Skip to main content
Log in

Synthesis of noble metal chalcogenides via cation exchange reactions

  • Article
  • Published:

From Nature Synthesis

View current issue Submit your manuscript

Abstract

Noble metal chalcogenides (NMCs) are an important class of materials with unique properties and widespread applications; however, the synthesis of these materials in a well-controlled manner remains challenging. Cation exchange (CE) transformation is a versatile, topotactic strategy which enables the synthesis of a range of materials, but its use for preparing NMCs has not been studied in detail, impeding the application of these materials. Here we demonstrate a robust and general strategy for the fabrication of a wide variety of NMCs via CE transformations, in which CuTe metal chalcogenides are used as sacrificial templates for CE with noble metal cations. The generality of the CE strategy is validated by the fabrication of NMCs with tailored morphologies (zero-dimension (0D), 1D, 2D and 3D), compositions (Pd/Pt/Rh/Ru/Ag/Au-based NMCs) and phases. In-depth mechanistic study shows that the well-controlled synthesis of NMCs is realized by kinetic control and solvent-dependent thermodynamic control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: The preparation of 2D NMCs via CE reactions.
Fig. 2: The influences of solvents on CE transformation.
Fig. 3: Theoretical simulations on CE transformation.
Fig. 4: Preparation of shaped Pd–Te tellurides.
Fig. 5: Preparation of Pd-based selenides and sulfides via CE transformation.

Similar content being viewed by others

Data availability

The additional characterization data, experimental data, and theoretical calculation data are provided in the Supplementary Information. Source data are provided with this paper.

Code availability

The computational codes used in this work are available from the commercial Vienna Ab initio Package and Accelrys Materials Studio.

References

  1. Wang, Y., Li, Y. & Heine, T. PtTe monolayer: two-dimensional electrocatalyst with high basal plane activity toward oxygen reduction reaction. J. Am. Chem. Soc. 140, 12732–12735 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Lin, X. et al. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters. Nat. Mater. 16, 717–721 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Zhao, Y. et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 29, 1604230 (2017).

    Article  CAS  Google Scholar 

  4. Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Ciarrocchi, A., Avsar, A., Ovchinnikov, D. & Kis, A. Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nat. Commun. 9, 919 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Chow, W. L. et al. High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics. Adv. Mater. 29, 1602969 (2017).

    Article  CAS  Google Scholar 

  7. Fu, L. et al. Highly organized epitaxy of Dirac semimetallic PtTe2 crystals with extrahigh conductivity and visible surface plasmons at edges. ACS Nano 12, 9405–9411 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Pi, L. et al. Recent progress on 2D noble-transition-metal dichalcogenides. Adv. Funct. Mater. 29, 1904932 (2019).

    Article  CAS  Google Scholar 

  9. Yim, C. et al. Wide spectral photoresponse of layered platinum diselenide-based photodiodes. Nano Lett. 18, 1794–1800 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, Y. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 9, 111 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Yang, C. et al. A generalized surface chalcogenation strategy for boosting the electrochemical N2 fixation of metal nanocrystals. Adv. Mater. 32, 2001267 (2020).

    Article  CAS  Google Scholar 

  13. Feng, Y. et al. Platinum porous nanosheets with high surface distortion and Pt utilization for enhanced oxygen reduction catalysis. Adv. Funct. Mater. 29, 1904429 (2019).

    Article  CAS  Google Scholar 

  14. Wang, J. et al. A general strategy to glassy MTe (M = Ru, Rh, Ir) porous nanorods for efficient electrochemical N2 fixation. Adv. Mater. 32, 1907112 (2020).

    Article  CAS  Google Scholar 

  15. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  16. Zhou, H. S., Sasahara, H., Honma, I., Komiyama, H. & Haus, J. W. Coated semiconductor nanoparticles: the CdS/PbS system’s photoluminescence properties. Chem. Mater. 6, 1534–1541 (1994).

    Article  CAS  Google Scholar 

  17. Mews, A., Eychmuller, A., Giersig, M., Schooss, D. & Weller, H. Preparation, characterization, and photophysics of the quantum dot quantum well system CdS/HgS/CdS. J. Phys. Chem. 98, 934–941 (1994).

    Article  CAS  Google Scholar 

  18. Son, D. H., Hughes, S. M., Yin, Y. & Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 306, 1009–1012 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Robinson, R. D. et al. Spontaneous superlattice formation in nanorods through partial cation exchange. Science 317, 355–358 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, J., Tang, Y., Lee, K. & Ouyang, M. Nonepitaxial growth of hybrid core–shell nanostructures with large lattice mismatches. Science 327, 1634–1638 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Beberwyck, B. J., Surendranath, Y. & Alivisatos, A. P. Cation exchange: a versatile tool for nanomaterials synthesis. J. Phys. Chem. C 117, 19759–19770 (2013).

    Article  CAS  Google Scholar 

  22. Justo, Y. et al. Less is more. Cation exchange and the chemistry of the nanocrystal surface. ACS Nano 8, 7948–7957 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Fenton, J. L., Steimle, B. C. & Schaak, R. E. Exploiting crystallographic regioselectivity to engineer asymmetric three-component colloidal nanoparticle isomers using partial cation exchange reactions. J. Am. Chem. Soc. 140, 6771–6775 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Fenton, J. L., Steimle, B. C. & Schaak, R. E. Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries. Science 360, 513–517 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Steimle, B. C., Fenton, J. L. & Schaak, R. E. Rational construction of a scalable heterostructured nanorod megalibrary. Science 367, 418–424 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Hodges, J. M., Kletetschka, K., Fenton, J. L., Read, C. G. & Schaak, R. E. Sequential anion and cation exchange reactions for complete material transformations of nanoparticles with morphological retention. Angew. Chem. Int. Ed. 54, 8669–8672 (2015).

