Skip to main content
Log in

Type-II WS2–ReSe2 heterostructure and its charge-transfer properties

  • Article
  • Heterogeneity in 2D Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We fabricated a van der Waals heterostructure of WS2–ReSe2 and studied its charge-transfer properties. Monolayers of WS2 and ReSe2 were obtained by mechanical exfoliation and chemical vapor deposition, respectively. The heterostructure sample was fabricated by transferring the WS2 monolayer on top of ReSe2 by a dry transfer process. Photoluminescence quenching was observed in the heterostructure, indicating efficient interlayer charge transfer. Transient absorption measurements show that holes can efficiently transfer from WS2 to ReSe2 on an ultrafast timescale. Meanwhile, electron transfer from ReSe2 to WS2 was also observed. The charge-transfer properties show that monolayers of ReSe2 and WS2 form a type-II band alignment, instead of type-I as predicted by theory. The type-II alignment is further confirmed by the observation of extended photocarrier lifetimes in the heterostructure. These results provide useful information for developing van der Waals heterostructure involving ReSe2 for novel electronic and optoelectronic applications and introduce ReSe2 to the family of two-dimensional materials to construct van der Waals heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  2. L. Liao, Y-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K.L. Wang, Y. Huang, and X. Duan: High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010).

    Article  CAS  Google Scholar 

  3. K.F. Mak, K.L. McGill, J. Park, and P.L. McEuen: The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  CAS  Google Scholar 

  4. J.F. Sherson, H. Krauter, R.K. Olsson, B. Julsgaard, K. Hammerer, I. Cirac, and E.S. Polzik: Quantum teleportation between light and matter. Nature 443, 557–560 (2006).

    Article  CAS  Google Scholar 

  5. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  6. M. Xu, L. Liang, M. Shi, and H. Chen: Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013).

    Article  CAS  Google Scholar 

  7. H. Yuan, X. Wang, B. Lian, H. Zhang, X. Fang, B. Shen, G. Xu, Y. Xu, S-C. Zhang, H.Y. Hwang, and Y. Cui: Generation and electric control of spin-valley-coupled circular photogalvanic current in WSe2. Nat. Nanotechnol. 9, 851–857 (2014).

    Article  CAS  Google Scholar 

  8. A.D. Yoffe: Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv. Phys. 42, 173–262 (1993).

    Article  CAS  Google Scholar 

  9. M-L. Tsai, S-H. Su, J-K. Chang, D-S. Tsai, C-H. Chen, C-I. Wu, L-J. Li, L-J. Chen, and J-H. He: Monolayer MoS2 heterojunction solar cells. ACS Nano 8, 8317–8322 (2014).

    Article  CAS  Google Scholar 

  10. J-M. Yun, Y-J. Noh, C-H. Lee, S-I. Na, S. Lee, S.M. Jo, H-I. Joh, and D-Y. Kim: Exfoliated and partially oxidized MoS2 nanosheets by one-pot reaction for efficient and stable organic solar cells. Small 10, 2319–2324 (2014).

    Article  CAS  Google Scholar 

  11. E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J.C. Bernede, J. Tedd, J. Pouzet, and J. Salardenne: MS2 (M = W, Mo) photosensitive thin films for solar cells. Sol. Energy Mater. Sol. Cells 46, 115–121 (1997).

    Article  CAS  Google Scholar 

  12. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang: Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2011).

    Article  Google Scholar 

  13. S. Cui, H. Pu, S.A. Wells, Z. Wen, S. Mao, J. Chang, M.C. Hersam, and J. Chen: Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun. 6, 8632 (2015).

    Article  CAS  Google Scholar 

  14. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis: Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013).

    Article  CAS  Google Scholar 

  15. B. Radisavljevic, M.B. Whitewich, and A. Kis: Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5, 9934–9938 (2011).

    Article  CAS  Google Scholar 

  16. B.W.H. Baugher, H.O.H. Churchill, Y. Yang, and P. Jarillo-Herrero: Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014).

    Article  CAS  Google Scholar 

  17. R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss, H-C. Cheng, H. Wu, Y. Huang, and X. Duan: Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014).

    Article  CAS  Google Scholar 

  18. A.K. Geim and I.V. Grigorieva: Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  19. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D.C.B. Alves, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, and M. Chhowalla: Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013).

    Article  CAS  Google Scholar 

  20. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D.C.B. Alves, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, and M. Chhowalla: Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8, 100–103 (2013).

    Article  CAS  Google Scholar 

  21. Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B.I. Yakobson, H. Terrones, M. Terrones, B.K. Tay, J. Lou, S.T. Pantelides, Z. Liu, W. Zhou, and P.M. Ajayan: Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    Article  CAS  Google Scholar 

  22. H.J. Lamfers, A. Meetsma, G.A. Wiegers, and J.L. de Boer: The crystal structure of some rhenium and technetium dichalcogenides. J. Alloys Compd. 241, 34–39 (1996).

    Article  CAS  Google Scholar 

  23. N.W. Alcock and A. Kjekshus: The crystal structure of ReSe2. Acta Chem. Scand. 19, 79–94 (1965).

    Article  CAS  Google Scholar 

  24. S. Yang, S. Tongay, Q. Yue, Y. Li, B. Li, and F. Lu: High-performance few-layer Mo-doped ReSe2 nanosheet photodetectors. Sci. Rep. 4, 5442 (2014).

