Skip to main content
Log in

Mesoporous Cu3−xZnx(BTC)2 nanocubes synthesized in deep eutectic solvent and their catalytic performances

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

To develop high-performance metal-organic frameworks (MOFs) for catalysis is of great importance. Here, we synthesized the mesoporous Cu3−xZnx(BTC)2 (BTC = benzene-1,3,5-tricarboxylate) nanocubes in a deep eutectic solvent of ZnCl2/ethylene glycol solution. The route can proceed at room temperature and the reaction time needed is shortened to be 30 min, which is superior to the conventional solvothermal route that usually needs high temperature and long reaction time. The formation mechanism of the mesoporous Cu3−xZnx(BTC)2 nanocubes in deep eutectic solvent (DES) was investigated by in situ synchrotron X-ray diffraction/small angle X-ray scattering/X-ray absorption fine structure conjunction technique. The mesoporous Cu3−xZnx(BTC)2 nanocubes exhibit high catalytic activity and reusability for cyanosilylation reaction of benzaldehyde and aerobic oxidation reaction of benzylic alcohol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714.

    CAS  Google Scholar 

  2. Peng, Y.; Li, Y. S.; Ban, Y. J.; Jin, H.; Jiao, W. M.; Liu, X. L.; Yang, W. S. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 2014, 346, 1356–1359.

    CAS  Google Scholar 

  3. Jeong, G. Y.; Singh, A. K.; Kim, M. G.; Gyak, K. W.; Ryu, U.; Choi, K. M.; Kim, D. P. Metal-organic framework patterns and membranes with heterogeneous pores for flow-assisted switchable separations. Nat. Commun. 2018, 9, 3968.

    Google Scholar 

  4. Li, Y. P.; Wang, Y.; Xue, Y. Y.; Li, H. P.; Zhai, Q. G.; Li, S. N.; Jiang, Y. C.; Hu, M. C.; Bu, X. H. Ultramicroporous building units as a path to Bi-microporous metal-organic frameworks with high acetylene storage and separation performance. Angew. Chem., Int. Ed. 2019, 58, 13590–13595.

    CAS  Google Scholar 

  5. Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.

    CAS  Google Scholar 

  6. Zhang, F. Y.; Zhang, J. L.; Zhang, B. X.; Zheng, L. R.; Cheng, X. Y.; Wan, Q.; Han, B. X.; Zhang, J. CO2 controls the oriented growth of metal-organic framework with highly accessible active sites. Nat. Commun. 2020, 11, 1431.

    CAS  Google Scholar 

  7. Dolgopolova, E. A.; Rice, A. M.; Martin, C. R.; Shustova, N. B. Photochemistry and photophysics of MOFs: Steps towards MOF-based sensing enhancements. Chem. Soc. Rev. 2018, 47, 4710–4728.

    CAS  Google Scholar 

  8. Li, Y. T.; Tang, J. L.; He, L. C.; Liu, Y.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Core-shell upconversion nanoparticle@metal-organic framework nanoprobes for luminescent/magnetic dual-mode targeted imaging. Adv. Mater. 2015, 27, 4075–4080.

    CAS  Google Scholar 

  9. Li, W. B.; Zhang, Y. F.; Xu, Z. H.; Meng, Q.; Fan, Z.; Ye, S. J.; Zhang, G. L. Assembly of MOF microcapsules with size-selective permeability on cell walls. Angew. Chem., Int. Ed. 2016, 55, 955–959.

    CAS  Google Scholar 

  10. Phang, W. J.; Jo, H.; Lee, W. R.; Song, J. H.; Yoo, K.; Kim, B. S.; Hong, C. S. Superprotonic conductivity of a UiO-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation. Angew. Chem., Int. Ed. 2015, 54, 5142–5146.

    CAS  Google Scholar 

  11. Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267–6295.

    CAS  Google Scholar 

  12. Peng, L.; Zhang, J. L.; Xue, Z. M.; Han, B. X.; Sang, X. X.; Liu, C. C.; Yang, G. Y. Highly mesoporous metal-organic framework assembled in a switchable solvent. Nat. Commun. 2014, 5, 4465.

    CAS  Google Scholar 

  13. Liu, Y. Y.; Klet, R. C.; Hupp, J. T.; Farha, O. Probing the correlations between the defects in metal-organic frameworks and their catalytic activity by an epoxide ring-opening reaction. Chem. Commun. 2016, 52, 7806–7809.

    CAS  Google Scholar 

  14. Martí-Gastaldo, C.; Antypov, D.; Warren, J. E.; Briggs, M. E.; Chater, P. A.; Wiper, P. V.; Miller, G. J.; Khimyak, Y. Z.; Darling, G. R.; Berry, N. G. et al. Side-chain control of porosity closure in single- and multiple-peptide-based porous materials by cooperative folding. Nat. Chem. 2014, 6, 343–351.