    Article  CAS  Google Scholar 

  27. Liu, Z. et al. Tuning infrared plasmon resonances in doped metal-oxide nanocrystals through cation-exchange reactions. Nat. Commun. 10, 1394 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Berends, A. C. et al. Anisotropic 2D Cu2–xSe nanocrystals from dodecaneselenol and their conversion to CdSe and CuInSe2 nanoparticles. Chem. Mater. 30, 3836–3846 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, H. et al. Synthesis of uniform disk-shaped copper telluride nanocrystals and cation exchange to cadmium telluride quantum disks with stable red emission. J. Am. Chem. Soc. 135, 12270–12278 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Steimle, B. C. et al. Experimental insights into partial cation exchange reactions for synthesizing heterostructured metal sulfide nanocrystals. Chem. Mater. 32, 5461–5482 (2020).

    Article  CAS  Google Scholar 

  31. Tan, J. M. R. et al. Revealing cation-exchange-induced phase transformations in multielemental chalcogenide nanoparticles. Chem. Mater. 29, 9192–9199 (2017).

    Article  CAS  Google Scholar 

  32. Trizio, L. D. et al. Sn cation valency dependence in cation exchange reactions involving Cu2–xSe nanocrystals. Chem. Mater. 29, 9192–9199 (2017).

    Article  CAS  Google Scholar 

  33. Koh, S., Kim, W. D., Bae, W. K., Lee, Y. K. & Lee, D. C. Controlling ion-exchange balance and morphology in cation exchange from Cu3–xP nanoplatelets into InP crystals. Chem. Mater. 31, 1990–2001 (2019).

    Article  CAS  Google Scholar 

  34. Liu, Y., Liu, M. & Swihart, M. T. Shape evolution of biconcave djurleite Cu1.94S nanoplatelets produced from CuInS2 nanoplatelets by cation exchange. J. Am. Chem. Soc. 139, 18598–18606 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Li, D. et al. Colloidal synthesis of giant shell PbSe-based core/shell quantum dots in polar solvent: cation exchange versus epitaxial growth. Chem. Mater. 31, 1990–2001 (2019).

    Article  CAS  Google Scholar 

  36. Trizio, L. D. & Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 116, 10852–10887 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Rivesta, J. B. & Jain, P. K. Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem. Soc. Rev. 42, 89–96 (2013).

    Article  Google Scholar 

  38. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  39. Chattot, R. et al. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 17, 827–835 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, Y. et al. Atomically deviated Pd–Te nanoplates boost methanol-tolerant fuel cells. Sci. Adv. 6, eaba9731 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Feng, Y. et al. Highly surface-distorted Pt superstructures for multifunctional electrocatalysis. Nano Lett. 21, 5075–5082 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Tang, C. et al. Fully tensile strained Pd3Pb/Pd tetragonal nanosheets enhance oxygen reduction catalysis. Nano Lett. 19, 1336–1342 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  47. Kresse, G., & Furthmüller,J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. J. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  48. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  CAS  Google Scholar 

  49. Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756–7764 (2000).

    Article  CAS  Google Scholar 

  50. Delley, B. An all-electron numerical method for solving the local density functional or pyatomic molecules. J. Chem. Phys. 92, 508–517 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Science and Technology (2017YFA0208200, 2016YFA0204100), the National Natural Science Foundation of China (22025108, 51802206), the Natural Science Foundation of Jiangsu Province (BK20180846), the Guangdong Provincial Natural Science Fund for Distinguished Young Scholars (2021B1515020081), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and start-up supports from Xiamen University and Guangzhou Key Laboratory of Low Dimensional Materials and Energy Storage Devices (20195010002).

Author information

Authors and Affiliations

Authors

Contributions

X.H. and Y.X. conceived and supervised the research. X.H., Y.X. and Y.F designed the experiments. X.H. and Y.F. performed most of the experiments and data analysis. X.H., Y.X., Y.F., Y.Z. and Q.S. participated in various aspects of the experiments and discussions. Y.J. and Y.L. performed the theoretical calculations. X.H., Y.X. and Y.F. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yong Xu or Xiaoqing Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Humberto Gutierrez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–44 and Tables 1–3.

Source data

Source Data Fig. 1

Raw data of XRD patterns for 2D tellurides and their corresponding references.

Source Data Fig. 2

Raw data of XRD patterns for the products obtained during cation exchange as well as plots of the elemental content in nanocrystals and solutions at different reaction times.

Source Data Fig. 3

Raw data of the relative energies during the Cu leaching and Pd introduction process. Raw data of the chemical potentials of Pd atoms in various solvents and plot of the binding energies compared to the charge of O in sulfoxide groups.

Source Data Fig. 5

Raw data of XRD patterns for 2D sulfides and their corresponding references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Ji, Y., Zhang, Y. et al. Synthesis of noble metal chalcogenides via cation exchange reactions. Nat. Synth 1, 626–634 (2022). https://doi.org/10.1038/s44160-022-00117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00117-1

  • Springer Nature Limited

This article is cited by

Navigation