scholar 

  100. Yang J, Li WZ, Li J, Sun DB, Chen QY. Hydrothermal synthesis and photoelectrochemical properties of vertically aligned tungsten trioxide (hydrate) plate-like arrays fabricated directly on FTO substrates. J Mater Chem. 2012;22(34):17744.

    Article  CAS  Google Scholar 

  101. Kalanur SS, Hwang YJ, Chae SY, Joo OS. Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity. J Mater Chem A. 2013;1(10):3479.

    Article  CAS  Google Scholar 

  102. Kafizas A, Francàs L, Sotelo-Vazquez C, Ling M, Li YM, Glover E, McCafferty L, Blackman C, Darr J, Parkin I. Optimizing the activity of nanoneedle structured WO3 photoanodes for solar water splitting: direct synthesis via chemical vapor deposition. J Phys Chem C. 2017;121(11):5983.

    Article  CAS  Google Scholar 

  103. Zheng JY, Song G, Hong J, Van TK, Pawar AU, Kim DY, Kim CW, Haider Z, Kang YS. Facile fabrication of WO3 nanoplates thin films with dominant crystal facet of (002) for water splitting. Cryst Growth Des. 2014;14(11):6057.

    Article  CAS  Google Scholar 

  104. Zhang JJ, Zhang P, Wang T, Gong JL. Monoclinic WO3 nanomultilayers with preferentially exposed (002) facets for photoelectrochemical water splitting. Nano Energy. 2015;11:189.

    Article  CAS  Google Scholar 

  105. Zheng JY, Pawar AU, Kim CW, Kim YJ, Kang YS. Highly enhancing photoelectrochemical performance of facilely-fabricated Bi-induced (002)-oriented WO3 film with intermittent short-time negative polarization. Appl Catal B. 2018;233:88.

    Article  CAS  Google Scholar 

  106. Zhan FQ, Liu WH, Li WZ, Li J, Yang YH, Liu Q, Li YM, Tang XD. Boric acid assisted synthesis of WO3 nanostructures with highly reactive (002) facet and enhanced photoelectrocatalytic activity. J Mater Sci Mater Electron. 2017;28(18):13836.

    Article  CAS  Google Scholar 

  107. Zeng QY, Li JH, Bai J, Li XJ, Xia LG, Zhou BX. Preparation of vertically aligned WO3 nanoplate array films based on peroxotungstate reduction reaction and their excellent photoelectrocatalytic performance. Appl Catal B. 2017;202:388.

    Article  CAS  Google Scholar 

  108. Zheng JY, Song G, Kim CW, Kang YS. Fabrication of (001)-oriented monoclinic WO3 films on FTO substrates. Nanoscale. 2013;5(12):5279.

    Article  CAS  Google Scholar 

  109. Liu XE, Wang FY, Wang Q. Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Phys Chem Chem Phys. 2012;14(22):7894.

    Article  CAS  Google Scholar 

  110. Mi QX, Ping Y, Li Y, Cao BF, Brunschwig BS, Khalifah PG, Galli GA, Gray HB, Lewis NS. Thermally stable N2-intercalated WO3 photoanodes for water oxidation. J Am Chem Soc. 2012;134(44):18318.

    Article  CAS  Google Scholar 

  111. Radecka M, Sobas P, Wierzbicka M, Rekas M. Photoelectrochemical properties of undoped and Ti-doped WO3. Phys B. 2005;364(1–4):85.

    Article  CAS  Google Scholar 

  112. Liu Y, Li J, Li WZ, Yang YH, Li YM, Chen QY. Enhancement of the photoelectrochemical performance of WO3 vertical arrays film for solar water splitting by gadolinium doping. J Phys Chem C. 2015;119(27):14834.

    Article  CAS  Google Scholar 

  113. Liu Q, Liu Y, Li C, Li J, He HZ, Li YM, Li WZ. Hydrothermal Sm-doped tungsten oxide vertically plate-like array photoelectrode and its enhanced photoelectrocatalytic efficiency for degradation of organic dyes. J Mater Sci Mater Electron. 2016;28(5):4004.

    Article  CAS  Google Scholar 

  114. Wang GM, Ling YC, Wang HY, Yang XY, Wang CC, Zhang JZ, Li Y. Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ Sci. 2012;5(3):6180.

    Article  CAS  Google Scholar 

  115. Zhao J, Olide E, Osterloh FE. Enhancing majority carrier transport in WO3 water oxidation photoanode via electrochemical doping. J Electrochem Soc. 2015;162(1):H65.

    Article  CAS  Google Scholar 

  116. Ma M, Zhang K, Li P, Jung MS, Jeong MJ, Park JH. Dual oxygen and tungsten vacancies on a WO3 photoanode for enhanced water oxidation. Angew Chem Int Ed. 2016;55(39):11819.

    Article  CAS  Google Scholar 

  117. Zhang BB, Wang L, Zhang YJ, Ding Y, Bi YP. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew Chem Int Ed. 2018;57(8):2248.

    Article  CAS  Google Scholar 

  118. Yan JQ, Wang T, Wu GJ, Dai WL, Guan NJ, Li LD, Gong JL. Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting. Adv Mater. 2015;27(9):1580.

    Article  CAS  Google Scholar 

  119. Dong PY, Hou GH, Xi XG, Shao R, Dong F. WO3-based photocatalysts: morphology control, activity enhancement and multifunctional applications. Environ Sci Nano. 2017;4(3):539.

    Article  CAS  Google Scholar 

  120. Hong SJ, Lee S, Jang JS, Lee JS. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ Sci. 2011;4(5):1781.

    Article  CAS  Google Scholar 

  121. Su JZ, Guo LJ, Bao NZ, Grimes CA. Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 2011;11(5):1928.

    Article  CAS  Google Scholar 

  122. Pihosh Y, Turkevych I, Mawatari K, Asai T, Hisatomi T, Uemura J, Tosa M, Shimamura K, Kubota J, Domen K, Kitamori T. Nanostructured WO3/BiVO4 photoanodes for efficient photoelectrochemical water splitting. Small. 2014;10(18):3692.

    Article  CAS  Google Scholar 

  123. Rao PM, Cai LL, Liu C, Cho IS, Lee CH, Weisse JM, Yang PD, Zheng XL. Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett. 2014;14(2):1099.

