Skip to main content
Log in

3D bioprinting: an emerging technology full of opportunities and challenges

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) printing is a novel promising technology based on 3D imaging and layer-by-layer additive fabrication. It has a profound influence on all aspects of our lives and is playing an increasing important role in many areas including engineering, manufacturing, art, education and medicine. “3D bioprinting” has been put forward with the technical progress in 3D printing and might be a possible way to solve the serious problem of human organ shortage in tissue engineering and regenerative medicine. Many research groups flung them into this area and have already made some gratifying achievements. However, it is a long way to fabricate a live organ. Many elements lead to the limitation of 3D bioprinting. This review introduces the background and development history of 3D bioprinting, compares different approaches of 3D bioprinting and illustrates the key factors of the printing process. Meanwhile, this review also points out existing challenges of 3D bioprinting and has a great prospect. Some points proposed in this review might be served as reference for the research of this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ozbolat IT, Yu Y (2013) Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng 60(3):691–699

    Article  Google Scholar 

  2. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  Google Scholar 

  3. Griffith LG, Naughton G (2002) Tissue engineering—current challenges and expanding opportunities. Science 295(5557):1009–1014

    Article  Google Scholar 

  4. Mikos AG, Herring SW, Ochareon P et al (2006) Engineering complex tissues. Tissue Eng 12(12):3307–3339

    Article  Google Scholar 

  5. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 24(24):4337–4351

    Article  Google Scholar 

  6. Lannutti J, Reneker D, Ma T et al (2007) Electrospinning for tissue engineering scaffolds. Mater Sci Eng C-Biomimetic Supramol Syst 27(3):504–509

    Article  Google Scholar 

  7. Bersini S, Yazdi IK, Talo G et al (2016) Cell-microenvironment interactions and architectures in microvascular systems. Biotechnol Adv 34(6):1113–1130

    Article  Google Scholar 

  8. Gao W, Zhang YB, Ramanujan D et al (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89

    Article  Google Scholar 

  9. Mironov V, Kasyanov V, Drake C et al (2008) Organ printing: promises and challenges. Regen Med 3(1):93–103

    Article  Google Scholar 

  10. Kolesky DB, Truby RL, Gladman AS et al (2014) 3D bioprinting of vascularized heterogeneous cell-laden tissue constructs. Adv Mater 26(19):3124–3130

    Article  Google Scholar 

  11. Bergmann C, Lindner M, Zhang W et al (2010) 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc 30(12):2563–2567

    Article  Google Scholar 

  12. Ozbolat IT, Peng WJ, Ozbolat V (2016) Application areas of 3D bioprinting. Drug Discov Today 21(8):1257–1271

    Article  Google Scholar 

  13. Gudapati H, Dey M, Ozbolat I (2016) A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 102:20–42

    Article  Google Scholar 

  14. Ávila HM, Schwarz S, Rotter N, Gatenholma P (2016) 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration. Bioprinting 1–2:22–35

    Article  Google Scholar 

  15. Lee JS, Hong JM, Jung JW et al (2014) 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 6(2):1–12

    Article  Google Scholar 

  16. Gao GF, Schilling AF, Hubbell K et al (2015) Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnol Lett 37(11):2349–2355

    Article  Google Scholar 

  17. Muller M, Ozturk E, Arlov O et al (2017) Alginate sulfate-nanocellulose bioinks for cartilage bioprinting applications. Ann Biomed Eng 45(1):210–223

    Article  Google Scholar 

  18. Nguyen D, Hagg DA, Forsman A et al (2017) Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci Rep 7:658

    Article  Google Scholar 

  19. Cui XF, Breitenkamp K, Finn MG et al (2012) Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A 18(11–12):1304–1312

    Article  Google Scholar 

  20. Schon BS, Hooper GJ, Woofield TBF (2016) Modular tissue assembly strategies for biofabrication of engineered cartilage. Ann Biomed Eng 45(1):1–15

