Skip to main content
Log in

Nuclear Image-Guided Approaches for Cardiac Resynchronization Therapy (CRT)

  • Nuclear Cardiology (V Dilsizian, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Cardiac resynchronization therapy (CRT) is a standard treatment for patients with heart failure. However, 30–40 % of the patients having CRT do not respond to CRT with improved clinical symptom and cardiac functions. It is important for CRT response that left ventricular (LV) lead is placed away from scar and at or near the site of the latest mechanical activation. Nuclear image-guided approaches for CRT have shown significant clinical value to assess LV myocardial viability and mechanical dyssynchrony, recommend the optimal LV lead position, and navigate the LV lead to the target coronary venous site. All these techniques, once validated and implemented, should impact the current clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 2013;127:e6-e245

  2. McAlister FA, Ezekowitz J, Dryden DM, et al. Cardiac resynchronization therapy and implantable cardiac defibrillators in left ventricular systolic dysfunction. Evid Rep Technol Assess (Full Rep). 2007;152:1–199.

    Google Scholar 

  3. Lozano I, Bocchiardo M, Achtelik M, et al. Impact of biventricular pacing on mortality in a randomized crossover study of patients with heart failure and ventricular arrhythmias. Pacing Clin Electrophysiol. 2000;23:1711–2.

    Article  PubMed  CAS  Google Scholar 

  4. Cazeau S, Leclercq C, Lavergne T, et al. Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med. 2001;344:873–80.

    Article  PubMed  CAS  Google Scholar 

  5. Auricchio A, Stellbrink C, Sack S, et al. Long-term clinical effect of hemodynamically optimized cardiac resynchronization therapy in patients with heart failure and ventricular conduction delay. J Am Coll Cardiol. 2002;39:2026–33.

    Article  PubMed  Google Scholar 

  6. Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346:1845–53.

    Article  PubMed  Google Scholar 

  7. Young JB, Abraham WT, Smith AL, et al. Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: the MIRACLE ICD Trial. JAMA. 2003;289:2685–94.

    Article  PubMed  Google Scholar 

  8. Auricchio A, Stellbrink C, Butter C, et al. Clinical efficacy of cardiac resynchronization therapy using left ventricular pacing in heart failure patients stratified by severity of ventricular conduction delay. J Am Coll Cardiol. 2003;42:2109–16.

    Article  PubMed  Google Scholar 

  9. Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350:2140–50.

    Article  PubMed  CAS  Google Scholar 

  10. Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352:1539–49.

    Article  PubMed  CAS  Google Scholar 

  11. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. Circulation 2013;127:e283-352

  12. Schuster P, Faerestrand S, Ohm O. Reverse remodeling of systolic left ventricular contraction pattern by long term cardiac resynchronization therapy: colour Doppler shows resynchronization. Heart. 2004;90:1411–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Verhaert D, Grimm RA, Puntawangkoon C. Long-term reverse remodeling with cardiac resynchronization therapy: results of extended echocardiographic follow-up. J Am Coll Cardiol. 2010;55:1788–95.

    Article  PubMed  Google Scholar 

  14. Bax JJ, Bleeker GB, Marwick TH, et al. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J Am Coll Cardiol. 2004;44:1834–40.

    Article  PubMed  Google Scholar 

  15. Yu CM, Fung JW, Zhang Q, et al. Tissue Doppler imaging is superior to strain rate imaging and postsystolic shortening on the prediction of reverse remodeling in both ischemic and nonischemic heart failure after cardiac resynchronization therapy. Circulation. 2004;110:66–73.

    Article  PubMed  Google Scholar 

  16. Yu CM, Zhang Q, Chan YS, et al. Tissue Doppler velocity is superior to displacement and strain mapping in predicting left ventricular reverse remodeling response after cardiac resynchronization therapy. Heart. 2006;92:1452–6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Donal E, de Chillou C, Magnin-Poull I, Leclercq C. Imaging in cardiac resynchronization therapy: what does the clinician need? Europace. 2008;10 Suppl 3:iii70–2.