    Article  CAS  Google Scholar 

  124. Shi XJ, Choi IY, Zhang K, Kwon J, Kim DY, Lee JK, Oh SH, Kim JK, Park JH. Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat Commun. 2014;5:4775.

    Article  CAS  Google Scholar 

  125. Xia LG, Bai J, Li JH, Zeng QY, Li XJ, Zhou BX. A highly efficient BiVO4/WO3/W heterojunction photoanode for visible-light responsive dual photoelectrode photocatalytic fuel cell. Appl Catal B. 2016;183:224.

    Article  CAS  Google Scholar 

  126. Lee MG, Kim DH, Sohn W, Moon CW, Park H, Lee S, Jang HW. Conformally coated BiVO4 nanodots on porosity-controlled WO3 nanorods as highly efficient type II heterojunction photoanodes for water oxidation. Nano Energy. 2016;28:250.

    Article  CAS  Google Scholar 

  127. Zhang Z, Chen B, Baek M, Yong K. Multichannel charge transport of a BiVO4/(RGO/WO3)/W18O49 three-storey anode for greatly enhanced photoelectrochemical efficiency. ACS Appl Mater Interfaces. 2018;10(7):6218.

    Article  CAS  Google Scholar 

  128. Zhou Y, Zhang LY, Lin LH, Wygant BR, Liu Y, Zhu Y, Zheng YB, Mullins CB, Zhao Y, Zhang XH, Yu GH. Highly efficient photoelectrochemical water splitting from hierarchical WO3/BiVO4 nanoporous sphere arrays. Nano Lett. 2017;17(12):8012.

    Article  CAS  Google Scholar 

  129. Saito R, Miseki Y, Sayama K. Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte. Chem Commun. 2012;48(32):3833.

    Article  CAS  Google Scholar 

  130. Baek JH, Kim BJ, Han GS, Hwang SW, Kim DR, Cho IS, Jung HS. BiVO4/WO3/SnO2 double-heterojunction photoanode with enhanced charge separation and visible-transparency for bias-free solar water-splitting with a perovskite solar cell. ACS Appl Mater Interfaces. 2017;9(2):1479.

    Article  CAS  Google Scholar 

  131. Kim JH, Magesh G, Kang HJ, Banu M, Kim JH, Lee J, Lee JS. Carbonate-coordinated cobalt co-catalyzed BiVO4/WO3 composite photoanode tailored for CO2 reduction to fuels. Nano Energy. 2015;15:153.

    Article  CAS  Google Scholar 

  132. Pihosh Y, Turkevych I, Mawatari K, Uemura J, Kazoe Y, Kosar S, Makita K, Sugaya T, Matsui T, Fujita D, Tosa M, Kondo M, Kitamori T. Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Sci Rep. 2015;5:11141.

    Article  Google Scholar 

  133. Liu Y, Wygant BR, Kawashima K, Mabayoje O, Hong TE, Lee SG, Lin J, Kim JH, Yubuta K, Li WZ, Li J, Mullins CB. Facet effect on the photoelectrochemical performance of a WO3/BiVO4 heterojunction photoanode. Appl Catal B. 2019;245:227.

    Article  CAS  Google Scholar 

  134. Grigioni I, Stamplecoskie KG, Jara DH, Dozzi MV, Oriana A, Cerullo G, Kamat PV, Selli E. Wavelength-dependent ultrafast charge carrier separation in the WO3/BiVO4 coupled system. ACS Energy Lett. 2017;2(6):1362.

    Article  CAS  Google Scholar 

  135. Grigioni I, Abdellah M, Corti A, Dozzi MV, Hammarstrom L, Selli E. Photoinduced charge-transfer dynamics in WO3/BiVO4 photoanodes probed through midinfrared transient absorption spectroscopy. J Am Chem Soc. 2018;140(43):14042.

    Article  CAS  Google Scholar 

  136. Hou Y, Zuo F, Dagg AP, Liu JK, Feng PY. Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Adv Mater. 2014;26(29):5043.

    Article  CAS  Google Scholar 

  137. Zhang J, Liu ZH, Liu ZF. Novel WO3/Sb2S3 Heterojunction photocatalyst based on WO3 of different morphologies for enhanced efficiency in photoelectrochemical water splitting. ACS Appl Mater Interfaces. 2016;8(15):9684.

    Article  CAS  Google Scholar 

  138. He HC, Berglund SP, Xiao P, Chemelewski WD, Zhang YH, Mullins CB. Nanostructured Bi2S3/WO3 heterojunction films exhibiting enhanced photoelectrochemical performance. J Mater Chem A. 2013;1(41):12826.

    Article  CAS  Google Scholar 

  139. Sivula K, Formal FL, Grätzel M. WO3-Fe2O3 Photoanodes for water splitting: a host scaffold, guest absorber approach. Chem Mater. 2009;21(13):2862.

    Article  CAS  Google Scholar 

  140. Zhang J, Ma HP, Liu ZF. Highly efficient photocatalyst based on all oxides WO3/Cu2O heterojunction for photoelectrochemical water splitting. Appl Catal B. 2017;201:84.

    Article  CAS  Google Scholar 

  141. Liu CJ, Yang YH, Li WZ, Li J, Li YM, Shi QL, Chen QY. Highly efficient photoelectrochemical hydrogen generation using ZnxBi2S3+x sensitized platelike WO3 photoelectrodes. ACS Appl Mater Interfaces. 2015;7(20):10763.

    Article  CAS  Google Scholar 

  142. Zhao ZF, Butburee T, Peerakiatkhajohn P, Lyu MQ, Wang SC, Wang LZ, Zheng HJ. Carbon quantum dots sensitized vertical WO3 nanoplates with enhanced photoelectrochemical properties. ChemistrySelect. 2016;1(11):2772.

    Article  CAS  Google Scholar 

  143. Solarska R, Krolikowska A, Augustynski J. Silver nanoparticle induced photocurrent enhancement at WO3 photoanodes. Angew Chem Int Ed. 2010;49(43):7980.

    Article  CAS  Google Scholar 

  144. Sinaim H, Phuruangrat A, Thongtem S, Thongtem T. Synthesis and characterization of heteronanostructured Ag nanoparticles/MoO3 nanobelts composites. Mater Chem Phys. 2012;132(2–3):358.

