Skip to main content
Log in

Salt-assisted growth and ultrafast photocarrier dynamics of large-sized monolayer ReSe2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Owing to its anisotropic optical and electrical properties, rhenium diselenide (ReSe2) has garnered considerable attention recently as a candidate material for polarization-sensitive photodetectors. However, the direct and controllable synthesis of large-sized ReSe2 with a uniform thickness is still a great challenge. Herein, we have refined the synthesis method to obtain uniform monolayer ReSe2 flakes with a size of up to ~ 106 μm on sapphire via an ambient-pressure chemical vapor deposition technique using Na promoter from sodium chloride. Interestingly, optical pump-probe spectroscopy revealed a fast switching from saturable absorption (SA) to absorption enhancement (AE) in subpicosecond time scale, followed by a slower decay induced by exciton recombination. Furthermore, both AE and SA signals exhibited clear angular dependence with a periodicity of 180°, which reflected the dichroism in nonlinear absorption dynamics. In addition, the photocarrier dynamics including free-carrier transport and subpicosecond relaxation due to exciton formation or surface trapping was probed using time resolved terahertz spectroscopy. We believe that our study serves as a reference for atomically controlled synthesis of large-sized ReSe2 and provides useful insights on its optoelectronic properties for novel device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, M. Y.; Shi, Y. M.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science2015, 349, 524–528.

    CAS  Google Scholar 

  2. Lin, Z. Y.; Liu, Y.; Halim, U.; Ding, M. N.; Liu, Y. Y.; Wang, Y. L.; Jia, C. C.; Chen, P.; Duan, X. D.; Wang, C. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature2018, 562, 254–258.

    CAS  Google Scholar 

  3. Zeng, M. Q.; Xiao, Y.; Liu, J. X.; Yang K.; Fu, L. Exploring twodimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev.2018, 118, 6236–6296.

    CAS  Google Scholar 

  4. Yang, T. F.; Zheng, B. Y.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X. H.; Qi, Z. Y.; Liu, H. J.; Feng, Y. X. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun.2017, 8, 1906.

    Google Scholar 

  5. Wang, F.; Wang, Z. X.; Yin, L.; Cheng, R. Q.; Wang, J. J.; Wen, Y.; Shifa, T. A.; Wang, F. M.; Zhang, Y.; Zhan, X. Y. et al. 2D library beyond graphene and transition metal dichalcogenides: A focus on photodetection. Chem. Soc. Rev.2018, 47, 6296–6341.

    CAS  Google Scholar 

  6. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem.2013, 5, 263–275.

    Google Scholar 

  7. Wolverson, D.; Crampin, S.; Kazemi, A. S.; Ilie, A.; Bending, S. J. Raman spectra of monolayer, few-layer, and bulk ReSe2: An anisotropic layered semiconductor. ACS Nano2014, 8, 11154–11164.

    CAS  Google Scholar 

  8. Yang, S. X.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S. S.; Suslu, A.; Peeters, F. M.; Liu, Q.; Li, J. B. et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett.2015, 15, 1660–1666.

    CAS  Google Scholar 

  9. Lorchat, E.; Froehlicher, G.; Berciaud, S. Splitting of interlayer shear modes and photon energy dependent anisotropic Raman response in N-layer ReSe2 and ReS2. ACS Nano2016, 10, 2752–2760.

    CAS  Google Scholar 

  10. Hong, M.; Zhou, X. B.; Gao, N.; Jiang, S. L.; Xie, C. Y.; Zhao, L. Y.; Gao, Y.; Zhang, Z. P.; Yang, P. F.; Shi, Y. P. et al. Identifying the non-identical outermost selenium atoms and invariable band gaps across the grain boundary of anisotropic rhenium diselenide. ACS Nano2018, 12, 10095–10103.

    CAS  Google Scholar 

  11. Zhang, E. Z.; Wang, P.; Li, Z.; Wang, H. F.; Song, C. Y.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K. T.; Lu, S. H. et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano2016, 10, 8067–8077.

    CAS  Google Scholar 

  12. Arora, A.; Noky, J.; Drüppel, M.; Jariwala, B.; Deilmann, T.; Schneider, R.; Schmidt, R.; del Pozo-Zamudio, O.; Stiehm, T.; Bhattacharya, A. et al. Highly anisotropic in-plane excitons in atomically thin and bulklike 1T’-ReSe2. Nano Lett.2017, 17, 3202–3207.

    CAS  Google Scholar 

  13. Hafeez, M.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic Raman property and optoelectronic application. Adv. Mater.2016, 28, 8296–8301.

    CAS  Google Scholar 

  14. Cui, F. F.; Li, X. B.; Feng, Q. L.; Yin, J. B.; Zhou, L.; Liu, D. Y.; Liu, K. Q.; He, X. X.; Liang, X.; Liu, S. Z. et al. Epitaxial growth of largearea and highly crystalline anisotropic ReSe2 atomic layer. Nano Res.2017, 10, 2732–2742.