    Article  CAS  Google Scholar 

  25. X. Wang, L. Huang, Y. Peng, N. Huo, K. Wu, C. Xia, Z. Wei, S. Tongay, and J. Li: Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions. Nano Res. 9, 507–516 (2015).

    Article  CAS  Google Scholar 

  26. E. Zhang, P. Wang, Z. Li, H. Wang, C. Song, C. Huang, Z-G. Chen, L. Yang, K. Zhang, S. Lu, W. Wang, S. Liu, H. Fang, X. Zhou, H. Yan, J. Zou, X. Wan, P. Zhou, W. Hu, and F. Xiu: Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 10, 8067–8077 (2016).

    Article  CAS  Google Scholar 

  27. S. Yang, S. Tongay, Y. Li, Q. Yue, J-B. Xia, S-S. Li, J. Li, and S-H. Wei: Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale 6, 7226–7231 (2014).

    Article  CAS  Google Scholar 

  28. C.M. Corbet, S.S. Sonde, E. Tutuc, and S.K. Banerjee: Improved contact resistance in ReSe2 thin film field-effect transistors. Appl. Phys. Lett. 108, 162104 (2016).

    Article  CAS  Google Scholar 

  29. G. Leicht, H. Berger, and F. Levy: The growth of n-and p-type ReS2 and ReSe2 single crystals and their electrical properties. Solid State Commun. 61, 531–534 (1987).

    Article  CAS  Google Scholar 

  30. Y.S. Huang, C.H. Ho, P.C. Liao, and K.K. Tiong: Temperature dependent study of the band edge excitons of ReS2 and ReSe2. J. Alloys Compd. 262, 92–96 (1997).

    Article  Google Scholar 

  31. S. Jiang, M. Hong, W. Wei, L. Zhao, N. Zhang, Z. Zhang, P. Yang, N. Gao, X. Zhou, C. Xie, J. Shi, Y. Huan, L. Tong, J. Zhao, Q. Zhang, Q. Fu, and Y. Zhang: Direct synthesis and in situ characterization of monolayer parallelogrammic rhenium diselenide on gold foil. Commun. Chem. 1, 17 (2018).

    Article  CAS  Google Scholar 

  32. F. Cui, X. Li, Q. Feng, J. Yin, L. Zhou, D. Liu, K. Liu, X. He, X. Liang, S. Liu, Z. Lei, Z. Liu, H. Peng, J. Zhang, J. Kong, and H. Xu: Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer. Nano Res. 10, 2732–2742 (2017).

    Article  CAS  Google Scholar 

  33. C.H. Ho, P.C. Liao, and Y.S. Huang: Optical absorption of ReS2 and ReSe2 single crystals. J. Appl. Phys. 81, 6380–6383 (1997).

    Article  CAS  Google Scholar 

  34. K.K. Tiong, C.H. Ho, and Y.S. Huang: The electrical transport properties of ReS2 and ReSe2 layered crystals. Solid State Commun. 111, 635–640 (1999).

    Article  CAS  Google Scholar 

  35. M.Z. Bellus, M. Li, S.D. Lane, F. Ceballos, Q. Cui, X-C. Zeng, and H. Zhao: Type-I van der Waals heterostructure formed by MoS2 and ReS2 monolayers. Nanoscale Horiz. 2, 31–36 (2017).

    Article  CAS  Google Scholar 

  36. M. Li, M.Z. Bellus, J. Dai, L. Ma, X. Li, H. Zhao, and X-C. Zeng: A type-I van der Waals heterobilayer of WSe2/MoTe2. Nanotechnology 29, 335203 (2018).

    Article  CAS  Google Scholar 

  37. X. Hong, J. Kim, S.F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang: Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).

    Article  CAS  Google Scholar 

  38. F. Ceballos, M.Z. Bellus, H-Y. Chiu, and H. Zhao: Ultrafast Charge separation and indirect exciton formation in a MoS2–MoSe2 van der Waals heterostructure. ACS Nano 8, 12717–12724 (2014).

    Article  CAS  Google Scholar 

  39. V.O. Özçelik, J.G. Azadani, C. Yang, S.J. Koester, and T. Low: Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B 94, 035125 (2016).

    Article  CAS  Google Scholar 

  40. Q. Cui, Y. Li, J. Chang, H. Zhao, and C. Xu: Temporally resolving synchronous degenerate and nondegenerate two-photon absorption in 2D semiconducting monolayers. Laser Photonics Rev. 13, 1800225 (2019).

    Article  CAS  Google Scholar 

  41. R. Wang, B.A. Ruzicka, N. Kumar, M.Z. Bellus, H-Y. Chiu, and H. Zhao: Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide. Phys. Rev. B 86, 045406 (2012).

    Article  CAS  Google Scholar 

  42. F. Ceballos and H. Zhao: Ultrafast laser spectroscopy of two-dimensional materials beyond graphene. Adv. Funct. Mater. 27, 1604509 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful for the financial support of the National Key RD Program of China (2016YFA0202302), the National Natural Science Foundation of China (61527817, 61875236, 61905010, and 61975007), and the National Science Foundation of USA (DMR-1505852).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongsheng Wang or Hui Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., He, D., Zhang, L. et al. Type-II WS2–ReSe2 heterostructure and its charge-transfer properties. Journal of Materials Research 35, 1417–1423 (2020). https://doi.org/10.1557/jmr.2019.374

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.374

Navigation