    Article  CAS  Google Scholar 

  145. Lou SN, Scott J, Iwase A, Amal R, Ng YH. Photoelectrochemical water oxidation using a Bi2MoO6/MoO3 heterojunction photoanode synthesised by hydrothermal treatment of an anodised MoO3 thin film. J Mater Chem A. 2016;4(18):6964.

    Article  CAS  Google Scholar 

  146. Shen ZY, Chen G, Yu YG, Wang Q, Zhou C, Hao LX, Li YX, He LM, Mu RD. Sonochemistry synthesis of nanocrystals embedded in a MoO3-CdS core-shell photocatalyst with enhanced hydrogen production and photodegradation. J Mater Chem. 2012;22(37):19646.

    Article  CAS  Google Scholar 

  147. Lee J, Kim SK, Sohn Y. Understanding photocatalytic coupled-dye degradation, and photoelectrocatalytic water splitting and CO2 reduction over WO3/MoO3 hybrid nanostructures. J Ind Eng Chem. 2018;62:362.

    Article  CAS  Google Scholar 

  148. He HC, Zhou Y, Ke GL, Zhong XH, Yang MJ, Bian L, Lv KL, Dong FQ. Improved surface charge transfer in MoO3/BiVO4 heterojunction film for photoelectrochemical water oxidation. Electrochim Acta. 2017;257:181.

    Article  CAS  Google Scholar 

  149. Chen YQ, Yang MJ, Du JY, Ke GL, Zhong XH, Zhou Y, Dong FQ, Bian L, He HC. MoO3/BiVO4 heterojunction film with oxygen vacancies for efficient and stable photoelectrochemical water oxidation. J Mater Sci. 2019;54(1):671.

    Article  CAS  Google Scholar 

  150. Li YB, Jin ZL, Wang HY, Zhang YP, Liu H. Effect of electron-hole separation in MoO3@Ni2P hybrid nanocomposite as highly efficient metal-free photocatalyst for H2 production. J Colloid Interface Sci. 2019;537:629.

    Article  CAS  Google Scholar 

  151. Xue XY, Zhang JN, Saana IA, Sun J, Xu Q, Mu SC. Rational inert-basal-plane activating design of ultrathin 1T’ phase MoS2 with a MoO3 heterostructure for enhancing hydrogen evolution performances. Nanoscale. 2018;10(35):16531.

    Article  CAS  Google Scholar 

  152. Song SS, Wang JM, Peng TY, Fu WL, Zan L. MoS2-MoO3−x hybrid cocatalyst for effectively enhanced H2 production photoactivity of AgIn5S8 nano-octahedrons. Appl Catal B. 2018;228:39.

    Article  CAS  Google Scholar 

  153. Garcia-Esparza AT, Shinagawa T, Ould-Chikh S, Qureshi M, Peng XY, Wei NN, Anjum DH, Clo A, Weng TC, Nordlund D, Sokaras D, Kubota J, Domen K, Takanabe K. An oxygen-insensitive hydrogen evolution catalyst coated by a molybdenum-based layer for overall water splitting. Angew Chem Int Ed. 2017;56(21):5780.

    Article  CAS  Google Scholar 

  154. Pareek A, Kim HG, Paik P, Borse PH. Ultrathin MoS2-MoO3 nanosheets functionalized CdS photoanodes for effective charge transfer in photoelectrochemical (PEC) cells. J Mater Chem A. 2017;5(4):1541.

    Article  CAS  Google Scholar 

  155. Li CJ, Tseng CM, Lai SN, Yang CR, Hung WH. Photocatalytic activities enhanced by Au-plasmonic nanoparticles on TiO2 nanotube photoelectrode coated with MoO3. Nanoscale Res Lett. 2017;12(1):560.

    Article  CAS  Google Scholar 

  156. Ma CH, Zhou J, Cui ZW, Wang Y, Zou ZG. In situ growth MoO3 nanoflake on conjugated polymer: an advanced photocatalyst for hydrogen evolution from water solution under solar light. Sol Energy Mater Sol Cells. 2016;150:102.

    Article  CAS  Google Scholar 

  157. Shi JY, Kuwahara Y, Wen MC, Navlani-Garcia M, Mori K, An TC, Yamashita H. Room-temperature and aqueous-phase synthesis of plasmonic molybdenum oxide nanoparticles for visible-light-enhanced hydrogen generation. Chem Asian J. 2016;11(17):2377.

    Article  CAS  Google Scholar 

  158. Ma BJ, Kim JS, Choi CH, Woo SI. Enhanced hydrogen generation from methanol aqueous solutions over Pt/MoO3/TiO2 under ultraviolet light. Int J Hydrogen Energy. 2013;38(9):3582.

    Article  CAS  Google Scholar 

  159. Balendhran S, Deng JK, Ou JZ, Walia S, Scott J, Tang JS, Wang KL, Field MR, Russo S, Zhuiykov S, Strano MS, Medhekar N, Sriram S, Bhaskaran M, Kalantar-zadeh K. Enhanced charge carrier mobility in two-dimensional high dielectric molybdenum oxide. Adv Mater. 2013;25(1):109.

    Article  CAS  Google Scholar 

  160. Yourey JE, Bartlett BM. Electrochemical deposition and photoelectrochemistry of CuWO4, a promising photoanode for water oxidation. J Mater Chem. 2011;21(21):7651.

    Article  CAS  Google Scholar 

  161. Hill JC, Choi KS. Synthesis and characterization of high surface area CuWO4 and Bi2WO6 electrodes for use as photoanodes for solar water oxidation. J Mater Chem A. 2013;1(16):5006.

    Article  CAS  Google Scholar 

  162. Yourey JE, Pyper KJ, Kurtz JB, Bartlett BM. Chemical stability of CuWO4 for photoelectrochemical water oxidation. J Phys Chem C. 2013;117(17):8708.

    Article  CAS  Google Scholar 

  163. Gao Y, Zandi O, Hamann TW. Atomic layer stack deposition-annealing synthesis of CuWO4. J Mater Chem A. 2016;4(8):2826.

    Article  CAS  Google Scholar 

  164. Bohra D, Smith WA. Improved charge separation via Fe-doping of copper tungstate photoanodes. Phys Chem Chem Phys. 2015;17(15):9857.