    CAS  Google Scholar 

  15. Jiang, S. L.; Zhang, Z. P.; Zhang, N.; Huan, Y. Y.; Gong, Y.; Sun, M. X.; Shi, J. P.; Xie, C. Y.; Yang, P. F.; Fang, Q. Y. et al. Application of chemical vapor-deposited monolayer ReSe2 in the electrocatalytic hydrogen evolution reaction. Nano Res.2018, 11, 1787–1797.

    CAS  Google Scholar 

  16. Jiang, S. L.; Hong, M.; Wei, W.; Zhao, L. Y.; Zhang, N.; Zhang, Z. P.; Yang, P. F.; Gao, N.; Zhou, X. B.; Xie, C. Y. et al. Direct synthesis and in situ characterization of monolayer parallelogrammic rhenium diselenide on gold foil. Commun. Chem.2018, 1, 17.

    Google Scholar 

  17. Xie, C. Y.; Jiang, S. L.; Zou, X. L.; Sun, Y. W.; Zhao, L. Y.; Hong, M.; Chen, S. L.; Huan, Y. H.; Shi, J. P.; Zhou, X. B. et al. Spaceconfined growth of monolayer ReSe2 under a graphene layer on Au foils. Nano Res.2019, 12, 149–157.

    CAS  Google Scholar 

  18. Ji, Q. Q.; Kan, M.; Zhang, Y.; Guo, Y.; Ma, D. L.; Shi, J. P.; Sun, Q.; Chen, Q.; Zhang, Y. F.; Liu, Z. F. Unravelling orientation distribution and merging behavior of monolayer MoS2 domains on sapphire. Nano Lett.2015, 15, 198–205.

    CAS  Google Scholar 

  19. Shi, Y. P.; Yang, P. F.; Jiang, S. L.; Zhang, Z. P.; Huan, Y. H.; Xie, C. Y.; Hong, M.; Shi, J. P.; Zhang, Y. F. Na-assisted fast growth of large single-crystal MoS2 on sapphire. Nanotechnology2019, 30, 034002.

    CAS  Google Scholar 

  20. Jiang, S. L.; Xie, C. Y.; Gu, Y.; Zhang, Q. H.; Wu, X. X.; Sun, Y. L.; Li, W.; Shi, Y. P.; Zhao, L. Y.; Pan, S. Y. et al. Anisotropic growth and scanning tunneling microscopy identification of ultrathin evenlayered PdSe2 ribbons. Small2019, 15, 1902789.

    CAS  Google Scholar 

  21. Kim, H.; Ovchinnikov, D.; Deiana, D.; Unuchek, D.; Kis, A. Suppressing nucleation in metal–organic chemical vapor deposition of MoS2 monolayers by alkali metal halides. Nano Lett.2017, 17, 5056–5063.

    CAS  Google Scholar 

  22. Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature2018, 556, 355–359.

    CAS  Google Scholar 

  23. He, J. Q.; Zhang, L.; He, D. W.; Wang, Y. S.; He, Z. Y.; Zhao, H. Ultrafast transient absorption measurements of photocarrier dynamics in monolayer and bulk ReSe2. Opt. Express2018, 26, 21501–21509.

    CAS  Google Scholar 

  24. Liu, F.; Zhao, X.; Yan, X. Q.; Xie, J. F.; Hui, W. W.; Xin, X. F.; Liu, Z. B.; Tian, J. G. Ultrafast nonlinear absorption and carrier relaxation in ReS2 and ReSe2 films. J. Appl. Phys.2019, 125, 173105.

    Google Scholar 

  25. Cui, Q. N.; He, J. Q.; Bellus, M. Z.; Mirzokarimov, M.; Hofmann, T.; Chiu, H. Y.; Antonik, M.; He, D. W.; Wang, Y. S.; Zhao, H. Transient absorption measurements on anisotropic monolayer ReS2. Small2015, 11, 5565–5571.

    CAS  Google Scholar 

  26. Wang, X. F.; Shinokita, K.; Lim, H. E.; Mohamed, N. B.; Miyauchi, Y.; Cuong, N. T.; Okada, S.; Matsuda, K. Direct and indirect exciton dynamics in few-layered ReS2 revealed by photoluminescence and pump-probe spectroscopy. Adv. Funct. Mater.2019, 29, 1806169.

    Google Scholar 

  27. Wen, W.; Zhu, Y. M.; Liu, X. L.; Hsu, H. P.; Fei, Z.; Chen, Y. F.; Wang, X. S.; Zhang, M.; Lin, K. H.; Huang, F. S. et al. Anisotropic spectroscopy and electrical properties of 2D ReS2(1–x)Se2x alloys with distorted 1T structure. Small2017, 13, 1603788.

    Google Scholar 

  28. Ceballos, F.; Cui, Q. N.; Bellus, M. Z.; Zhao, H. Exciton formation in monolayer transition metal dichalcogenides. Nanoscale2016, 8, 11681–11688.