    PubMed  Google Scholar 

  18. Hawkins NM, Petrie MC, MacDonald MR, Hogg KJ, McMurray JJ. Selecting patients for cardiac resynchronization therapy: electrical or mechanical dyssynchrony? Eur Heart J. 2006;27:1270–81.

    Article  PubMed  Google Scholar 

  19. Tanaka H, Nesser HJ, Buck T. Dyssynchrony by speckle-tracking echocardiography and response to cardiac resynchronization therapy: results of the Speckle Tracking and Resynchronization (STAR) study. Eur Heart J. 2010;31:1690–700.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Friehling M, Chen J, Saba S, et al. A prospective pilot study to evaluate the relationship between acute change in left ventricular synchrony after cardiac resynchronization therapy and patient outcome using a single-injection gated SPECT protocol. Circ Cardiovasc Imaging. 2011;4:532–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Auger D, Bleeker GB, Bertini M, et al. Effect of cardiac resynchronization therapy in patients without left intraventricular dyssynchrony. Eur Heart J. 2012;33:913–20. Article concludes that in patients without significant LV dyssynchrony, the induction of LV dyssynchrony after CRT may be related to a less favorable long-term outcome.

    Article  PubMed  PubMed Central  Google Scholar 

  22. White JA, Yee R, Yuan X, et al. Delayed enhancement magnetic resonance imaging predicts response to cardiac resynchronization therapy in patients with intraventricular dyssynchrony. J Am Coll Cardiol. 2006;48:1953–60.

    Article  PubMed  Google Scholar 

  23. Adelstein EC, Saba S. Scar burden by myocardial perfusion imaging predicts echocardiographic response to cardiac resynchronization therapy in ischemic cardiomyopathy. Am Heart J. 2007;153:105–12.

    Article  PubMed  Google Scholar 

  24. Bleeker GB, Kaandorp TA, Lamb HJ, et al. Effect of postero-lateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation. 2006;113:969–76.

    Article  PubMed  Google Scholar 

  25. Ypenburg C, van Bommel RJ, Delgado V, et al. Optimal left ventricular lead position predicts reverse remodeling and survival after cardiac resynchronization therapy. J Am Coll Cardiol. 2008;52:1402–9.

    Article  PubMed  Google Scholar 

  26. Murphy RT, Sigurdsson G, Mulamalla S, et al. Tissue synchronization imaging and optimal left ventricular pacing site in cardiac resynchronization therapy. Am J Cardiol. 2006;97:1615–21.

    Article  PubMed  Google Scholar 

  27. Khan FZ, Virdee MS, Palmer CR, et al. Targeted left ventricular lead placement to guide cardiac resynchronization therapy: the TARGET study: a randomized, controlled trial. J Am Coll Cardiol. 2012;59:1509–18.

    Article  PubMed  Google Scholar 

  28. Saba S, Marek J, Schwartzman D, et al. Echocardiography-guided left ventricular lead placement for cardiac resynchronization therapy: results of the Speckle Tracking Assisted Resynchronization Therapy for Electrode Region trial. Circ Heart Fail. 2013;6:427–34.

    Article  PubMed  CAS  Google Scholar 

  29. Singh JP, Klein HU, Huang DT, et al. Left ventricular lead position and clinical outcome in the multicenter automatic defibrillator implantation trial—cardiac resynchronization therapy (MADIT-CRT) trial. Circulation. 2011;123:1159–66.

    Article  PubMed  Google Scholar 

  30. Gorcsan III J, Marek JJ, Onishi T. The contemporary role of echocardiography in improving patient response to cardiac resynchronization therapy. Curr Cardiovasc Imaging Rep. 2012;5(6):462–72.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Boogers MJ, Chen J, van Bommel RJ, et al. Optimal left ventricular lead position assessed with phase analysis on gated myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging. 2011;38:230–8. Article concludes that patients with LV lead position placed concordant to image-guidance showed significant improvement in LV volumes and LV systolic function, whereas patients with a discordant LV lead position showed no significant improvements.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Khan FZ, Virdee MS, Fynn SP, Dutka DP. Left ventricular lead placement in cardiac resynchronization therapy: where and how? Europace. 2009;11(5):554–61.

