Skip to main content
Log in

Recent advances in flexible supercapacitors based on carbon nanotubes and graphene

碳纳米管和石墨烯材料在柔性超级电容器中的应用

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Owing to the rapidly growing market for flexible electronics, there is an urgent demand to develop flexible energy storage devices. Flexible supercapacitors have received much attention due to their good flexibility, fast charge/discharge rate and long lifecycle times. Carbon nanotubes (CNTs) and graphene have good mechanical properties, which make them suitable for flexible supercapacitors. Based on different nanostructures of CNTs and graphene, we summarized the recent progress in CNTs- and graphene-based flexible supercapacitors with a brief description of the basic principles for evaluating their performance. Special emphasis was given to fabrication methods, capacitive performance and electrode configurations of different flexible supercapacitors. Furthermore, the remaining challenges and future research directions for CNTs- and graphene-based flexible supercapacitors have also been discussed.

摘要

随着柔性电子器件的发展, 对与之相匹配的柔性储能器件的需求越来越大. 柔性超级电容器因其具有快速的充放电倍率、长循环 寿命和良好的柔韧性而受到广泛关注. 碳纳米管和石墨烯拥有良好的机械性能和多样的结构, 不同的微纳结构对电极的电化学性能和机 械性能有较大的影响. 本文总结了近期以碳纳米管和石墨烯为电极材料的柔性超级电容器研究进展, 重点概括了不同柔性电极的合成方 法和结构特点, 并分析了构建柔性超级电容器的容量性能和机械性能. 此外, 还讨论了柔性超级电容器发展现存的挑战和未来的前景.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu W, Song MS, Kong B, et al. Flexible and stretchable energy storage: recent advances and future perspectives. Adv Mater, 2017, 29: 1603436

    Article  CAS  Google Scholar 

  2. Wen L, Li F, Cheng HM. Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv Mater, 2016, 28: 4306–4337

    Article  CAS  Google Scholar 

  3. Zhang J, Zhao XS. On the configuration of supercapacitors for maximizing electrochemical performance. ChemSusChem, 2012, 5: 818–841

    Article  CAS  Google Scholar 

  4. Yu M, Wang Z, Han Y, et al. Recent progress in the development of anodes for asymmetric supercapacitors. J Mater Chem A, 2016, 4: 4634–4658

    Article  CAS  Google Scholar 

  5. Ge J, Lan M, Liu W, et al. Graphene quantum dots as efficient, metal-free, visible-light-active photocatalysts. Sci China Mater, 2016, 59: 12–19

    Article  CAS  Google Scholar 

  6. Lu K, Hu Z, Xiang Z, et al. Cation intercalation in manganese oxide nanosheets: effects on lithium and sodium storage. Angew Chem, 2016, 128: 10604–10608

    Article  Google Scholar 

  7. Huang Q, Wang D, Zheng Z. Textile-based electrochemical energy storage devices. Adv Energ Mater, 2016, 6: 1600783

    Article  CAS  Google Scholar 

  8. Liu L, Niu Z, Chen J. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chem Soc Rev, 2016, 45: 4340–4363

    Article  CAS  Google Scholar 

  9. Guo K, Yu N, Hou Z, et al. Smart supercapacitors with deformable and healable functions. J Mater Chem A, 2017, 5: 16–30

    Article  CAS  Google Scholar 

  10. Gelinck GH, Huitema HEA, van Veenendaal E, et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater, 2004, 3: 106–110

    Article  CAS  Google Scholar 

  11. Moonen PF, Yakimets I, Huskens J. Fabrication of transistors on flexible substrates: from mass-printing to high-resolution alternative lithography strategies. Adv Mater, 2012, 24: 5526–5541

    Article  CAS  Google Scholar 

  12. Tee BCK, Wang C, Allen R, et al. An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nat Nanotech, 2012, 7: 825–832