    Google Scholar 

  21. Kanitakis J (2002) Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol 12(4):390–400

    Google Scholar 

  22. Vijayavenkataraman S, Lu WF, Fuh JYH (2016) 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication 8(3):032001

    Article  Google Scholar 

  23. Peck MD (2011) Epidemiology of burns throughout the world. Part I: distribution and risk factors. Burns 37(7):1087–1100

    Article  Google Scholar 

  24. Simon M (2016) Active leptospermum honey: a strategy to prevent chronic wounds. Jnp—J Nurse Pract 12(5):339–345

    Article  Google Scholar 

  25. Ng WL, Wang S, Yeong WY et al (2016) Skin bioprinting: impending reality or fantasy? Trends Biotechnol 34(9):689–699

    Article  Google Scholar 

  26. Abaci HE, Guo ZY, Doucet Y et al (2017) Next generation human skin constructs as advanced tools for drug development. Exp Biol Med 242(17):1657–1668

    Article  Google Scholar 

  27. Lee W, Debasitis JC, Lee VK et al (2009) Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30(8):1587–1595

    Article  Google Scholar 

  28. Lee V, Singh G, Trasatti JP et al (2014) Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Method 20(6):473–484

    Article  Google Scholar 

  29. Min D, Lee W, Bae I-H, Lee TR, Croce P, Yoo S-S (2017) Bioprinting of biomimetic skin containing melanocytes. Exp Dermatol 1–7. https://doi.org/10.1111/exd.13376

  30. Skardal A, Mack D, Kapetanovic E et al (2012) Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 1(11):792–802

    Article  Google Scholar 

  31. Pourchet LJ, Thepot A, Albouy M et al (2017) Human skin 3D bioprinting using Scaffold-free approach. Adv Healthcare Mater 6(4):1601101

    Article  Google Scholar 

  32. Kim BS, Lee JS, Gao G et al (2017) Direct 3D cell-printing of human skin with functional transwell system. Biofabrication 9(2):025034

    Article  Google Scholar 

  33. Abaci HE, Guo ZY, Coffman A et al (2016) Human skin constructs with spatially controlled vasculature using primary and ipsc-derived endothelial cells. Adv Healthcare Mater 5(14):1800–1807

    Article  Google Scholar 

  34. Huang S, Yao B, Xie JF et al (2016) 3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration. Acta Biomater 32:170–177

    Article  Google Scholar 

  35. Liu NB, Huang S, Yao B et al (2016) 3D bioprinting matrices with controlled pore structure and release function guide in vitro self-organization of sweat gland. Sci Rep 6:34410

    Article  Google Scholar 

  36. Lee VK, Dai GH, Zou HY, et al (2015) Generation of 3-D Glioblastoma-Vascular Niche using 3-D Bioprinting. In: 2015 41st Annual Northeast Biomedical Engineering Conference (Nebec)

  37. Dai X, Liu L, Ouyang J et al (2017) Coaxial 3D bioprinting of self-assembled multicellular heterogeneous tumor fibers. Sci Rep 7(1):1457

    Article  Google Scholar 

  38. Zhao Y, Yao R, Ouyang L et al (2014) Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 6(3):035001

    Article  Google Scholar 

  39. Xu F, Celli J, Rizvi I et al (2011) A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J 6(2):204–212

    Article  Google Scholar 

  40. Grolman JM, Zhang D, Smith AM et al (2015) Rapid 3D extrusion of synthetic tumor microenvironments. Adv Mater 27(37):5512–7

    Article  Google Scholar 

  41. Zhou X, Zhu W, Nowicki M et al (2016) 3D bioprinting a cell-laden bone matrix for breast cancer metastasis study. ACS Appl Mater Interfaces 8(44):30017–30026

    Article  Google Scholar 

  42. Zhang XY, Zhang YD (2015) Tissue engineering applications of three-dimensional bioprinting. Cell Biochem Biophys 72(3):777–782

    Article  Google Scholar 

  43. Melchels FPW, Domingos MAN, Klein TJ et al (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37(8):1079–1104

    Article  Google Scholar 

  44. Guillotin B, Souquet A, Catros S et al (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31(28):7250–7256

    Article  Google Scholar 

  45. Koch L, Deiwick A, Schlie S et al (2012) Skin tissue generation by laser cell printing. Biotechnol Bioeng 109(7):1855–1863