    Article  PubMed  Google Scholar 

  33. Becker M, Hoffmann R, Schmitz F. Relation of optimal lead positioning as defined by three-dimensional echocardiography to long-term benefit of cardiac resynchronization. Am J Cardiol. 2007;100(11):1671–6.

    Article  PubMed  Google Scholar 

  34. Kronborg MB, Kim WY, Mortensen PT, Niesen JC. Non-contrast magnetic resonance imaging for guiding left ventricular lead position in cardiac resynchronization therapy. J Interv Card Electrophysiol. 2012;33(1):27–35.

    Article  PubMed  Google Scholar 

  35. Uebleis C, Ulbrich M, Tegtmeyer R, et al. Electrocardiogram-gated 18F-FDG PET/CT hybrid imaging in patients with unsatisfactory response to cardiac resynchronization therapy: initial clinical results. J Nucl Med. 2011;52:67–71.

    Article  PubMed  Google Scholar 

  36. Lehner S, Uebleis C, Schubler F, et al. The amount of viable and dyssynchronous myocardium is associated with response to cardiac resynchronization therapy: initial clinical results using multiparametric ECG-gated [18F] FDG PET. Eur J Nucl Med Mol Imaging. 2013;40:1876–83.

    Article  PubMed  CAS  Google Scholar 

  37. Friehling M, Chen J, Saba S, et al. A prospective pilot study to evaluate the relationship between acute change in left ventricular synchrony after cardiac resynchronization therapy and patient outcome using a single-injection gated SPECT protocol. Circ Cardiovasc Imaging. 2011;4:532–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gorcsan 3rd J, Abraham T, Agler DA. Echocardiography for cardiac resynchronization therapy: recommendations for performance and reporting—a report from the American Society of Echocardiography Dyssynchrony Writing Group endorsed by the Heart Rhythm Society. J Am Soc Echocardiogr. 2008;21:191–213.

    Article  PubMed  Google Scholar 

  39. Chen J, Boogers MM, Bax JJ, Soman P, Garcia EV. The use of nuclear imaging for cardiac resynchronization therapy. Curr Cardiol Rep. 2010;12:185–91.

    Article  PubMed  PubMed Central  Google Scholar 

  40. AlJaroudi W, Chen J, Jaber WA, Lloyd SG, Cerqueira MD, Markwick T. Non-echocardiographic imaging in evaluation for cardiac resynchronization therapy. Circ Cardiovasc Imaging. 2011;4:334–43.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bax JJ, Delgado V. Myocardial viability as integral part of the diagnostic and therapeutic approach to ischemic heart failure. J Nucl Cardiol. 2015;22(2):229–45.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bleeker GB, Mollema SA, Holman ER, et al. Left ventricular resynchronization is mandatory for response to cardiac resynchronization therapy: analysis in patients with echocardiographic evidence of left ventricular dyssynchrony at baseline. Circulation. 2007;116:1440–8.

    Article  PubMed  Google Scholar 

  43. Chung ES, Leon AR, Tavazzi L, et al. Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation. 2008;117:2608–16.

    Article  PubMed  Google Scholar 

  44. Jongbloed MR, Lamb HJ, Bax JJ, et al. Noninvasive visualization of the cardiac venous system using multislice computed tomography. J Am Coll Cardiol. 2005;45:749–53.

    Article  PubMed  Google Scholar 

  45. Van de Veire NR, Schuijf JD, De Sutter J, et al. Noninvasive visualization of the cardiac venous system in coronary artery disease patients using 64-slice computed tomography. J Am Coll Cardiol. 2006;48:1832–8.

    Article  PubMed  Google Scholar 

  46. Nieman K, Shapiro MD, Ferencik M, et al. Reperfused myocardial infarction: contrast-enhanced 64-section CT in comparison to MR imaging. Radiology. 2008;247:49–56.