    Article  CAS  Google Scholar 

  13. Hammock ML, Chortos A, Tee BCK, et al. 25th Anniversary Article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater, 2013, 25: 5997–6038

    Article  CAS  Google Scholar 

  14. Zhang X, Zhang H, Lin Z, et al. Recent advances and challenges of stretchable supercapacitors based on carbon materials. Sci China Mater, 2016, 59: 475–494

    Article  CAS  Google Scholar 

  15. Fan Z, Yan J, Zhi L, et al. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater, 2010, 22: 3723–3728

    Article  CAS  Google Scholar 

  16. Qin J, Zhou F, Xiao H, et al. Mesoporous polypyrrole-based graphene nanosheets anchoring redox polyoxometalate for allsolid-state micro-supercapacitors with enhanced volumetric capacitance. Sci China Mater, 2017, doi: 10.1007/s40843-017-9132-8

    Google Scholar 

  17. Li YX, Gong ZL, Yang Y. Synthesis and characterization of Li2 MnSiO4/C nanocomposite cathode material for lithium ion batteries. J Power Sources, 2007, 174: 528–532

    Article  CAS  Google Scholar 

  18. Cao AM, Hu JS, Liang HP, et al. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew Chem Int Ed, 2005, 44: 4391–4395

    Article  CAS  Google Scholar 

  19. Cai X, Zhang C, Zhang S, et al. Application of carbon fibers to flexible, miniaturized wire/fiber-shaped energy conversion and storage devices. J Mater Chem A, 2017, 5: 2444–2459

    Article  CAS  Google Scholar 

  20. Wu Z, Zhang X. N,O-codoped porous carbon nanosheets for capacitors with ultra-high capacitance. Sci China Mater, 2016, 59: 547–557

    Article  CAS  Google Scholar 

  21. Wu S, Zhu Y. Highly densified carbon electrode materials towards practical supercapacitor devices. Sci China Mater, 2017, 60: 25–38

    Article  CAS  Google Scholar 

  22. Lu K, Zhang J, Wang Y, et al. Interfacial deposition of threedimensional nickel hydroxide nanosheet-graphene aerogel on Ni wire for flexible fiber asymmetric supercapacitors. ACS Sustain Chem Eng, 2017, 5: 821–827

    Article  CAS  Google Scholar 

  23. Yin H, Tang Z. Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage. Chem Soc Rev, 2016, 45: 4873–4891

    Article  CAS  Google Scholar 

  24. Mendoza-Sánchez B, Gogotsi Y. Synthesis of two-dimensional materials for capacitive energy storage. Adv Mater, 2016, 28: 6104–6135

    Article  CAS  Google Scholar 

  25. Gao Y. Graphene and polymer composites for supercapacitor applications: a review. Nanoscale Res Lett, 2017, 12:387

    Article  Google Scholar 

  26. Wang K, Zhang X, Sun X, et al. Conducting polymer hydrogel materials for high-performance flexible solid-state supercapacitors. Sci China Mater, 2016, 59: 412–420

    Article  CAS  Google Scholar 

  27. Wang K, Wu H, Meng Y, et al. Conducting polymer nanowire arrays for high performance supercapacitors. Small, 2014, 10: 14–31

    Article  CAS  Google Scholar 

  28. Zhang G, Jin X, Li H, et al. N-doped crumpled graphene: bottomup synthesis and its superior oxygen reduction performance. Sci China Mater, 2016, 59: 337–347

    Google Scholar 

  29. Shao Y, El-Kady MF, Wang LJ, et al. Graphene-based materials for flexible supercapacitors. Chem Soc Rev, 2015, 44: 3639–3665

    Article  CAS  Google Scholar 

  30. Zhang J, Dai L. Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angew Chem Int Ed, 2016, 55: 13296–13300

    Article  CAS  Google Scholar 

  31. Yu M, Zhou S, Liu Y, et al. Long life rechargeable Li-O2 batteries enabled by enhanced charge transfer in nanocable-like Fe@Ndoped carbon nanotube catalyst. Sci China Mater, 2017, 60: 415–426