    Google Scholar 

  15. Karagiaridi, O.; Bury, W.; Mondloch, J. E.; Hupp, J. T.; Farha, O. K. Solvent-assisted linker exchange: An alternative to the de novo synthesis of unattainable metal-organic frameworks. Angew. Chem., Int. Ed. 2014, 53, 4530–4540.

    CAS  Google Scholar 

  16. McDonald, T. M.; Lee, W. R.; Mason, J. A.; Wiers, B. M.; Hong, C. S.; Long, J. R. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 2012, 134, 7056–7065.

    CAS  Google Scholar 

  17. Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014, 114, 11060–11082.

    CAS  Google Scholar 

  18. Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W. et al. Deep eutectic solvents: A review of fundamentals and applications. Chem. Rev. 2021, 121, 1232–1285.

    CAS  Google Scholar 

  19. Söldner, A.; Zach, J.; König, B. Deep eutectic solvents as extraction media for metal salts and oxides exemplarily shown for phosphates from incinerated sewage sludge ash. Green Chem. 2019, 21, 321–328.

    Google Scholar 

  20. Gutierrez, M. C.; Ferrer, M. L.; Mateo, C. R.; Del Monte, F. Freeze-drying of aqueous solutions of deep eutectic solvents: A suitable approach to deep eutectic suspensions of self-assembled structures. Langmuir 2009, 25, 5509–5515.

    CAS  Google Scholar 

  21. Gutierrez, M. C.; Ferrer, M. L.; Yuste, L.; Rojo, F.; Del Monte, F. Bacteria incorporation in deep-eutectic solvents through freeze-drying. Angew. Chem., Int. Ed. 2010, 49, 2158–2162.

    CAS  Google Scholar 

  22. Mota-Morales, J. D.; Gutiérrez, M. C.; Ferrer, M. L.; Jiménez, R.; Santiago, P.; Sanchez, I. C.; Terrones, M.; Del Monte, F.; Luna-Bárcenas, G. Synthesis of macroporous poly(acrylic acid)-carbon nanotube composites by frontal polymerization in deep-eutectic solvents. J. Mater. Chem. A 2013, 1, 3970–3976.

    CAS  Google Scholar 

  23. Mohammadpour, Z.; Abdollahi, S. H.; Safavi, A. Sugar-based natural deep eutectic mixtures as green intercalating solvents for high-yield preparation of stable MoS2 nanosheets: Application to electrocatalysis of hydrogen evolution reaction. ACS Appl. Energy Mater. 2018, 1, 5896–5906.

    CAS  Google Scholar 

  24. Zainal-Abidin, M. H.; Hayyan, M.; Ngoh, G. C.; Wong, W. F. From nanoengineering to nanomedicine: A facile route to enhance biocompatibility of graphene as a potential nano-carrier for targeted drug delivery using natural deep eutectic solvents. Chem. Eng. Sci. 2019, 195, 95–106.

    CAS  Google Scholar 

  25. Albayati, N.; Kadhom, M. Preparation of functionalised UiO-66 metal-organic frameworks (MOFs) nanoparticles using deep eutectic solvents as a benign medium. Micro Nano Lett. 2020, 15, 1075–1078.

    Google Scholar 

  26. Pati, Y. A.; Shankarling, G. S. Deep eutectic solvent-mediated, energy-efficient synthesis of copper terephthalate metal-organic framework and its application in degradation of an azo dye. Chem. Eng. J. Adv. 2020, 3, 100032.

    Google Scholar 

  27. Maia, R. A.; Louis, B.; Baudron, S. A. HKUST-1 MOF in reline deep eutectic solvent: Synthesis and phase transformation. Dalton Trans. 2021, 50, 4145–4151.

    CAS  Google Scholar 

  28. Dolgopolova, E. A.; Brandt, A. J.; Ejegbavwo, O. A.; Duke, A. S.; Maddumapatabandi, T. D.; Galhenage, R. P.; Larson, B. W.; Reid, O. G.; Ammal, S. C.; Heyden, A. et al. Electronic properties of bimetallic metal-organic frameworks (MOFs): Tailoring the density of electronic states through MOF modularity. J. Am. Chem. Soc. 2017, 139, 5201–5209.

    CAS  Google Scholar 

  29. Nagarjun, N.; Arthy, K.; Dhakshinamoorthy, A. Copper(II)-doped ZIF-8 as a reusable and size selective heterogeneous catalyst for the hydrogenation of alkenes using hydrazine hydrate. Eur. J. Inorg. Chem. 2021, 2021, 2108–2119.

    CAS  Google Scholar 

  30. Peng, L.; Zhang, J. L.; Li, J. S.; Han, B. X.; Xue, Z. M.; Yang, G. Y. Surfactant-directed assembly of mesoporous metal-organic framework nanoplates in ionic liquids. Chem. Commun. 2012, 48, 8688–8690.

    CAS  Google Scholar 

  31. Diring, S.; Furukawa, S.; Takashima, Y.; Tsuruoka, T.; Kitagawa, S. Controlled multiscale synthesis of porous coordination polymer in nano/micro regimes. Chem. Mater. 2010, 22, 4531–4538.