    Article  PubMed  Google Scholar 

  47. Truong QA, Singh JP, Cannon CP, et al. Quantitative analysis of intraventricular dyssynchrony using wall thickness by multidetector computed tomography. JACC Cardiovasc Imaging. 2008;1:772–81.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Leyva F. Cardiac resynchronization therapy guided by cardiac magnetic resonance. J Cardiovasc Magn Reson. 2010;12:64.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chen J, Bax JJ, Henneman MM, Boogers MJ, Garcia EV. Is nuclear imaging a viable alternative technique to assess dyssynchrony? Europace. 2008;10 Suppl 3:iii101–5.

    PubMed  Google Scholar 

  50. Boogers MM, Chen J, Bax JJ. Myocardial perfusion single photon emission computed tomography for the assessment of mechanical dyssynchrony. Curr Opin Cardiol. 2008;23:431–9.

    Article  PubMed  Google Scholar 

  51. Boogers MM, Chen J, Bax JJ. Role of nuclear imaging in cardiac resynchronization therapy. Expert Rev Cardiovasc Ther. 2009;7:65–72.

    Article  PubMed  Google Scholar 

  52. Schwartzman D, Chang I, Michele JJ, Mirotznik MS, Foster KR. Electrical impedance properties of normal and chronically infarcted ventricular myocardium. J Interv Card Electrophysiol. 1999;3:213–24.

    Article  PubMed  CAS  Google Scholar 

  53. Reddy VY, Wrobleski D, Houghtaling C, Josephson ME, Ruskin JN. Combined epicardial and endocardial electroanatomic mapping in a porcine model of healed myocardial infarction. Circulation. 2003;107:3236–42.

    Article  PubMed  Google Scholar 

  54. Tedrow U, Maisel WH, Epstein LM, Soejima K, Stevenson WG. Feasibility of adjusting paced left ventricular activation by manipulating stimulus strength. J Am Coll Cardiol. 2004;44:2249–52.

    Article  PubMed  Google Scholar 

  55. Breithardt OA, Stellbrink C, Kramer AP, et al. Echocardiographic quantification of left ventricular asynchrony predicts an acute hemodynamic benefit of cardiac resynchronization therapy. J Am Coll Cardiol. 2002;40:536–45.

    Article  PubMed  Google Scholar 

  56. Gibbons RJ, Verani MS, Behrenbeck T, et al. Feasibility of tomographic technetium-99m-hexakis-2- methylpropyl-isonitrile imaging for the assessment of myocardial area at risk and the effect of acute treatment in myocardial infarction. Circulation. 1989;80:1277–86.

    Article  PubMed  CAS  Google Scholar 

  57. O’Connor MD, Gibbons RJ, Juny JE, O’Keefe JH, Ali A. Quantitative myocardial SPECT for infarct sizing: feasibility of a multicenter trial evaluated using a cardiac phantom. J Nucl Med. 1995;36:1130–6.

    PubMed  Google Scholar 

  58. O’Connor MK, Hammell T, Gibbons RJ. In vitro validation of a simple tomographic technique for estimation of percentage myocardium at risk using methoxyisobutyl isonitrile technetium 99m (sestamibi). Eur J Nucl Med. 1990;17:69–76.

    Article  PubMed  Google Scholar 

  59. Medrano R, Lowry RW, Young JB, et al. Assessment of myocardial viability with Tc-99m sestamibi in patients undergoing cardiac transplantation. Circulation. 1996;94:1010–7.

    Article  PubMed  CAS  Google Scholar 

  60. Maes AF, Borgers M, Flameng W, et al. Assessment of myocardial viability in chronic coronary artery disease using technetioum-99m sestamibi SPECT. J Am Coll Cardiol. 1997;29:62–8.

    Article  PubMed  CAS  Google Scholar 

  61. Dakik HA, Howell JF, Lawrie GM, Espada R, Weibaecher DG. Assessment of myocardial viability with 99m Tc-sestamibi tomography before coronary bypass graft surgery: correlation with histopathology and postoperative improvement in cardiac function. Circulation. 1997;96:2892–8.