    Article  CAS  Google Scholar 

  32. Ma Z, Tao L, Liu D, et al. Ultrafine nano-sulfur particles anchored on in situ exfoliated graphene for lithium-sulfur batteries. J Mater Chem A, 2017, 5: 9412–9417

    Article  CAS  Google Scholar 

  33. Liu Z, Zhao Z, Wang Y, et al. In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv Mater, 2017, 29: 1606207

    Article  CAS  Google Scholar 

  34. Wang S, Jiang SP. Prospects of fuel cell technologies. Nat Sci Rev, 2017, nww099

    Google Scholar 

  35. Yan D, Li Y, Huo J, et al. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv Mater, 2017, 414: 1606459

    Article  CAS  Google Scholar 

  36. Dong L, Xu C, Li Y, et al. Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J Mater Chem A, 2016, 4: 4659–4685

    Article  CAS  Google Scholar 

  37. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56–58

    Article  CAS  Google Scholar 

  38. De Volder MFL, Tawfick SH, Baughman RH, et al. Carbon nanotubes: present and future commercial applications. Science, 2013, 339: 535–539

    Article  CAS  Google Scholar 

  39. Park S, Vosguerichian M, Bao Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale, 2013, 5: 1727–1752

    Article  CAS  Google Scholar 

  40. Yang F, Wang X, Zhang D, et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature, 2014, 510: 522–524

    Article  CAS  Google Scholar 

  41. Niu Z, Luan P, Shao Q, et al. A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energ Environ Sci, 2012, 5: 8726–8733

    Article  CAS  Google Scholar 

  42. Kang YJ, Chung H, Han CH, et al. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes. Nanotechnology, 2012, 23: 289501

    Article  CAS  Google Scholar 

  43. Niu Z, Dong H, Zhu B, et al. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv Mater, 2013, 25: 1058–1064

    Article  CAS  Google Scholar 

  44. Zeng S, Chen H, Cai F, et al. Electrochemical fabrication of carbon nanotube/polyaniline hydrogel film for all-solid-state flexible supercapacitor with high areal capacitance. J Mater Chem A, 2015, 3: 23864–23870

    Article  CAS  Google Scholar 

  45. Yu J, Lu W, Pei S, et al. Omnidirectionally stretchable highperformance supercapacitor based on isotropic buckled carbon nanotube films. ACS Nano, 2016, 10: 5204–5211

    Article  CAS  Google Scholar 

  46. Lv T, Yao Y, Li N, et al. Highly stretchable supercapacitors based on aligned carbon nanotube/molybdenum disulfide composites. Angew Chem Int Ed, 2016, 55: 9191–9195

    Article  CAS  Google Scholar 

  47. Li J, Lu W, Yan Y, et al. High performance solid-state flexible supercapacitor based on Fe3O4/carbon nanotube/polyaniline ternary films. J Mater Chem A, 2017, 5: 11271–11277

    Article  CAS  Google Scholar 

  48. Zhao J, Chen J, Xu S, et al. Hierarchical nimn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors. Adv Funct Mater, 2014, 24: 2938–2946

    Article  CAS  Google Scholar 

  49. Zhao MQ, Ren CE, Ling Z, et al. Flexible Mxene/carbon nanotube composite paper with high volumetric capacitance. Adv Mater, 2015, 27: 339–345

    Article  CAS  Google Scholar 

  50. Yuksel R, Sarioba Z, Cirpan A, et al. Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes. ACS Appl Mater Interfaces, 2014, 6: 15434–15439

    Article  CAS  Google Scholar 

  51. Du L, Yang P, Yu X, et al. Flexible supercapacitors based on carbon nanotube/MnO2 nanotube hybrid porous films for wearable electronic devices. J Mater Chem A, 2014, 2: 17561–17567