    Article  CAS  Google Scholar 

  165. Peeters D, Mendoza Reyes O, Mai L, Sadlo A, Cwik S, Rogalla D, Becker HW, Schütz HM, Hirst J, Müller S, Friedrich D, Mitoraj D, Nagli M, Toroker MC, Eichberger R, Beranek R, Devi A. CVD-grown copper tungstate thin films for solar water splitting. J Mater Chem A. 2018;6(22):10206.

    Article  CAS  Google Scholar 

  166. Pyper KJ, Yourey JE, Bartlett BM. Reactivity of CuWO4 in photoelectrochemical water oxidation is dictated by a midgap electronic state. J Phys Chem C. 2013;117(47):24726.

    Article  CAS  Google Scholar 

  167. Gao Y, Hamann TW. Elucidation of CuWO4 surface states during photoelectrochemical water oxidation. J Phys Chem Lett. 2017;8(12):2700.

    Article  CAS  Google Scholar 

  168. Liang Q, Guo YS, Zhang NS, Qian QF, Hu YF, Hu JQ, Li ZS, Zou ZG. Improved water-splitting performances of CuW1−xMoxO4 photoanodes synthesized by spray pyrolysis. Sci China Mater. 2018;61(10):1297.

    Article  CAS  Google Scholar 

  169. Hill JC, Ping Y, Galli GA, Choi KS. Synthesis, photoelectrochemical properties, and first principles study of n-type CuW1−xMoxO4 electrodes showing enhanced visible light absorption. Energy Environ Sci. 2013;6(8):2440.

    Article  CAS  Google Scholar 

  170. Ma ZL, Linnenberg O, Rokicinska A, Kustrowski P, Slabon A. Augmenting the photocurrent of CuWO4 photoanodes by heat treatment in the nitrogen atmosphere. J Phys Chem C. 2018;122(34):19281.

    Article  CAS  Google Scholar 

  171. Tang YL, Rong NN, Liu FL, Chu MS, Dong HM, Zhang YH, Xiao P. Enhancement of the photoelectrochemical performance of CuWO4 films for water splitting by hydrogen treatment. Appl Surf Sci. 2016;361:133.

    Article  CAS  Google Scholar 

  172. Lima AEB, Costa MJS, Santos RS, Batista NC, Cavalcante LS, Longo E, Luz GE. Facile preparation of CuWO4 porous films and their photoelectrochemical properties. Electrochim Acta. 2017;256:139.

    Article  CAS  Google Scholar 

  173. Ye W, Chen FJ, Zhao FP, Han N, Li YG. CuWO4 nanoflake array-based single-junction and heterojunction photoanodes for photoelectrochemical water oxidation. ACS Appl Mater Interfaces. 2016;8(14):9211.

    Article  CAS  Google Scholar 

  174. Hu DY, Diao P, Xu D, Xia MY, Gu Y, Wu QY, Li C, Yang SB. Copper(II) tungstate nanoflake array films: sacrificial template synthesis, hydrogen treatment, and their application as photoanodes in solar water splitting. Nanoscale. 2016;8(11):5892.

    Article  CAS  Google Scholar 

  175. Wang DP, Bassi PS, Qi H, Zhao X, Gurudayal, Wong LH, Xu R, Sritharan T, Chen Z. Improved charge separation in WO3/CuWO4 composite photoanodes for photoelectrochemical water oxidation. Materials. 2016;9(5):348.

  176. Nam KM, Cheon EA, Shin WJ, Bard AJ. Improved photoelectrochemical water oxidation by the WO3/CuWO4 composite with a manganese phosphate electrocatalyst. Langmuir. 2015;31(39):10897.

    Article  CAS  Google Scholar 

  177. Yourey JE, Kurtz JB, Bartlett BM. Water oxidation on a CuWO4–WO3 composite electrode in the presence of [Fe(CN)6]3−: toward solar Z-scheme water splitting at zero bias. J Phys Chem C. 2012;116(4):3200.

    Article  CAS  Google Scholar 

  178. Zhan FQ, Li J, Li WZ, Liu YS, Xie RR, Yang YH, Li YM, Chen QY. In situ formation of CuWO4/WO3 heterojunction plates array films with enhanced photoelectrochemical properties. Int J Hydrogen Energy. 2015;40(20):6512.

    Article  CAS  Google Scholar 

  179. Davi M, Drichel A, Mann M, Scholz T, Schrader F, Rokicinska A, Kustrowski P, Dronskowski R, Slabon A. Enhanced photoelectrochemical water oxidation efficiency of CuWO4 photoanodes by surface modification with Ag2NCN. J Phys Chem C. 2017;121(47):26265.

    Article  CAS  Google Scholar 

  180. Pilli SK, Deutsch TG, Furtak TE, Brown LD, Turner JA, Herring AM. BiVO4/CuWO4 heterojunction photoanodes for efficient solar driven water oxidation. Phys Chem Chem Phys. 2013;15(9):3273.

    Article  CAS  Google Scholar 

  181. Zheng JY, Song G, Kim CW, Kang YS. Facile preparation of p-CuO and p-CuO/n-CuWO4 junction thin films and their photoelectrochemical properties. Electrochim Acta. 2012;69:340.

    Article  CAS  Google Scholar 

  182. Zhou M, Liu ZH, Li XF, Liu ZF. Promising three-dimensional flowerlike CuWO4 photoanode modified with CdS and FeOOH for efficient photoelectrochemical water splitting. Ind Eng Chem Res. 2018;57(18):6210.

    Article  CAS  Google Scholar 

  183. Valenti M, Dolat D, Biskos G, Schmidt-Ott A, Smith WA. Enhancement of the photoelectrochemical performance of CuWO4 thin films for solar water splitting by plasmonic nanoparticle functionalization. J Phys Chem C. 2015;119(4):2096.

    Article  CAS  Google Scholar 

  184. Zhang H, Yilmaz P, Ansari JO, Khan FF, Binions R, Krause S, Dunn S. Incorporation of Ag nanowires in CuWO4 for improved visible light-induced photoanode performance. J Mater Chem A. 2015;3(18):9638.

    Article  CAS  Google Scholar 

  185. Zhang N, Ciriminna R, Pagliaro M, Xu YJ. Nanochemistry-derived Bi2WO6 nanostructures: towards production of sustainable chemicals and fuels induced by visible light. Chem Soc Rev. 2014;43(15):5276.