    CAS  Google Scholar 

  32. Rowsell, J. L. C.; Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. Am. Chem. Soc. 2006, 128, 1304–1315.

    CAS  Google Scholar 

  33. Hafizovic, J.; Bjørgen, M.; Olsbye, U.; Dietzel, P. D. C.; Bordiga, S.; Prestipino, C.; Lamberti, C.; Lillerud, K. P. The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities. J. Am. Chem. Soc. 2007, 129, 3612–3620.

    CAS  Google Scholar 

  34. Duke, A. S.; Dolgopolova, E. A.; Galhenage, R. P.; Ammal, S. C.; Heyden, A.; Smith, M. D.; Chen, D. A.; Shustova, N. B. Active sites in copper-based metal-organic frameworks: Understanding substrate dynamics, redox processes, and valence-band structure. J. Phys. Chem. C 2015, 119, 27457–27466.

    CAS  Google Scholar 

  35. Huang, J. H.; Chen, J. T.; Yao, T.; He, J. F.; Jiang, S.; Sun, Z. H.; Liu, Q. H.; Cheng, W. R.; Hu, F. C.; Jiang, Y. et al. CoOOH nanosheets with high mass activity for water oxidation. Angew. Chem., Int. Ed. 2015, 54, 8722–8727.

    CAS  Google Scholar 

  36. Tan, D. X.; Cheng, X. Y.; Zhang, J. L.; Sha, Y. F.; Shen, X. J.; Su, Z. Z.; Han, B. X.; Zheng, L. R. Photocatalytic carbon dioxide reduction coupled with benzylamine oxidation over Zn−Bi2WO6 microflowers. Green Chem. 2021, 23, 2913–2917.

    CAS  Google Scholar 

  37. Sang, X. X.; Zhang, J. L.; Xiang, J. F.; Cui, J.; Zheng, L. R.; Zhang, J.; Wu, Z. H.; Li, Z. H.; Mo, G.; Xu, Y. et al. Ionic liquid accelerates the crystallization of Zr-based metal-organic frameworks. Nat. Commun. 2017, 5, 175.

    Google Scholar 

  38. He, S.; Chen, Y. F.; Zhang, Z. C.; Ni, B.; He, W.; Wang, X. Competitive coordination strategy for the synthesis of hierarchical-pore metal-organic framework nanostructures. Chem. Sci. 2016, 7, 7101–7105.

    CAS  Google Scholar 

  39. Zhang, F. Y.; Zhang, J. L.; Zhang, B. X.; Zheng, L. R.; Cheng, X. Y.; Wan, Q.; Han, B. X.; Zhang, J. Improved catalytic performance of Co-MOF-74 by nanostructure construction. Green Chem. 2020, 22, 5995–6000.

    CAS  Google Scholar 

  40. Schlichte, K.; Kratzke, T.; Kaskel, S. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous Mesoporous Mater. 2004, 73, 81–88.

    CAS  Google Scholar 

  41. Carné, A.; Carbonell, C.; Imaz, I.; Maspoch, D. Nanoscale metal-organic materials. Chem. Soc. Rev. 2011, 40, 291–305.

    Google Scholar 

  42. Su, T. M.; Shao, Q.; Qin, Z. Z.; Guo, Z. H.; Wu, Z. L. Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 2018, 8, 2253–2276.

    CAS  Google Scholar 

  43. Du, J. J.; Zhang, X.; Zhou, X. P.; Li, D. Robust heterometallic MOF catalysts for the cyanosilylation of aldehydes. Inorg. Chem. Front. 2018, 5, 2772–2776.

    CAS  Google Scholar 

  44. Liu, A.; Zhu, H. H.; Park, W. T.; Kim, S. J.; Kim, H.; Kim, M. G.; Noh, Y. Y. High-performance p-channel transistors with transparent Zn doped-CuI. Nat. Commun. 2020, 11, 4309.

    CAS  Google Scholar 

  45. Lim, S. Y.; Park, S.; Im, S. W.; Ha, H.; Seo, H.; Nam, K. T. Chemically deposited amorphous Zn-doped NiFeOxHy for enhanced water oxidation. ACS Catal. 2020, 10, 235–244.

    CAS  Google Scholar 

  46. Chi, L. P.; Niu, Z. Z.; Zhang, X. L.; Yang, P. P.; Liao, J.; Gao, F. Y.; Wu, Z. Z.; Tang, K. B.; Gao, M. R. Stabilizing indium sulfide for CO2 electroreduction to formate at high rate by zinc incorporation. Nat. Commun. 2021, 12, 5835.

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support by Ministry of Science and Technology of China (No. 2017YFA0403003) and the National Natural Science Foundation of China (Nos. 22033009 and 22121002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianling Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Zhang, J., Tan, X. et al. Mesoporous Cu3−xZnx(BTC)2 nanocubes synthesized in deep eutectic solvent and their catalytic performances. Nano Res. 16, 3703–3708 (2023). https://doi.org/10.1007/s12274-022-4844-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4844-y

Keywords

Navigation