    Article  CAS  Google Scholar 

  52. Chen Y, Du L, Yang P, et al. Significantly enhanced robustness and electrochemical performance of flexible carbon nanotubebased supercapacitors by electrodepositing polypyrrole. J Power Sources, 2015, 287: 68–74

    Article  CAS  Google Scholar 

  53. Yu M, Zhang Y, Zeng Y, et al. Water surface assisted synthesis of large-scale carbon nanotube film for high-performance and stretchable supercapacitors. Adv Mater, 2014, 26: 4724–4729

    Article  CAS  Google Scholar 

  54. de Souza VHR, Oliveira MM, Zarbin AJG. Thin and flexible allsolid supercapacitor prepared from novel single wall carbon nanotubes/polyaniline thin films obtained in liquid-liquid interfaces. J Power Sources, 2014, 260: 34–42

    Article  CAS  Google Scholar 

  55. Shin SR, Farzad R, Tamayol A, et al. A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics. Adv Mater, 2016, 28: 3280–3289

    Article  CAS  Google Scholar 

  56. Song L, Cao X, Li L, et al. General method for large-area films of carbon nanomaterials and application of a self-assembled carbon nanotube film as a high-performance electrode material for an all-solid-state supercapacitor. Adv Funct Mater, 2017, 27: 1700474

    Article  CAS  Google Scholar 

  57. Chen C, Cao J, Lu Q, et al. Foldable all-solid-state supercapacitors integrated with photodetectors. Adv Funct Mater, 2017, 27: 1604639

    Article  CAS  Google Scholar 

  58. Lee H, Kim H, Cho MS, et al. Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications. Electrochim Acta, 2011, 56: 7460–7466

    Article  CAS  Google Scholar 

  59. Lu X, Dou H, Yuan C, et al. Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors. J Power Sources, 2012, 197: 319–324

    Article  CAS  Google Scholar 

  60. Huang F, Vanhaecke E, Chen D. In situ polymerization and characterizations of polyaniline on MWCNT powders and aligned MWCNT films. Catal Today, 2010, 150: 71–76

    Article  CAS  Google Scholar 

  61. Zhang H, Cao G, Yang Y. Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energ Environ Sci, 2009, 2: 932–943

    Article  CAS  Google Scholar 

  62. Cai Z, Li L, Ren J, et al. Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes. J Mater Chem A, 2013, 1: 258–261

    Article  CAS  Google Scholar 

  63. Yu D, Goh K, Wang H, et al. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat Nanotech, 2014, 9: 555–562

    Article  CAS  Google Scholar 

  64. Huang F, Lou F, Chen D. Exploring aligned-carbon-nanotubes@ polyaniline arrays on household Al as supercapacitors. ChemSusChem, 2012, 5: 888–895

    Article  CAS  Google Scholar 

  65. Lin H, Li L, Ren J, et al. Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor. Sci Rep, 2013, 3: 1353

    Article  CAS  Google Scholar 

  66. Chen T, Peng H, Durstock M, et al. High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets. Sci Rep, 2014, 4: 3612

    Article  Google Scholar 

  67. Pan S, Lin H, Deng J, et al. Novel wearable energy devices based on aligned carbon nanotube fiber textiles. Adv Energ Mater, 2015, 5: 1401438

    Article  CAS  Google Scholar 

  68. Malik R, Zhang L, McConnell C, et al. Three-dimensional, freestanding polyaniline/carbon nanotube composite-based electrode for high-performance supercapacitors. Carbon, 2017, 116: 579–590

    Article  CAS  Google Scholar 

  69. Cherusseri J, Kar KK. Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes. J Mater Chem A, 2016, 4: 9910–9922

    Article  CAS  Google Scholar 

  70. Zhang G, Song Y, Zhang H, et al. Radially aligned porous carbon nanotube arrays on carbon fibers: a hierarchical 3D carbon nanostructure for high-performance capacitive energy storage. Adv Funct Mater, 2016, 26: 3012–3020