    Article  CAS  Google Scholar 

  186. Kudo A, Hijii S. H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions. Chem Lett. 1999;28(10):1103.

    Article  Google Scholar 

  187. Cao RR, Huang HW, Tian N, Zhang YH, Guo YX, Zhang TR. Novel Y doped Bi2WO6 photocatalyst: hydrothermal fabrication, characterization and enhanced visible-light-driven photocatalytic activity for Rhodamine B degradation and photocurrent generation. Mater Charact. 2015;101:166.

    Article  CAS  Google Scholar 

  188. Zhang LW, Wang YJ, Cheng HY, Yao WQ, Zhu YF. Synthesis of porous Bi2WO6 thin films as efficient visible-light-active photocatalysts. Adv Mater. 2009;21(12):1286.

    Article  CAS  Google Scholar 

  189. Dong GJ, Zhang YJ, Wang W, Wang L, Bi YP. Facile fabrication of nanoporous Bi2WO6 photoanodes for efficient solar water splitting. Energy Technol. 2017;5(11):1912.

    Article  CAS  Google Scholar 

  190. Zhang LW, Baumanis C, Robben L, Kandiel T, Bahnemann D. Bi2WO6 inverse opals: facile fabrication and efficient visible-light-driven photocatalytic and photoelectrochemical water-splitting activity. Small. 2011;7(19):2714.

    Article  CAS  Google Scholar 

  191. Zhang LW, Bahnemann D. Synthesis of nanovoid Bi2WO6 2D ordered arrays as photoanodes for photoelectrochemical water splitting. Chemsuschem. 2013;6(2):283.

    Article  CAS  Google Scholar 

  192. Huang HW, Cao RR, Yu SX, Xu K, Hao WC, Wang YG, Dong F, Zhang TR, Zhang YH. Single-unit-cell layer established Bi2WO6 3D hierarchical architectures: Efficient adsorption, photocatalysis and dye-sensitized photoelectrochemical performance. Appl Catal B. 2017;219:526.

    Article  CAS  Google Scholar 

  193. Zhou Y, Tian ZP, Zhao ZY, Liu Q, Kou JH, Chen XY, Gao J, Yan SC, Zou ZG. High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light. ACS Appl Mater Interfaces. 2011;3(9):3594.

    Article  CAS  Google Scholar 

  194. Bhattacharya C, Lee HC, Bard AJ. Rapid screening by scanning electrochemical microscopy (SECM) of dopants for Bi2WO6 improved photocatalytic water oxidation with Zn doping. J Phys Chem C. 2013;117(19):9633.

    Article  CAS  Google Scholar 

  195. Lai KR, Zhu YT, Lu JB, Dai Y, Huang BB. N- and Mo-doping Bi2WO6 in photocatalytic water splitting. Comput Mater Sci. 2013;67:88.

    Article  CAS  Google Scholar 

  196. Dong GJ, Zhang YJ, Bi YP. The synergistic effect of Bi2WO6 nanoplates and Co3O4 cocatalysts for enhanced photoelectrochemical properties. J Mater Chem A. 2017;5(39):20594.

    Article  CAS  Google Scholar 

  197. Joshi B, Yoon H, Kim H, Kim MW, Mali MG, Al-Deyab SS, Yoon SS. Heterojunction photoanodes for solar water splitting using chemical-bath-deposited In2O3 micro-cubes and electro-sprayed Bi2WO6 textured nanopillars. RSC Adv. 2015;5(104):85323.

    Article  CAS  Google Scholar 

  198. Zhao J, Yang Y, Dong XT, Ma QL, Yu WS, Wang JX, Liu GX. Electrospinning construction of Bi2WO6/RGO composite nanofibers with significantly enhanced photocatalytic water splitting activity. RSC Adv. 2016;6(69):64741.

    Article  CAS  Google Scholar 

  199. Dong GJ, Hu HY, Wang L, Zhang YJ, Bi YP. Remarkable enhancement on photoelectrochemical water splitting derived from well-crystallized Bi2WO6 and Co(OH)x with tunable oxidation state. J Catal. 2018;366:258.

    Article  CAS  Google Scholar 

  200. Hao HJ, Lu DZ, Wang QP. Photoelectrochemical study on charge separation mechanisms of Bi2WO6 quantum dots decorated g-C3N4. Int J Hydrogen Energy. 2018;43(18):8824.

    Article  CAS  Google Scholar 

  201. Rauf A, Ma M, Kim S, Sher Shah MSA, Chung CH, Park JH, Yoo PJ. Mediator- and co-catalyst-free direct Z-scheme composites of Bi2WO6-Cu3P for solar-water splitting. Nanoscale. 2018;10(6):3026.

    Article  CAS  Google Scholar 

  202. Kölbach M, Pereira IJ, Harbauer K, Plate P, Höflich K, Berglund SP, Friedrich D, van de Krol R, Abdi FF. Revealing the performance-limiting factors in α-SnWO4 photoanodes for solar water splitting. Chem Mater. 2018;30(22):8322.

    Article  CAS  Google Scholar 

  203. Cho IS, Kwak CH, Kim DW, Lee S, Hong KS. Photophysical, photoelectrochemical, and photocatalytic properties of novel SnWO4 oxide semiconductors with narrow band gaps. J Phys Chem C. 2009;113(24):10647.

    Article  CAS  Google Scholar 

  204. Zhu ZH, Sarker P, Zhao CQ, Zhou LT, Grimm RL, Huda MN, Rao PM. Photoelectrochemical properties and behavior of α-SnWO4 photoanodes synthesized by hydrothermal conversion of WO3 films. ACS Appl Mater Interfaces. 2017;9(2):1459.

    Article  CAS  Google Scholar 

  205. Abdi FF, Chemseddine A, Berglund SP, van de Krol R. Assessing the suitability of iron tungstate (Fe2WO6) as a photoelectrode material for water oxidation. J Phys Chem C. 2016;121(1):153.

    Article  CAS  Google Scholar 

  206. Khader MM, Saleh MM, El-Naggar EM. Photoelectrochemical characteristics of ferric tungstate. J Solid State Electrochem. 1998;2(3):170.

    Article  CAS  Google Scholar 

  207. Xu DF, Cheng B, Zhang JF, Wang WK, Yu JG, Ho W. Photocatalytic activity of Ag2MO4 (M = Cr, Mo, W) photocatalysts. J Mater Chem A. 2015;3(40):20153.