    Article  PubMed  CAS  Google Scholar 

  62. Riedlbauchova L, Brunken R, Jaber WA, et al. The impact of myocardial viability on the clinical outcome of cardiac resynchronization therapy. J Cardiovasc Electrophysiol. 2009;20:50–7.

    Article  PubMed  Google Scholar 

  63. Bose A, Kandala J, Upadhyay GA, et al. Impact of myocardial viability and left ventricular lead location on clinical outcome in cardiac resynchronization therapy recipients with ischemic cardiomyopathy. J Cardiovasc Electrophysiol. 2014;25:507–13.

    Article  PubMed  Google Scholar 

  64. Ypenburg C, Schalij MJ, Bleeker GB, et al. Impact of viability and scar tissue on response to cardiac resynchronization therapy in ischaemic heart failure patients. Eur Heart J. 2007;28:33–41.

    Article  PubMed  Google Scholar 

  65. Ficaro EP, Lee BC, Kritzman JN, Corbett JR. Corridor4DM: the Michigan method for quantitative nuclear cardiology. J Nucl Cardiol. 2007;14:455–65.

    Article  PubMed  Google Scholar 

  66. Berman DS, Kang X, Gransar H. Quantitative assessment of myocardial perfusion abnormality on SPECT myocardial perfusion imaging is more reproducible than expert visual analysis. J Nucl Cardiol. 2009;16:45–53.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bleeker GB, Mollema SA, Holman ER, et al. Left ventricular resynchronization is mandatory for response to cardiac resynchronization therapy: analysis in patients with echocardiographic evidence of left ventricular dyssynchrony at baseline. Circulation. 2007;116:1440–8.

    Article  PubMed  Google Scholar 

  68. Chen J, Garcia EV, Folks RD, et al. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol. 2005;12:687–95.

    Article  PubMed  Google Scholar 

  69. Trimble MA, Borges-Neto S, Smallheiser S, et al. Evaluation of left ventricular mechanical dyssynchrony as determined by phase analysis of ECG-gated SPECT myocardial perfusion imaging in patients with left ventricular dysfunction and conduction disturbances. J Nucl Cardiol. 2007;14:298–307.

    Article  PubMed  Google Scholar 

  70. Trimble MA, Borges-Neto S, Honeycutt EF, et al. Evaluation of mechanical dyssynchrony and myocardial perfusion using phase analysis of gated SPECT imaging in patients with left ventricular dysfunction. J Nucl Cardiol. 2008;15:663–70.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chen J, Faber TL, Cooke CD, Garcia EV. Temporal resolution of multiharmonic phase analysis of ECG-gated myocardial perfusion SPECT studies. J Nucl Cardiol. 2008;15:383–91.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Trimble MA, Velazquez EJ, Adams GL, et al. Repeatability and reproducibility of phase analysis of gated single-photon emission computed tomography myocardial perfusion imaging used to quantify cardiac dyssynchrony. Nucl Med Commun. 2008;29:374–81.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lin X, Xu H, Zhao X, et al. Repeatability of left ventricular dyssynchrony and function parameters in serial gated myocardial perfusion SPECT studies. J Nucl Cardiol. 2010;17:811–6.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pazhenkottil AP, Buechel RR, Herzog BA, et al. Ultrafast assessment of left ventricular dyssynchrony from nuclear myocardial perfusion imaging on a new high-speed gamma camera. Eur J Nucl Med Mol Imaging. 2010;37:2086–92.

    Article  PubMed  Google Scholar 

  75. Aljaroudi W, Koneru J, Heo J, Iskandrian AE. Impact of ischemia on left ventricular dyssynchrony by phase analysis of gated single photon emission computed tomography myocardial perfusion imaging. J Nucl Cardiol. 2011;18:36–42.

