Skip to main content
Log in

Controlling the morphological and redox properties of the CuTCNQ catalyst through solvent engineering

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The solution-based synthesis of the coordination polymer, CuTCNQ (TCNQ = 7,7,8,8-tetracyanoquinodimethane), which exists in two phases, has predominately used acetonitrile (MeCN) as the solvent. However, our knowledge on the growth and properties of CuTCNQ in other solvents remains limited. In this work, the synthesis of CuTCNQ on Cu foil in two protic (MeOH, EtOH) as well as four aprotic (MeCN, DMSO, DMF, THF) solvents has allowed us to obtain new insights into the important role of the reaction medium in the spontaneous crystallization of CuTCNQ in discrete morphologies and phases. A new electrochemical method for phase identification also has been developed to support this study. Findings reveal that (i) the solvents with higher dielectric constants favor CuTCNQ crystallization; (ii) irrespective of the solvent, use of high temperature (60 °C vs. 25 °C in conventional synthesis) promotes CuTCNQ crystallization and facilitate conversion of phase I to phase II; (iii) phase I CuTCNQ possess enhanced redox catalysis (ferricyanide reduction by thiosulfate) performance over phase II CuTCNQ; and (iv) the amount of catalyst is not necessarily the most important factor for driving catalytic reactions, and other factors, such as, morphology, redox characteristics and solvent in which the CuTCNQ is synthesized may dictate the overall catalytic performance. These findings emphasize the importance of understanding the influence of parameters, such as, solvent and temperature in CuTCNQ synthesis as a means of providing materials with improved catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.B. Coleman, M.J. Cohen, D.J. Sandman, F.G. Yamagishi, A.F. Garito, A.J. Heeger, Solid State Commun. 12, 1125–1132 (1973)

    Article  Google Scholar 

  2. J. Ferraris, D.O. Cowan, V. Walatka, J.H. Perlstein, J. Am. Chem. Soc. 95, 948–949 (1973)

    Article  Google Scholar 

  3. K.P. Goetz, D. Vermeulen, M.E. Payne, C. Kloc, L.E. McNeil, O.D. Jurchescu, J. Mater. Chem. C. 2, 3065–3076 (2014)

    Article  Google Scholar 

  4. T.H. Le, A. Nafady, N.T. Vo, R.W. Elliott, T.A. Hudson, R. Robson, et al., Inorg. Chem. 53, 3230–3242 (2014)

    Article  Google Scholar 

  5. H. Liu, Q. Zhao, Y. Li, Y. Liu, F. Lu, J. Zhuang, et al., J. Am. Chem. Soc. 127, 1120–1121 (2005)

    Article  Google Scholar 

  6. S.-G. Liu, Y.-Q. Liu, P.-J. Wu, D.-B. Zhu, Chem. Mater. 8, 2779–2787 (1996)

    Article  Google Scholar 

  7. M. Mahajan, S.K. Bhargava, A.P. O’Mullane, Electrochim. Acta 101, 186–195 (2013)

    Article  Google Scholar 

  8. L.R. Melby, R.J. Harder, W.R. Hertler, W. Mahler, R.E. Benson, W.E. Mochel, J. Am. Chem. Soc. 84, 3374–3387 (1962)

    Article  Google Scholar 

  9. A. Nafady, A.P. O’Mullane, A.M. Bond, Coordin. Chem. Rev. 268, 101–142 (2014)

    Article  Google Scholar 

  10. A.K. Neufeld, I. Madsen, A.M. Bond, C.F. Hogan, Chem. Mater. 15, 3573–3585 (2003)

    Article  Google Scholar 

  11. E. Nossol, A.B.S. Nossol, S.-X. Guo, J. Zhang, X.-Y. Fang, A.J.G. Zarbin, et al., J. Mater. Chem. C 2, 870–878 (2014)

    Article  Google Scholar 

  12. A.P. O'Mullane, A.K. Neufeld, A.M. Bond, Anal. Chem. 77, 5447–5452 (2005)

    Article  Google Scholar 

  13. L. Shields, J. Chem. Soc. Faraday Trans. 81, 1–9 (1985)

    Article  Google Scholar 

  14. E.B. Vickers, I.D. Giles, J.S. Miller, Chem. Mater. 17, 1667–1672 (2005)

    Article  Google Scholar 

  15. M.J. Capitán, J. Álvarez, C. Navío, R. Miranda, J. Phys. 28, 185002 (2016)

    Google Scholar 

  16. R. Ramanathan, A.E. Kandjani, S. Walia, S. Balendhran, S.K. Bhargava, K. Kalantar-zadeh, et al., RSC Adv. 3, 17654–17658 (2013)

    Article  Google Scholar 

  17. R. Ramanathan, S. Walia, A.E. Kandjani, S. Balendran, M. Mohammadtaheri, S.K. Bhargava, et al., Langmuir 31, 1581–1587 (2014)