    Article  Google Scholar 

  46. Ali M, Pages E, Ducom A et al (2014) Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication 6(4):045001

    Article  Google Scholar 

  47. Nahmias Y, Schwartz RE, Verfaillie CM et al (2005) Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol Bioeng 92(2):129–136

    Article  Google Scholar 

  48. Odde DJ, Renn MJ (1999) Laser-guided direct writing for applications in biotechnology. Trends Biotechnol 17(10):385–389

    Article  Google Scholar 

  49. Wang ZJ, Abdulla R, Parker B et al (2015) A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 7(4):045009

    Article  Google Scholar 

  50. Xu F, Celli J, Rizvi I et al (2011) A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J 6(2):204–212

    Article  Google Scholar 

  51. Faulkner-Jones A, Fyfe C, Cornelissen DJ et al (2015) Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication 7(4):044102

    Article  Google Scholar 

  52. Gao Q, Liu Z, Lin Z, Qiu J, Liu Y, Liu A, Wang Y, Xiang M, Chen B, Fu J, He Y (2017) 3D bioprinting of vessel-like structures with multilevel fluidic channels. ACS Biomater Sci Eng 3(3):399–408

    Article  Google Scholar 

  53. Ozbolat IT, Chen H, Yu Y (2014) Development of ’Multi-arm Bioprinter’ for hybrid biofabrication of tissue engineering constructs. Robot Comput Integr Manuf 30(3):295–304

    Article  Google Scholar 

  54. Zhang B, Gao L, Gu L, Yang H, Luo Y, Ma L (2017) High-resolution 3D bioprinting system for fabricating cell-laden hydrogel scaffolds with high cellular activities. Procedia Cirp 65:219–224

    Article  Google Scholar 

  55. Khalil S, Nam J, Sun W (2005) Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyp J 11(1):9–17

    Article  Google Scholar 

  56. Kang HW, Lee SJ, Ko IK et al (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312–319

    Article  Google Scholar 

  57. Norotte C, Marga FS, Niklason LE et al (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30):5910–5917

    Article  Google Scholar 

  58. Lind JU, Busbee TA, Valentine AD et al (2017) Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat Mater 16(3):303

    Article  Google Scholar 

  59. Choi YJ, Kim TG, Jeong J et al (2016) 3D cell printing of functional skeletal muscle constructs using skeletal muscle-derived bioink. Adv Healthcare Mater 5(20):2636–2645

    Article  Google Scholar 

  60. Devillard R, Pages E, Correa MM et al (2014) Cell patterning by laser-assisted bioprinting. Micropattern Cell Biol Pt A. 119:159–174

    Article  Google Scholar 

  61. Catros S, Guillotin B, Bacakova M et al (2011) Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by laser-assisted bioprinting. Appl Surf Sci 257(12):5142–5147

    Article  Google Scholar 

  62. Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1(9):910–917

    Article  Google Scholar 

  63. Calvert P (2007) Printing cells. Science 318(5848):208–209

    Article  Google Scholar 

  64. Cui X, Booland T, D’Lima DD, Lotz MK (2012) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Patents Drug Deliv Formul 6(2):149–155

    Article  Google Scholar 

  65. Sumerel J, Lewis J, Doraiswamy A, Deravi LF, Sewell SL, Gerdon AE, Wright DW, Narayan RJ (2006) Piezoelectric ink jet processing of materials for medical and biological applications. Biotechnol J 1(9):976–987

    Article  Google Scholar 

  66. Cui XF, Boland T (2009) Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30(31):6221–6227

    Article  Google Scholar 

  67. Weiss LE, Amon CH, Finger S et al (2005) Bayesian computer-aided experimental design of heterogeneous scaffolds for tissue engineering. Comput Aided Des 37(11):1127–1139

    Article  Google Scholar 

  68. Campbell PG, Weiss LE (2007) Tissue engineering with the aid of inkjet printers. Expert Opin Biol Therapy 7(8):1123–1127