    Article  PubMed  Google Scholar 

  76. AlJaroudi W, Iqbal F, Heo J, Iskandrian AE. Relation between heart rate and left ventricular mechanical dyssynchrony in patients with end-stage renal disease. Am J Cardiol. 2011;107:1235–40.

    Article  Google Scholar 

  77. Cheung A, Zhou Y, Faber TL, Garcia EV, Zhu L, Chen J. The performance of phase analysis of gated SPECT myocardial perfusion imaging in the presence of perfusion defects: a simulation study. J Nucl Cardiol. 2012;19:500–6.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Henneman MM, Chen J, Ypenburg C, et al. Phase analysis of gated myocardial perfusion SPECT compared to tissue Doppler imaging for the assessment of left ventricular dyssynchrony. J Am Coll Cardiol. 2007;49:1708–14.

    Article  PubMed  Google Scholar 

  79. Marsan NA, Henneman MM, Chen J, et al. Left ventricular dyssynchrony assessed by two 3-dimensional imaging modalities: phase analysis of gated myocardial perfusion SPECT and tri-plane tissue Doppler imaging. Eur J Nucl Med Mol Imaging. 2008;35:166–73.

    Article  PubMed  Google Scholar 

  80. Samad Z, Atchley AE, Trimble MA, et al. Prevalence and predictors of mechanical dyssynchrony as defined by phase analysis in patients with left ventricular dysfunction undergoing gated SPECT myocardial perfusion imaging. J Nucl Cardiol. 2011;18:24–30.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Henneman MM, Chen J, Dibbets-Schneider P, et al. Can LV dyssynchrony as assessed with phase analysis on gated myocardial perfusion SPECT predict response to CRT? J Nucl Med. 2007;48:1104–11.

    Article  PubMed  Google Scholar 

  82. IAEA-VISION CRT. Nuclear Cardiology in Congestive Heart Failure Value of Intraventricular Synchronism Assessment by Gated-SPECT Myocardial Perfusion Imaging in the Management of Heart Failure Patients Submitted to Cardiac Resynchronization Therapy. IAEA annual report 2013, additional annex information.

  83. Dekker AL, Phelps B, Dijkman B. Epicardial left ventricular lead placement for cardiac resynchronization therapy: optimal pace site selection with pressure-volume loops. J Thorac Cardiovasc Surg. 2004;127:1641–7.

    Article  PubMed  CAS  Google Scholar 

  84. Sommer A, Kronborg MB, Poulsen SH, et al. Empiric versus imaging guided left ventricular lead placement in cardiac resynchronization therapy (ImagingCRT): study protocol for a randomized controlled trial. Trials. 2013;14:113. doi:10.1186/1745-6215-14-113.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhou W, Hou X, Piccinelli M, et al. 3D fusion of LV venous anatomy on fluoroscopy venograms with epicardial surface on SPECT myocardial perfusion images for guiding CRT LV lead placement. JACC Cardiovasc Imaging. 2014;7:1239–48. Article describes image guided method for accurate CRT LV lead placement.

Download references

Acknowledgments

Dr. Zhou’s work was supported in part by an AHA grant (15POST22690035, PI: Weihua Zhou, PhD) and the University of Southern Mississippi New Faculty Start-up Grant. Dr. Garcia receives royalties from the sales of the Emory Cardiac Toolbox cited in this article. The terms of this arrangement have been reviewed and approved by Emory University in accordance with it is conflict of interest practice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest V. Garcia.

Ethics declarations

Conflict of Interest

Weihua Zhou declares no conflict of interest.

Ernest V. Garcia Dr. Garcia receives royalties from the sales of the Emory Cardiac Toolbox cited in this article. The terms of this arrangement have been reviewed and approved by the Emory University in accordance with it is conflict of interest practice.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Nuclear Cardiology

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(AVI 14138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Garcia, E.V. Nuclear Image-Guided Approaches for Cardiac Resynchronization Therapy (CRT). Curr Cardiol Rep 18, 7 (2016). https://doi.org/10.1007/s11886-015-0687-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-015-0687-4

Keywords

Navigation