    Article  CAS  Google Scholar 

  208. Lin ZY, Li JL, Zheng ZQ, Yan JH, Liu P, Wang CX, Yang GW. Electronic reconstruction of α-Ag2WO4 nanorods for visible-light photocatalysis. ACS Nano. 2015;9(7):7256.

    Article  CAS  Google Scholar 

  209. Shimodaira Y, Kato H, Kobayashi H, Kudo A. Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation. J Phys Chem B. 2006;110(36):17790.

    Article  CAS  Google Scholar 

  210. Wu MH, Wang YX, Xu Y, Ming J, Zhou M, Xu R, Fu Q, Lei Y. Self-supported Bi2MoO6 nanowall for photoelectrochemical water splitting. ACS Appl Mater Interfaces. 2017;9(28):23647.

    Article  CAS  Google Scholar 

  211. Xiong YL, Yang L, He HC, Wan J, Xiao P, Guo WL. Enhanced charge separation and transfer by Bi2 MoO6 @Bi2Mo2O9 compound using SILAR for photoelectrochemical water oxidation. Electrochim Acta. 2018;264:26.

    Article  CAS  Google Scholar 

  212. Ma Y, Jia YL, Wang LN, Yang M, Bi YP, Qi YX. Exfoliated thin Bi2 MoO6 nanosheets supported on WO3 electrode for enhanced photoelectrochemical water splitting. Appl Surf Sci. 2016;390:399.

    Article  CAS  Google Scholar 

  213. Ma Y, Wang ZH, Jia YL, Wang LN, Yang M, Qi YX, Bi YP. Bi2MoO6 nanosheet array modified with ultrathin graphitic carbon nitride for high photoelectrochemical performance. Carbon. 2017;114:591.

    Article  CAS  Google Scholar 

  214. Li J, Yin YC, Liu EZ, Ma YN, Wan J, Fan J, Hu XY. In situ growing Bi2MoO6 on g-C3N4 nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation. J Hazard Mater. 2017;321:183.

    Article  CAS  Google Scholar 

  215. Yang H, Jin ZL, Hu HY, Lu GX, Bi YP. Fabrication and behaviors of CdS on Bi2MoO6 thin film photoanodes. RSC Adv. 2017;7(18):10774.

    Article  CAS  Google Scholar 

  216. Zhao J, Yang Y, Yu WS, Ma QL, Dong XT, Wang XL, Wang JX, Liu GX. Bi2MoO6/RGO composite nanofibers: facile electrospinning fabrication, structure, and significantly improved photocatalytic water splitting activity. J Mater Sci Mater Electron. 2016;28(1):543.

    Article  CAS  Google Scholar 

  217. Wan SP, Ou M, Zhong Q, Zhang SL, Song FJ. Construction of Z-scheme photocatalytic systems using ZnIn2S4, CoOx-loaded Bi2MoO6 and reduced graphene oxide electron mediator and its efficient nonsacrificial water splitting under visible light. Chem Eng J. 2017;325:690.

    Article  CAS  Google Scholar 

  218. Cai ZX, Li FM, Xu W, Jiang YQ, Luo F, Wang YR, Chen X. Enhanced performance of photoelectrochemical water oxidation using a three-dimensional interconnected nanostructural photoanode via simultaneously harnessing charge transfer and coating with an oxygen evolution catalyst. Nano Energy. 2016;26:257.

    Article  CAS  Google Scholar 

  219. Weng BC, Grice CR, Ge J, Poudel T, Deng XM, Yan YF. Barium bismuth niobate double perovskite/tungsten oxide nanosheet photoanode for high-performance photoelectrochemical water splitting. Adv Energy Mater. 2018;8(10):1701655.

    Article  CAS  Google Scholar 

  220. Kar T, Choudhary RNP. Structural, dielectric and electrical conducting properties of CsB’B’’O6 (B′ = Nb, Ta; B′′ = W, Mo) ceramics. Mater Sci Eng B. 2002;90(3):224.

    Article  Google Scholar 

  221. Huang SS, Zhao YX, Hu XF, Liu DL, Wang XJ, Su YG. CsTaWO6 as photoelectron platform by carbon nitride sensitizing toward enhanced charge carrier separation and photocatalytic activity. J Nanopart Res. 2018;20(10):281.

    Article  CAS  Google Scholar 

  222. Lang JY, Liu MQ, Su YG, Yan LJ, Wang XJ. Fabrication of the heterostructured CsTaWO6/Au/g-C3N4 hybrid photocatalyst with enhanced performance of photocatalytic hydrogen production from water. Appl Surf Sci. 2015;358:252.

    Article  CAS  Google Scholar 

  223. Mukherji A, Marschall R, Tanksale A, Sun CH, Smith SC, Lu GQ, Wang LZ. N-doped CsTaWO6 as a new photocatalyst for hydrogen production from water splitting under solar irradiation. Adv Funct Mater. 2011;21(1):126.

    Article  CAS  Google Scholar 

  224. Marschall R, Mukherji A, Tanksale A, Sun CH, Smith SC, Wang LZ, Lu GQ. Preparation of new sulfur-doped and sulfur/nitrogen co-doped CsTaWO6 photocatalysts for hydrogen production from water under visible light. J Mater Chem. 2011;21(24):8871.

    Article  CAS  Google Scholar 

  225. Weller T, Sann J, Marschall R. Pore structure controlling the activity of mesoporous crystalline CsTaWO6 for photocatalytic hydrogen generation. Adv Energy Mater. 2016;6(16):1600208.

    Article  CAS  Google Scholar 

  226. Weller T, Specht L, Marschall R. Single crystal CsTaWO6 nanoparticles for photocatalytic hydrogen production. Nano Energy. 2017;31:551.

    Article  CAS  Google Scholar 

  227. Weiss M, Waitz S, Ellinghaus R, Weller T, Marschall R. Highly mesoporous CsTaWO6 via hard-templating for photocatalytic hydrogen production. RSC Adv. 2016;6(82):79037.

    Article  CAS  Google Scholar 

  228. Schwertmann L, Grünert A, Pougin A, Sun CH, Wark M, Marschall R. Understanding the influence of lattice composition on the photocatalytic activity of defect-pyrochlore-structured semiconductor mixed oxides. Adv Funct Mater. 2015;25(6):905.