    Article  CAS  Google Scholar 

  71. Reit R, Nguyen J, Ready W. Growth time performance dependence of vertically aligned carbon nanotube supercapacitors grown on aluminum substrates. Electrochim Acta, 2013, 91: 96–100

    Article  CAS  Google Scholar 

  72. Zhao W, Li Y, Wu S, et al. Highly stable carbon nanotube/polyaniline porous network for multifunctional applications. ACS Appl Mater Interfaces, 2016, 8: 34027–34033

    Article  CAS  Google Scholar 

  73. Li P, Kong C, Shang Y, et al. Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes. Nanoscale, 2013, 5: 8472–8479

    Article  CAS  Google Scholar 

  74. Cheng X, Gui X, Lin Z, et al. Three-dimensional a-Fe2O3/carbon nanotube sponges as flexible supercapacitor electrodes. J Mater Chem A, 2015, 3: 20927–20934

    Article  CAS  Google Scholar 

  75. Li P, Shi E, Yang Y, et al. Carbon nanotube-polypyrrole core-shell sponge and its application as highly compressible supercapacitor electrode. Nano Res, 2013, 7: 209–218

    Article  CAS  Google Scholar 

  76. Wang K, Meng Q, Zhang Y, et al. High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv Mater, 2013, 25: 1494–1498

    Article  CAS  Google Scholar 

  77. Zhang D, Miao M, Niu H, et al. Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles. ACS Nano, 2014, 8: 4571–4579

    Article  CAS  Google Scholar 

  78. Shang Y, Wang C, He X, et al. Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions. Nano Energ, 2015, 12: 401–409

    Article  CAS  Google Scholar 

  79. Li P, Yang Y, Shi E, et al. Core-double-shell, carbon nanotube@ polypyrrole@MnO2 sponge as freestanding, compressible supercapacitor electrode. ACS Appl Mater Interfaces, 2014, 6: 5228–5234

    Article  CAS  Google Scholar 

  80. Dong Z, Jiang C, Cheng H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv Mater, 2012, 24: 1856–1861

    Article  CAS  Google Scholar 

  81. Cong HP, Ren XC, Wang P, et al. Wet-spinning assembly of continuous, neat and macroscopic graphene fibers. Sci Rep, 2012, 2:613

    Article  CAS  Google Scholar 

  82. Li X, Zhao T, Chen Q, et al. Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers. Phys Chem Chem Phys, 2013, 15: 17752–17757

    Article  CAS  Google Scholar 

  83. Li X, Zhao T, Wang K, et al. Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties. Langmuir, 2011, 27: 12164–12171

    Article  CAS  Google Scholar 

  84. Meng Y, Zhao Y, Hu C, et al. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater, 2013, 25: 2326–2331

    Article  CAS  Google Scholar 

  85. Li Y, Sheng K, Yuan W, et al. A high-performance flexible fibreshaped electrochemical capacitor based on electrochemically reduced graphene oxide. Chem Commun, 2013, 49: 291–293

    Article  Google Scholar 

  86. Hu Y, Cheng H, Zhao F, et al. All-in-one graphene fiber supercapacitor. Nanoscale, 2014, 6: 6448–6451

    Article  CAS  Google Scholar 

  87. McDonough JR, Choi JW, Yang Y, et al. Carbon nanofiber supercapacitors with large areal capacitances. Appl Phys Lett, 2009, 95: 243109

    Article  CAS  Google Scholar 

  88. Kim JH, Kang SH, Zhu K, et al. Ni-NiO core-shell inverse opal electrodes for supercapacitors. Chem Commun, 2011, 47: 5214–5216