    Article  Google Scholar 

  18. K. Xiao, I.N. Ivanov, A.A. Puretzky, Z. Liu, D.B. Geohegan, Adv. Mater. 18, 2184–2188 (2006)

    Article  Google Scholar 

  19. K. Xiao, J. Tao, Z. Pan, A.A. Puretzky, I.N. Ivanov, S.J. Pennycook, et al., Angew. Chem. Int. Ed. 46, 2650–2654 (2007)

    Article  Google Scholar 

  20. K. Xiao, J. Tao, A.A. Puretzky, I.N. Ivanov, S.T. Retterer, S.J. Pennycook, et al., Adv. Funct. Mater. 18, 3043–3048 (2008)

    Article  Google Scholar 

  21. A. Pearson, A.P. O’Mullane, ChemPlusChem 78, 1343–1348 (2013)

    Article  Google Scholar 

  22. Z.M. Davoudi, A.E. Kandjani, A.I. Bhatt, I.L. Kyratzis, A.P. O'Mullane, V. Bansal, Adv. Funct. Mater. 24, 1047–1053 (2014)

    Article  Google Scholar 

  23. D.D. La, R. Ramanathan, D. Kumar, T. Ahmed, S. Walia, K.J. Berean, et al., ChemistrySelect 2, 9962–9969 (2017)

    Article  Google Scholar 

  24. D.D. La, R. Ramanathan, A. Rananaware, V. Bansal, S.V. Bhosale, RSC Adv. 6, 33931–33936 (2016)

    Article  Google Scholar 

  25. M. Mohammadtaheri, R. Ramanathan, V. Bansal, Catal. Today 278, 319–329 (2016)

    Article  Google Scholar 

  26. M. Mohammadtaheri, R. Ramanathan, S. Walia, T. Ahmed, P. Weerathunge, S.R. Anderson, et al., Appl. Mater. Today 13, 107–115 (2018)

    Article  Google Scholar 

  27. A. Pearson, A.P. O’Mullane, V. Bansal, S.K. Bhargava, Inorg. Chem. 50, 1705–1712 (2011)

    Article  Google Scholar 

  28. A. Pearson, A.P. O’Mullane, S.K. Bhargava, V. Bansal, Inorg. Chem. 51, 8791–8801 (2012)

    Article  Google Scholar 

  29. A. Pearson, R. Ramanathan, A.P. O'Mullane, V. Bansal, Adv. Funct. Mater. 24, 7570–7579 (2014)

    Article  Google Scholar 

  30. R. Ramanathan, A. Pearson, S. Walia, A.E. Kandjani, M. Mohammadtaheri, M. Bhaskaran, et al., Appl. Mater. Today 10, 12–17 (2018)

    Article  Google Scholar 

  31. M.C. Siu, S.R. Anderson, M. Mohammadtaheri, T. Ahmed, S. Walia, R. Ramanathan, et al., Adv. Mater. Interfaces 1700097, 4 (2017)

    Google Scholar 

  32. W. Kaim, M. Moscherosch, Coordin. Chem. Rev. 129, 157–193 (1994)

    Article  Google Scholar 

  33. X. Guo, S. Zhu, R.M. Kong, X. Zhang, F. Qu, ACS Sustain. Chem. Eng. 6, 1545–1549 (2018)

    Article  Google Scholar 

  34. L. Liu, Q. Wu, H. Guo, L. Li, M. Liu, D. Li, et al., Mater. Lett. 230, 53–56 (2018)

    Article  Google Scholar 

  35. K. Miyao, A. Funabiki, K. Takahashi, T. Mochida, M. Uruichi, New J. Chem. 38, 739–743 (2014)

    Article  Google Scholar 

  36. A. Pearson, V. Bansal, A.P. O’Mullane, Electrochim. Acta 114, 189–197 (2013)

    Article  Google Scholar 

  37. M. Shafiei, F. Hoshyargar, J. Lipton-Duffin, C. Piloto, N. Motta, A.P. O’Mullane, J. Phys, Chem. C. 119, 22208–22216 (2015)