    Article  CAS  Google Scholar 

  229. Marschall R, Wang LZ. Non-metal doping of transition metal oxides for visible-light photocatalysis. Catal Today. 2014;225:111.

    Article  CAS  Google Scholar 

  230. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol. 2012;7(11):699.

    Article  CAS  Google Scholar 

  231. Gao T, Zhang Q, Li L, Zhou X, Li LG, Li HQ, Zhai TY. 2D ternary chalcogenides. Adv Opt Mater. 2018;6(14):1800058.

    Article  CAS  Google Scholar 

  232. Crossland CJ, Hickey PJ, Evans JSO. The synthesis and characterisation of Cu2MX4 (M = W or Mo; X = S, Se or S/Se) materials prepared by a solvothermal method. J Mater Chem. 2005;15(34):3452.

    Article  CAS  Google Scholar 

  233. Gan LY, Schwingenschlögl U. Two-dimensional square ternary Cu2MX4 (M = Mo, W;X = S, Se) monolayers and nanoribbons predicted from density functional theory. Phys. Rev. B. 2014;89(12):125423.

    Article  CAS  Google Scholar 

  234. Fan FRF, White HS, Wheeler BL, Bard AJ. Semiconductor electrodes. Photoelectrochemistry and photovoltaic systems with n- and p-type tungsten selenide (WSe2) in aqueous solution. J Am Chem Soc. 1980;102(16):5142.

    Article  CAS  Google Scholar 

  235. McKone JR, Pieterick AP, Gray HB, Lewis NS. Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes. J Am Chem Soc. 2013;135(1):223.

    Article  CAS  Google Scholar 

  236. Baglio JA, Calabrese GS, Harrison DJ, Kamieniecki E, Ricco AJ, Wrighton MS, Zoski GD. Electrochemical characterization of p-type semiconducting tungsten disulfide photocathodes: efficient photoreduction processes at semiconductor/liquid electrolyte interfaces. J Am Chem Soc. 1983;105(8):2246.

    Article  CAS  Google Scholar 

  237. McKone JR, Potash RA, DiSalvo FJ, Abruna HD. Unassisted HI photoelectrolysis using n-WSe2 solar absorbers. Phys Chem Chem Phys. 2015;17(21):13984.

    Article  CAS  Google Scholar 

  238. Wang YJ, Zhao SR, Wang YC, Laleyan DA, Wu YP, Ouyang B, Ou PF, Song J, Mi ZT. Wafer-scale synthesis of monolayer WSe2: a multi-functional photocatalyst for efficient overall pure water splitting. Nano Energy. 2018;51:54.

    Article  CAS  Google Scholar 

  239. Yu XY, Prevot MS, Guijarro N, Sivula K. Self-assembled 2D WSe2 thin films for photoelectrochemical hydrogen production. Nat Commun. 2015;6:7596.

    Article  Google Scholar 

  240. Yu XY, Guijarro N, Johnson M, Sivula K. Defect mitigation of solution-processed 2D WSe2 nanoflakes for solar-to-hydrogen conversion. Nano Lett. 2018;18(1):215.

    Article  CAS  Google Scholar 

  241. Pesci FM, Sokolikova MS, Grotta C, Sherrell PC, Reale F, Sharda K, Ni N, Palczynski P, Mattevi C. MoS2/WS2 heterojunction for photoelectrochemical water oxidation. ACS Catal. 2017;7(8):4990.

    Article  CAS  Google Scholar 

  242. Dunklin JR, Zhang HY, Yang Y, Liu J, van de Lagemaat J. Dynamics of photocatalytic hydrogen production in aqueous dispersions of monolayer-rich tungsten disulfide. ACS Energy Lett. 2018;3(9):2223.

    Article  CAS  Google Scholar 

  243. Meng FK, Li JT, Cushing SK, Zhi MJ, Wu NQ. Solar hydrogen generation by nanoscale p-n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J Am Chem Soc. 2013;135(28):10286.

    Article  CAS  Google Scholar 

  244. Jing DW, Liu MC, Chen QY, Guo LJ. Efficient photocatalytic hydrogen production under visible light over a novel W-based ternary chalcogenide photocatalyst prepared by a hydrothermal process. Int J Hydrogen Energy. 2010;35(16):8521.

    Article  CAS  Google Scholar 

  245. Li NX, Liu MC, Zhou ZH, Zhou JC, Sun YM, Guo LJ. Charge separation in facet-engineered chalcogenide photocatalyst: a selective photocorrosion approach. Nanoscale. 2014;6(16):9695.

    Article  CAS  Google Scholar 

  246. Liang HR, Guo LJ. Synthesis, characterization and photocatalytic performances of Cu2MoS4. Int J Hydrogen Energy. 2010;35(13):7104.

    Article  CAS  Google Scholar 

  247. Zou YJ, Shi JW, Ma DD, Fan ZY, He C, Cheng LH, Sun DK, Li J, Wang ZY, Niu CM. Efficient spatial charge separation and transfer in ultrathin g-C3N4 nanosheets modified with Cu2MoS4 as a noble metal-free co-catalyst for superior visible light-driven photocatalytic water splitting. Catal Sci Technol. 2018;8(15):3883.

    Article  CAS  Google Scholar 

  248. Zhang K, Lin YX, Muhammad Z, Wu CQ, Yang S, He Q, Zheng XS, Chen SM, Ge BH, Song L. Active 010 facet-exposed Cu2MoS4 nanotube as high-efficiency photocatalyst. Nano Res. 2017;10(11):3817.

    Article  CAS  Google Scholar 

  249. Ma N, Wei B, Cao WL, Gao H, Xu LL. Carbon dots/Cu2MoS4 nanosheets hybrids with efficient photoelectrochemical performance. Mater Lett. 2017;197:79.

    Article  CAS  Google Scholar 

  250. Zong X, Yan HJ, Wu GP, Ma GJ, Wen FY, Wang L, Li C. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as Cocatalyst under visible light irradiation. J Am Chem Soc. 2008;130(23):7176.

    Article  CAS  Google Scholar 

  251. Zong X, Wu GP, Yan HJ, Ma GJ, Shi JY, Wen FY, Wang L, Li C. Photocatalytic H2 Evolution on MoS2/CdS Catalysts under Visible Light Irradiation. J Phys Chem C. 2010;114(4):1963.