    Article  CAS  Google Scholar 

  89. Chen S, Ma W, Cheng Y, et al. Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors. Nano Energ, 2015, 15: 642–653

    Article  CAS  Google Scholar 

  90. Cheng H, Dong Z, Hu C, et al. Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale, 2013, 5: 3428–3434

    Article  CAS  Google Scholar 

  91. Ma Y, Li P, Sedloff JW, et al. Conductive graphene fibers for wireshaped supercapacitors strengthened by unfunctionalized fewwalled carbon nanotubes. ACS Nano, 2015, 9: 1352–1359

    Article  CAS  Google Scholar 

  92. Chen Q, Meng Y, Hu C, et al. MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. J Power Sources, 2014, 247: 32–39

    Article  CAS  Google Scholar 

  93. Wang S, Liu N, Su J, et al. Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. ACS Nano, 2017, 11: 2066–2074

    Article  CAS  Google Scholar 

  94. Wang G, Sun X, Lu F, et al. Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors. Small, 2012, 8: 452–459

    Article  CAS  Google Scholar 

  95. Yang X, Zhu J, Qiu L, et al. Bio-inspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv Mater, 2011, 23: 2833–2838

    Article  CAS  Google Scholar 

  96. Cheng Y, Lu S, Zhang H, et al. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett, 2012, 12: 4206–4211

    Article  CAS  Google Scholar 

  97. El-Kady MF, Strong V, Dubin S, et al. Laser scribing of highperformance and flexible graphene-based electrochemical capacitors. Science, 2012, 335: 1326–1330

    Article  CAS  Google Scholar 

  98. Cong HP, Ren XC, Wang P, et al. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energ Environ Sci, 2013, 6: 1185

    Article  CAS  Google Scholar 

  99. Yoo JJ, Balakrishnan K, Huang J, et al. Ultrathin planar graphene supercapacitors. Nano Lett, 2011, 11: 1423–1427

    Article  CAS  Google Scholar 

  100. Liu F, Song S, Xue D, et al. Folded structured graphene paper for high performance electrode materials. Adv Mater, 2012, 24: 1089–1094

    Article  CAS  Google Scholar 

  101. Li N, Lv T, Yao Y, et al. Compact graphene/MoS2 composite films for highly flexible and stretchable all-solid-state supercapacitors. J Mater Chem A, 2017, 5: 3267–3273

    Article  CAS  Google Scholar 

  102. Lu X, Dou H, Gao B, et al. A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors. Electrochim Acta, 2011, 56: 5115–5121

    Article  CAS  Google Scholar 

  103. Pham DT, Lee TH, Luong DH, et al. Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors. ACS Nano, 2015, 9: 2018–2027

    Article  CAS  Google Scholar 

  104. Du P, Hu X, Yi C, et al. Self-powered electronics by integration of flexible solid-state graphene-based supercapacitors with high performance perovskite hybrid solar cells. Adv Funct Mater, 2015, 25: 2420–2427

    Article  CAS  Google Scholar 

  105. El-Kady MF, Ihns M, Li M, et al. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc Natl Acad Sci USA, 2015, 112: 4233–4238

    Article  CAS  Google Scholar 

  106. Xie B, Wang Y, Lai W, et al. Laser-processed graphene based micro-supercapacitors for ultrathin, rollable, compact and designable energy storage components. Nano Energ, 2016, 26: 276–285

    Article  CAS  Google Scholar 

  107. Xiong Z, Liao C, Han W, et al. Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications. Adv Mater, 2015, 27: 4469–4475

    Article  CAS  Google Scholar 

  108. Xie J, Sun X, Zhang N, et al. Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance. Nano Energ, 2013, 2: 65–74

    Article  CAS  Google Scholar 

  109. Wu ZS, Tan YZ, Zheng S, et al. Bottom-up fabrication of sulfurdoped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitors. J Am Chem Soc, 2017, 139: 4506–4512

    Article  CAS  Google Scholar 

  110. Ai W, Luo Z, Jiang J, et al. Nitrogen and sulfur codoped graphene: multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction. Adv Mater, 2014, 26: 6186–6192