    CAS  Google Scholar 

  29. Steinleitner, P.; Merkl, P.; Nagler, P.; Mornhinweg, J.; Schüller, C.; Korn, T.; Chernikov, A.; Huber, R. Direct observation of ultrafast exciton formation in a monolayer of WSe2. Nano Lett.2017, 17, 1455–1460.

    CAS  Google Scholar 

  30. Wu, K. D.; Chen, B.; Yang, S. J.; Wang, G.; Kong, W.; Cai, H.; Aoki, T.; Soignard, E.; Marie, X.; Yano, A. et al. Domain architectures and grain boundaries in chemical vapor deposited highly anisotropic ReS2 monolayer films. Nano Lett.2016, 16, 5888–5894.

    CAS  Google Scholar 

  31. Jiang, S. L.; Zhao, L. Y.; Shi, Y. P.; Xie, C. Y.; Zhang, N.; Zhang, Z. P.; Huan, Y. H.; Yang, P. F.; Hong, M.; Zhou, X. B. et al. Temperaturedependent Raman spectroscopy studies of the interface coupling effect of monolayer ReSe2 single crystals on Au foils. Nanotechnology2018, 29, 204003.

    Google Scholar 

  32. Yang, P. F.; Zou, X. L.; Zhang, Z. P.; Hong, M.; Shi, J. P.; Chen, S. L.; Shu, J. P.; Zhao, L. Y.; Jiang, S. L.; Zhou, X. B. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun.2018, 9, 979.

    Google Scholar 

  33. Suess, R. J.; Jadidi, M. M.; Murphy, T. E.; Mittendorff, M. Carrier dynamics and transient photobleaching in thin layers of black phosphorus. Appl. Phys. Lett.2015, 107, 081103.

    Google Scholar 

  34. Meng, X. H.; Zhou, Y. J.; Chen, K.; Roberts, R. H.; Wu, W. Z.; Lin, J. F.; Chen, R. T.; Xu, X. C.; Wang, Y. G. Anisotropic saturable and excited-state absorption in bulk ReS2. Adv. Opt. Mater.2018, 6, 1800137.

    Google Scholar 

  35. Ceballos, F.; Zhao, H. Ultrafast laser spectroscopy of twodimensional materials beyond graphene. Adv. Funct. Mater.2017, 27, 1604509.

    Google Scholar 

  36. Ge, S. F.; Li, C. K.; Zhang, Z. M.; Zhang, C. L.; Zhang, Y. D.; Qiu, J.; Wang, Q. S.; Liu, J. K.; Jia, S.; Feng, J. et al. Dynamical evolution of anisotropic response in black phosphorus under ultrafast photoexcitation. Nano Lett.2015, 15, 4650–4656.

    CAS  Google Scholar 

  37. Malic, E.; Winzer, T.; Knorr, A. Efficient orientational carrier relaxation in optically excited graphene. Appl. Phys. Lett.2012, 101, 213110.

    Google Scholar 

  38. Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B2012, 86, 115409.

    Google Scholar 

  39. Berkelbach, T. C.; Hybertsen, M. S.; Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B2013, 88, 045318.

    Google Scholar 

  40. Tielrooij, K. J.; Song, J. C. W.; Jensen, S. A.; Centeno, A.; Pesquera, A.; Elorza, A. Z.; Bonn, M.; Levitov, L. S.; Koppens, F. H. L. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys.2013, 9, 248–252.

    CAS  Google Scholar 

  41. Nuss, M. C.; Auston, D. H.; Capasso, F. Direct subpicosecond measurement of carrier mobility of photoexcited electrons in gallium arsenide. Phys. Rev. Lett.1987, 58, 2355–2358.

    CAS  Google Scholar 

  42. Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev.1965, 140, A1133–A1138.

    Google Scholar 

  43. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.1996, 77, 3865–3868.

    CAS  Google Scholar 

  44. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B1996, 54, 11169–11186.

    CAS  Google Scholar 

  45. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.1996, 6, 15–50.

    CAS  Google Scholar 

  46. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B1976, 13, 5188–5192.

    Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key Research and Development Program of China (Nos. 2018YFA0703700, 2017YFA0304600, and 2017YFA0205700), the National Natural Science Foundation of China (Nos. 51861135201, 21473001, 11774354, 11674329, and 51727806), Beijing Natural Science Foundation (No. 2192021), the Project funded by China Postdoctoral Science Foundation (No. 2018M640023), Chinese Academy of Science (No. YZJJ201705), Open Research Fund Program of the State Key Laboratory of Low-dimensional Quantum Physics (No. KF201907), and Start-up Funding of Peking University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaolong Jiang or Fuhai Su.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Yang, J., Shi, Y. et al. Salt-assisted growth and ultrafast photocarrier dynamics of large-sized monolayer ReSe2. Nano Res. 13, 667–675 (2020). https://doi.org/10.1007/s12274-020-2673-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2673-4

Keywords

Navigation