    Article  Google Scholar 

  69. Saunders RE, Derby B (2014) Inkjet printing biomaterials for tissue engineering: bioprinting. Int Mater Rev 59(8):430–448

    Article  Google Scholar 

  70. Setti L, Fraleoni-Morgera A, Ballarin B et al (2005) An amperometric glucose biosensor prototype fabricated by thermal inkjet printing. Biosens Bioelectron 20(10):2019–2026

    Article  Google Scholar 

  71. Chen FM, Lin LY, Zhang J et al (2016) Single-cell analysis using drop-on-demand inkjet printing and probe electrospray ionization mass spectrometry. Anal Chem 88(8):4354–4360

    Article  Google Scholar 

  72. Chung JHY, Naficy S, Yue ZL et al (2013) Bio-ink properties and printability for extrusion printing living cells. Biomater Sci 1(7):763–773

    Article  Google Scholar 

  73. Pati F, Shim JH, Lee J-S, Cho D-W (2013) 3D printing of cell-laden constructs for heterogeneous tissue regeneration. Manuf Lett 1(1):49–53

    Article  Google Scholar 

  74. Yan YN, Wang XH, Pan YQ et al (2005) Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials 26(29):5864–5871

    Article  Google Scholar 

  75. Nair K, Yan KC, Sun W (2007) A multilevel numerical model quantifying cell deformation in encapsulated alginate structures. J Mech Mater Struct 2(6):1121–1139

    Article  Google Scholar 

  76. Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343

    Article  Google Scholar 

  77. Mironov V (2003) Printing technology to produce living tissue. Expert Opin Biol Therapy 3(5):701–704

    Article  Google Scholar 

  78. Skardal A, Atala A (2015) Biomaterials for Integration with 3-D Bioprinting. Ann Biomed Eng 43(3):730–746

    Article  Google Scholar 

  79. Censi R, van Putten S, Vermonden T et al (2011) The tissue response to photopolymerized PEG-p(HPMAm-lactate)-based hydrogels. J Biomed Mater Res Part A 97a(3):219–229

    Article  Google Scholar 

  80. Schuurman W, Levett PA, Pot MW et al (2013) Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci 13(5):551–561

    Article  Google Scholar 

  81. Skardal A, Zhang JX, McCoard L et al (2010) Dynamically crosslinked gold nanoparticle—hyaluronan hydrogels. Adv Mater 22(42):4736

    Article  Google Scholar 

  82. Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9:4

    Article  Google Scholar 

  83. Lee M, Dunn JCY, Wu BM (2005) Scaffold fabrication by indirect three-dimensional printing. Biomaterials 26(20):4281–4289

    Article  Google Scholar 

  84. Zopf DA, Mitsak AG, Flanagan CL et al (2015) Computer aided-designed, 3-dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction. Otolaryngol Head Neck Surg 152(1):57–62

    Article  Google Scholar 

  85. Wu W, DeConinck A, Lewis JA (2011) Omnidirectional printing of 3D microvascular networks. Adv Mater 23(24):H178–H183

    Article  Google Scholar 

  86. Marga F, Jakab K, Khatiwala C et al (2012) Toward engineering functional organ modules by additive manufacturing. Biofabrication 4(2):022001

    Article  Google Scholar 

  87. Song SJ, Choi J, Park YD et al (2011) Sodium alginate hydrogel-based bioprinting using a novel multinozzle bioprinting system. Artif Organs 35(11):1132–1136

    Article  Google Scholar 

  88. Gao Q, He Y, Fu JZ et al (2015) Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials 61:203–215

    Article  Google Scholar 

  89. Colosi C, Shin SR, Manoharan V, Massa S, Costantini M, Barbetta A, Dokmeci MR, Dentini M, Khademhosseini A (2016) Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv Mater 28(4):677–684

    Article  Google Scholar 

  90. Shanjani Y, Pan CC, Elomaa L et al (2015) A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication 7(4):045008

    Article  Google Scholar 

  91. Smith CM, Christian JJ, Warren WL et al (2007) Characterizing environmental factors that impact the viability of tissue-engineered constructs fabricated by a direct-write bioassembly tool. Tissue Eng 13(2):373–383