    Google Scholar 

  38. M. Xie, X. Xiong, L. Yang, X. Shi, A.M. Asiri, X. Sun, Chem. Commun. 54, 2300–2303 (2018)

    Article  Google Scholar 

  39. M. Mahajan, S.K. Bhargava, A.P. O’Mullane, RSC Adv. 3, 4440–4446 (2013)

    Article  Google Scholar 

  40. K. Wang, X. Qian, L. Zhang, Y. Li, H. Liu, ACS Appl. Mater. Inter. 5, 5825–5831 (2013)

    Article  Google Scholar 

  41. Y. Wei, X. Ren, H. Ma, X. Sun, Y. Zhang, X. Kuang, et al., Chem. Euro. J. 24, 2075–2079 (2018)

    Article  Google Scholar 

  42. X. Ren, X. Ji, Y. Wei, D. Wu, Y. Zhang, M. Ma, et al., Chem. Commun. 54, 1425–1428 (2018)

    Article  Google Scholar 

  43. D. Wu, Y. Wei, X. Ren, X. Ji, Y. Liu, X. Guo, et al., Adv. Mater. 30, 1705366 (2018)

    Article  Google Scholar 

  44. X. Zhu, X. Shi, A.M. Asiri, Y. Luo, X. Sun, Inorg. Chem. Front. 5, 1188–1192 (2018)

    Article  Google Scholar 

  45. R.A. Heintz, H. Zhao, X. Ouyang, G. Grandinetti, J. Cowen, K.R. Dunbar, Inorg. Chem. 38, 144–156 (1998)

    Article  Google Scholar 

  46. Y. Liu, Z. Ji, H. Li, W. Hu, Y. Liu, D. Zhu, Nano Res. 2, 630–637 (2009)

    Article  Google Scholar 

  47. R. Ramanathan, A.P. O’Mullane, R.Y. Parikh, P.M. Smooker, S.K. Bhargava, V. Bansal, Langmuir 27, 714–719 (2010)

    Article  Google Scholar 

  48. V. Bansal, A. Syed, S.K. Bhargava, A. Ahmad, M. Sastry, Langmuir 23, 4993–4998 (2007)

    Article  Google Scholar 

  49. A. Nafady, A.M. Bond, V. Qu, L.L. Martin, J. Solid State Electrochem. 17, 1609–1620 (2013)

    Article  Google Scholar 

  50. R.J. Phaneuf, H.-C. Kan, E.D. Williams, in Low dimensional structures prepared by epitaxial growth or regrowth on patterned substrates, ed. by K. Eberl, P. M. Petroff, P. Demeester. Evolution of Si surface nanostructure under growth conditions (Springer Netherlands, Dordrecht, 1995), pp. 185–195

    Chapter  Google Scholar 

  51. Y. Yamashita, T. Suzuki, T. Mukai, J. Chem. Soc. Chem. Commun., 1184–1185 (1987)

  52. A.E. Kandjani, M.J. Griffin, R. Ramanathan, S.J. Ippolito, S.K. Bhargava, V. Bansal, J. Raman Spectrosc. 44, 608–621 (2013)

    Article  Google Scholar 

  53. S. Walia, Y. Sabri, A. Taimur, M.R. Field, R. Ramanathan, A. Arash, et al., 2D Mater. 015025, 4 (2017)

    Google Scholar 

  54. M.N. Karim, M. Singh, P. Weerathunge, P. Bian, R. Zheng, C. Dekiwadia, et al., ACS Appl. Nano Mater. 1, 1694–1704 (2018)

    Article  Google Scholar 

  55. M. Singh, P. Weerathunge, P.D. Liyanage, E. Mayes, R. Ramanathan, V. Bansal, Langmuir 33, 10006–10015 (2017)

    Article  Google Scholar 

  56. A.R. Rezk, S. Walia, R. Ramanathan, H. Nili, J.Z. Ou, V. Bansal, et al., Adv. Opt. Mater. 3, 888–894 (2015)

    Article  Google Scholar 

  57. M. Singh, E. Della Gaspera, T. Ahmed, S. Walia, R. Ramanathan, J. van Embden, et al., 2D Mater. 4, 025110 (2017)

    Article  Google Scholar 

  58. S. Walia, S. Balendhran, T. Ahmed, M. Singh, C. El-Badawi, M.D. Brennan, et al., Adv. Mater. 1700152, 29 (2017)

    Google Scholar 

  59. M. Singh, D. Jampaiah, A.E. Kandjani, Y.M. Sabri, E. Della Gaspera, P. Reineck, et al., Nanoscale 10, 6039–6050 (2018)

    Article  Google Scholar 

  60. T. Ahmed, S. Balendhran, M.N. Karim, E.L. Mayes, M.R. Field, R. Ramanathan, et al., npj 2D Mater. Appl. 1, 18 (2017)

    Article  Google Scholar 

  61. S. Kuriakose, T. Ahmed, P. Taylor, Y. Zhu, M.J.S. Spencer, S. Balendhran, et al., 2D Mater. 015009, 6 (2018)

    Google Scholar 

Download references

Acknowledgments

V.B. thanks the Australian Research Council (ARC) for a Future Fellowship (FT140101285). V.B., R.R., L.L.M., and A.M.B. acknowledge the ARC for funding this project though an ARC Discovery (DP170103477) Grant. The authors are appreciative of the generous support of the Ian Potter Foundation towards establishing the Sir Ian Potter NanoBioSensing Facility at RMIT University. R.R. acknowledges RMIT University for a Vice Chancellor Fellowship. Authors acknowledge the support from the RMIT Microscopy and Microanalysis Facility (RMMF) for technical assistance and providing access to characterization facilities.

Funding sources

V.B.: Australian Research Council (ARC), Future Fellowship (FT140101285).

V.B., R.R., L.L.M., A.M.B.: ARC, Discovery Grant (DP170103477).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Rajesh Ramanathan or Vipul Bansal.

Ethics declarations

Conflict of interest statement

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

ESM 1

Materials characterization and UV-visible spectra of the catalysis. (DOCX 34266 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, Z., Ojha, R., Martin, L.L. et al. Controlling the morphological and redox properties of the CuTCNQ catalyst through solvent engineering. emergent mater. 2, 35–44 (2019). https://doi.org/10.1007/s42247-019-00026-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-019-00026-8

Keywords

Navigation