    Article  CAS  Google Scholar 

  111. Wu ZS, Winter A, Chen L, et al. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv Mater, 2012, 24: 5130–5135

    Article  CAS  Google Scholar 

  112. Chen X, Chen X, Xu X, et al. Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials. Nanoscale, 2014, 6: 13740–13747

    Article  CAS  Google Scholar 

  113. Dong XC, Xu H, Wang XW, et al. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano, 2012, 6: 3206–3213

    Article  CAS  Google Scholar 

  114. Choi BG, Yang MH, Hong WH, et al. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano, 2012, 6: 4020–4028

    Article  CAS  Google Scholar 

  115. Xu Y, Lin Z, Huang X, et al. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano, 2013, 7: 4042–4049

    Article  CAS  Google Scholar 

  116. Shi JL, Du WC, Yin YX, et al. Hydrothermal reduction of threedimensional graphene oxide for binder-free flexible supercapacitors. J Mater Chem A, 2014, 2: 10830

    Article  CAS  Google Scholar 

  117. Shao Y, El-Kady MF, Lin CW, et al. 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv Mater, 2016, 28: 6719–6726

    Article  CAS  Google Scholar 

  118. Deville S. Freeze-casting of porous ceramics: a review of current achievements and issues. Adv Eng Mater, 2008, 10: 155–169

    Article  CAS  Google Scholar 

  119. Yu P, Zhao X, Huang Z, et al. Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for highperformance flexible and lightweight supercapacitors. J Mater Chem A, 2014, 2: 14413–14420

    Article  CAS  Google Scholar 

  120. Jurewicz K, Vix-Guterl C, Frackowiak E, et al. Capacitance properties of ordered porous carbon materials prepared by a templating procedure. J Phys Chem Solids, 2004, 65: 287–293

    Article  CAS  Google Scholar 

  121. Álvarez S, Blanco-López MC, Miranda-Ordieres AJ, et al. Electrochemical capacitor performance of mesoporous carbons obtained by templating technique. Carbon, 2005, 43: 866–870

    Article  CAS  Google Scholar 

  122. Li HQ, Luo JY, Zhou XF, et al. An ordered mesoporous carbon with short pore length and its electrochemical performances in supercapacitor applications. J Electrochem Soc, 2007, 154: A731

    Article  CAS  Google Scholar 

  123. Zhi J, Zhao W, Liu X, et al. Highly conductive ordered mesoporous carbon based electrodes decorated by 3D graphene and 1D silver nanowire for flexible supercapacitor. Adv Funct Mater, 2014, 24: 2013–2019

    Article  CAS  Google Scholar 

  124. Qin T, Wan Z, Wang Z, et al. 3D flexible O/N co-doped graphene foams for supercapacitor electrodes with high volumetric and areal capacitances. J Power Sources, 2016, 336: 455–464

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21503116), Taishan Scholars Program of Shandong Province (TSQN20161004) and the Youth 1000 Talent Program of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jintao Zhang  (张进涛).

Additional information

Kang Li obtained his bachelor degree from Nanjing University, and now is a graduate student in Shandong University under the supervision of Prof. Jintao Zhang. His research interest focuses on the carbon-based nanomaterials for flexible energy storage devices.

Jintao Zhang obtained his PhD degree from the National University of Singapore in 2012. Prior to joining Shandong University as a full professor, he has been a postdoctoral fellow at Nanyang Technological University and Case Western Reserve University. His research interests include the rational design & synthesis of advanced materials for electrochemical energy storage and conversion devices (e.g., metal-air batteries, supercapacitors and fuel cells) and electrocatalysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Zhang, J. Recent advances in flexible supercapacitors based on carbon nanotubes and graphene. Sci. China Mater. 61, 210–232 (2018). https://doi.org/10.1007/s40843-017-9154-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-017-9154-2

Keywords

Navigation