    Article  Google Scholar 

  92. Ananthanarayanan B, Kim Y, Kumar S (2011) Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform. Biomaterials 32(31):7913–7923

    Article  Google Scholar 

  93. Buyukhatipoglu K, Jo W, Clyne AM (2009) The role of printing parameters and scaffold biopolymer properties in the efficacy of a new hybrid nano-bioprinting system. Biofabrication 1(3):035003

    Article  Google Scholar 

  94. Chen C, Bang S, Younghak C, Lee S, Lee I, Zhang S, Noh I (2016) Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone. Biomater Res 20(1):1–7

    Article  Google Scholar 

  95. Visconti RP, Kasyanov V, Gentile C et al (2010) Towards organ printing: engineering an intra-organ branched vascular tree. Expert Opin Biol Therapy 10(3):409–420

    Article  Google Scholar 

  96. Kolesky DB, Homan KA, Skylar-Scott MA et al (2016) Three-dimensional bioprinting of thick vascularized tissues. Proc Nat Acad Sci USA 113(12):3179–3184

    Article  Google Scholar 

  97. Holzl K, Lin SM, Tytgat L et al (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8(3):032002

    Article  Google Scholar 

  98. Rutz AL, Hyland KE, Jakus AE et al (2015) A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater 27(9):1607

    Article  Google Scholar 

  99. Skardal A, Zhang JX, McCoard L et al (2010) Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng Part A 16(8):2675–2685

    Article  Google Scholar 

  100. Lee VK, Kim DY, Ngo HG et al (2014) Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35(28):8092–8102

    Article  Google Scholar 

  101. Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DH, Cohen DM, Toro E, Chen AA, Galie PA, Yu X, Chaturvedi R, Bhatia SN, Chen CS (2012) Rapid casting of patterned vascular networks for perfusable engineered 3D tissues. Nat Mater 11(9):768–774

    Article  Google Scholar 

  102. Zhang YH, Yu Y, Akkouch A et al (2015) In vitro study of directly bioprinted perfusable vasculature conduits. Biomater Sci 3(1):134–143

    Article  Google Scholar 

  103. Mercado-Pagan AE, Stahl AM, Shanjani Y et al (2015) Vascularization in bone tissue engineering constructs. Ann Biomed Eng 43(3):718–729

    Article  Google Scholar 

  104. Mandrycky C, Wang ZJ, Kim K et al (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34(4):422–434

    Article  Google Scholar 

  105. Yoo SS (2015) 3D-printed biological organs: medical potential and patenting opportunity. Expert Opin Ther Pat 25(5):507–511

    Article  Google Scholar 

  106. Arealis G, Nikolaou VS (2015) Bone printing: new frontiers in the treatment of bone defects. Inj Int J Care Inj 46:S20–S22

    Article  Google Scholar 

  107. Michalski MH, Ross JS (2014) The shape of things to come 3D printing in medicine. Jama J Am Med Assoc 312(21):2213–2214

    Article  Google Scholar 

  108. Jose RR, Rodriguez MJ, Dixon TA et al (2016) Evolution of bioinks and additive manufacturing technologies for 3D bioprinting. Acs Biomater Sci Eng 2(10):1662–1678

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support from National Natural Science Foundation of China under Grant 81501607 and 51475419, Natural Science Foundation of Zhejiang Province of China under Grant LY15H160019, Key Research and Development Projects of Zhejiang Province under Grant 2017C1054.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huayong Yang or Zhanfeng Cui.

Additional information

B. Zhang, Y. Luo, and L. Ma have contributed equally to this work.

Huayong Yang and Zhanfeng Cui jointly supervised this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Luo, Y., Ma, L. et al. 3D bioprinting: an emerging technology full of opportunities and challenges. Bio-des. Manuf. 1, 2–13 (2018). https://doi.org/10.1007/s42242-018-0004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-018-0004-3

Keywords

Navigation