    Article  CAS  Google Scholar 

  252. Xiang QJ, Yu JG, Jaroniec M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc. 2012;134(15):6575.

    Article  CAS  Google Scholar 

  253. Morales-Guio CG, Tilley SD, Vrubel H, Gratzel M, Hu XL. Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat Commun. 2014;5:3059.

    Article  CAS  Google Scholar 

  254. Yi JJ, Li HP, Gong YJ, She XJ, Song YH, Xu YG, Deng JJ, Yuan SQ, Xu H, Li HM. Phase and interlayer effect of transition metal dichalcogenide cocatalyst toward photocatalytic hydrogen evolution: the case of MoSe2. Appl Catal B. 2019;243:330.

    Article  CAS  Google Scholar 

  255. Li N, Wu JJ, Lu YT, Zhao ZJ, Zhang HC, Li XT, Zheng YZ, Tao X. Stable multiphasic 1T/2H MoSe2 nanosheets integrated with 1D sulfide semiconductor for drastically enhanced visible-light photocatalytic hydrogen evolution. Appl Catal B. 2018;238:27.

    Article  CAS  Google Scholar 

  256. Zeng D, Wu P, Ong WJ, Tang B, Wu M, Zheng H, Chen Y, Peng DL. Construction of network-like and flower-like 2H-MoSe2 nanostructures coupled with porous g-C3N4 for noble-metal-free photocatalytic H2 evolution under visible light. Appl Catal B. 2018;233:26.

    Article  CAS  Google Scholar 

  257. Zong X, Han JF, Ma GJ, Yan HJ, Wu GP, Li C. Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation. J Phys Chem C. 2011;115(24):12202.

    Article  CAS  Google Scholar 

  258. Chen JZ, Wu XJ, Yin LS, Li B, Hong X, Fan ZX, Chen B, Xue C, Zhang H. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew Chem Int Ed. 2015;54(4):1210.

    Article  CAS  Google Scholar 

  259. Zou YJ, Shi JW, Ma DD, Fan ZY, Cheng LH, Sun DK, Wang ZY, Niu CM. WS2/graphitic carbon nitride heterojunction nanosheets decorated with CdS quantum dots for photocatalytic hydrogen production. Chemsuschem. 2018;11(7):1187.

    Article  CAS  Google Scholar 

  260. Lin ZY, Li JL, Zheng ZQ, Li LH, Yu LL, Wang CX, Yang GW. A floating sheet for efficient photocatalytic water splitting. Adv Energy Mater. 2016;6(15):1600510.

    Article  CAS  Google Scholar 

  261. Wu JX, He JL, Li F, Hu X. Ternary transitional metal chalcogenide nanosheet with significantly enhanced electrocatalytic hydrogen-evolution activity. Catal Lett. 2016;147(1):215.

    Article  CAS  Google Scholar 

  262. Tiwari AP, Azam A, Novak TG, Prakash O, Jeon S. Chemical strain formation through anion substitution in Cu2WS4 for efficient electrocatalysis of water dissociation. J Mater Chem A. 2018;6(17):7786.

    Article  CAS  Google Scholar 

  263. Patir IH, Aslan E, Yanalak G, Karaman M, Sarilmaz A, Can M, Can M, Ozel F. Donor-π-acceptor dye-sensitized photoelectrochemical and photocatalytic hydrogen evolution by using Cu2WS4 co-catalyst. Int J Hydrogen Energy. 2019;44(3):1441.

    Article  CAS  Google Scholar 

  264. Tran PD, Nguyen M, Pramana SS, Bhattacharjee A, Chiam SY, Fize J, Field MJ, Artero V, Wong LH, Loo J, Barber J. Copper molybdenum sulfide: a new efficient electrocatalyst for hydrogen production from water. Energy Environ Sci. 2012;5(10):8912.

    Article  CAS  Google Scholar 

  265. Chen BB, Ma DK, Ke QP, Chen W, Huang SM. Indented Cu2MoS4 nanosheets with enhanced electrocatalytic and photocatalytic activities realized through edge engineering. Phys Chem Chem Phys. 2016;18(9):6713.

    Article  CAS  Google Scholar 

  266. Zhang K, Zheng YL, Lin YX, Wang CD, Liu HJ, Liu DB, Wu CQ, Chen SM, Chen YX, Song L. Designing hierarchical hollow nanostructures of Cu2MoS4 for improved hydrogen evolution reaction. Phys Chem Chem Phys. 2016;19(1):557.

    Article  CAS  Google Scholar 

  267. Zhan FP, Wang QH, Li YB, Bo X, Wang QX, Gao F, Zhao C. Low-temperature synthesis of cuboid silver tetrathiotungstate (Ag2WS4) as electrocatalyst for hydrogen evolution reaction. Inorg Chem. 2018;57(10):5791.

    Article  CAS  Google Scholar 

  268. Aslan E, Gonce MK, Yigit MZ, Sarilmaz A, Stathatos E, Ozel F, Can M, Patir IH. Photocatalytic H2 evolution with a Cu2WS4 catalyst on a metal free D-π-A organic dye-sensitized TiO2. Appl Catal B. 2017;210:320.

    Article  CAS  Google Scholar 

  269. Hong S, Kumar DP, Reddy DA, Choi J, Kim TK. Excellent photocatalytic hydrogen production over CdS nanorods via using noble metal-free copper molybdenum sulfide (Cu2MoS4) nanosheets as co-catalysts. Appl Surf Sci. 2017;396:421.

    Article  CAS  Google Scholar 

  270. Yang C, Tran PD, Boix PP, Bassi PS, Yantara N, Wong LH, Barber J. Engineering a Cu2O/NiO/Cu2MoS4 hybrid photocathode for H2 generation in water. Nanoscale. 2014;6(12):6506.

    Article  CAS  Google Scholar 

  271. Liu C, Dasgupta NP, Yang PD. Semiconductor nanowires for artificial photosynthesis. Chem Mater. 2014;26(1):415.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is financially supported from the Australian Research Council through its DP programs and the Queensland node of the Australian National Fabrication Facility (ANFF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianzhou Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, L. Recent progress of tungsten- and molybdenum-based semiconductor materials for solar-hydrogen production. Tungsten 1, 19–45 (2019). https://doi.org/10.1007/s42864-019-00006-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-019-00006-9

Keywords

Navigation