Skip to main content
Log in

A new method to recommend left ventricular lead positions for improved CRT volumetric response and long-term prognosis

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Objectives

Using ECG-gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI), we sought to develop and validate a new method to recommend left ventricular (LV) lead positions in order to improve volumetric response and long-term prognosis after cardiac resynchronization therapy (CRT).

Methods

Seventy-nine patients received gated SPECT MPI at baseline, and echocardiography at baseline and follow-up. The volumetric response referred to a reduction of ≥ 15% in LV end-systolic volume 6 months after CRT. After excluding apical, septal, and scarred segments, there were three levels of recommended segments: (1) the optimal recommendation: the latest contracting viable segment; (2) the 2nd recommendation: the late contracting viable segments whose contraction delays were within 10° of the optimal recommendation; and (3) the 3rd recommendation: the viable segments adjacent to the optimal recommendation when there was no late contracting viable segment.

Results

After excluding 11 patients whose LV lead was placed in apical or scarred segments, 75.6% of the patients concordant to recommended LV segments (n = 41) responded to CRT while 51.9% of those with non-recommended LV lead locations (n = 27) were responders (P = .043). Response rates were 76.9%, 76.9% , and 73.3% (P = .967), respectively, when LV lead was implanted in the optimal recommendation (n = 13), the 2nd recommendation (n = 13), and the 3rd recommendation (n = 15). LV leads placed at recommended segments reduced composite events of all-cause mortality or heart failure (HF) rehospitalization compared with pacing at non-recommended segments (log-rank χ2 = 5.623, P = .018).

Conclusions

Pacing in the recommended LV lead segments identified on gated SPECT MPI was associated with improved volumetric response to CRT and long-term prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

CRT:

Cardiac resynchronization therapy

CS:

Coronary sinus

LV:

Left ventricle/ventricular

MPI:

Myocardial perfusion imaging

SPECT:

Single-photon emission computed tomography

References

  1. Birnie DH, Tang AS. The problem of non-response to cardiac resynchronization therapy. Curr Opin Cardiol 2006;21:20-6.

    Article  Google Scholar 

  2. Bleeker GB, Kaandorp TA, Lamb HJ, Boersma E, Steendijk P, de Roos A, van der Wall EE, Schalij MJ, Bax JJ. Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation 2006;113(7):969-76.

    Article  Google Scholar 

  3. Marsan NA, Westenberg JJ, Ypenburg C, van Bommel RJ, Roes S, Delgado V, Tops LF, van der Geest RJ, Boersma E, de Roos A, Schalij MJ, Bax JJ. Magnetic resonance imaging and response to cardiac resynchronization therapy: Relative merits of left ventricular dyssynchrony and scar tissue. Eur Heart J 2009;30:2360-7.

    Article  Google Scholar 

  4. Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G, Breithardt OA, Cleland J, Deharo JC, Delgado V, Elliott PM, Gorenek B, Israel CW, Leclercq C, Linde C, Mont L, Padeletti L, Sutton R, Vardas PE. 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J 2013;34:2281-329.

    Article  Google Scholar 

  5. Wong JA, Yee R, Stirrat J, Scholl D, Krahn AD, Gula LJ, Skanes AC, Leong-Sit P, Klein GJ, McCarty D, Fine N, Goela A, Islam A, Thompson T, Drangova M, White JA. Influence of pacing site characteristics on response to cardiac resynchronization therapy. Circ Cardiovasc Imaging 2013;6:542-50.

    Article  Google Scholar 

  6. Shetty AK, Duckett SG, Ginks MR, Ma Y, Sohal M, Bostock J, Kapetanakis S, Singh JP, Rhode K, Wright M, O’Neill MD, Gill JS, Carr-White G, Razavi R, Rinaldi CA. Cardiac magnetic resonance-derived anatomy, scar, and dyssynchrony fused with fluoroscopy to guide LV lead placement in cardiac resynchronization therapy: A comparison with acute haemodynamic measures and echocardiographic reverse remodelling. Eur Heart J Cardiovasc Imaging 2013;14:692-9.

    Article  Google Scholar 

  7. Khan FZ, Virdee MS, Palmer CR, Pugh PJ, O’Halloran D, Elsik M, Read PA, Begley D, Fynn SP, Dutka DP. Targeted left ventricular lead placement to guide cardiac resynchronization therapy: the TARGET Study: A randomized, controlled trial. J Am Coll Cardiol 2012;59:1509-18.

    Article  Google Scholar 

  8. Friehling M, Chen J, Saba S, Bazaz R, Schwartzman D, Adelstein EC, Garcia E, Follansbee W, Soman P. A prospective pilot study to evaluate the relationship between acute change in left ventricular synchrony after cardiac resynchronization therapy and patient outcome using a single-injection gated SPECT protocol. Circ Cardiovasc Imaging 2011;4:532-9.

    Article  Google Scholar 

  9. Boogers MJ, Chen J, van Bommel RJ, Borleffs CJ, Dibbets-Schneider P, van der Hiel B, Al Younis I, Schalij MJ, van der Wall EE, Garcia EV, Bax JJ. Optimal left ventricular lead position assessed with phase analysis on gated myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging 2011;38:230-8.

    Article  Google Scholar 

  10. Zhou W, Tao N, Hou X, Wang Y, Folks RD, Cooke DC, Moncayo VM, Garcia EV, Zou J. Development and validation of an automatic method to detect the latest contracting viable left ventricular segments to assist guide CRT therapy from gated SPECT myocardial perfusion imaging. J Nucl Cardiol 2018;25(6):1948-57.

    Article  Google Scholar 

  11. Beela AS, Ünlü S, Duchenne J, Ciarka A, Daraban AM, Kotrc M, Aarones M, Szulik M, Winter S, Penicka M, Neskovic AN, Kukulski T, Aakhus S, Willems R, Fehske W, Faber L, Stankovic I, Voigt JU. Assessment of mechanical dyssynchrony can improve the prognostic value of guideline-based patient selection for cardiac resynchronization therapy. Eur Heart J Cardiovasc Imaging 2018;0:1-9.

    Google Scholar 

  12. Chung ES, Leon AR, Tavazzi L, Sun JP, Nihoyannopoulos P, Merlino J, Abraham WT, Ghio S, Leclercq C, Bax JJ, Yu CM, Gorcsan J 3rd, St John Sutton M, De Sutter J, Murillo J. Results of the predictors of response to CRT (PROSPECT) trial. Circulation 2008;117:2608-16.

  13. St John Sutton M, Pfeffer MA, Plappert T, Rouleau JL, Moyé LA, Dagenais GR, Lamas GA, Klein M, Sussex B, Goldman S. Quantitative two-dimensional echocardiographic measurements are major predictors of adverse cardiovascular events after acute myocardial infarction. The protective effects of captopril. Circulation 1994;89:68-75.

    Article  CAS  Google Scholar 

  14. Young JB, Abraham WT, Smith AL, Leon AR, Lieberman R, Wilkoff B, Canby RC, Schroeder JS, Liem LB, Hall S, Wheelan K. Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: the MIRACLE ICD Trial. JAMA 2003;289:2685-94.

    Article  Google Scholar 

  15. White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 1986;1:44-51.

    Google Scholar 

  16. Yu CM, Bleeker GB, Fung JW, Schalij MJ, Zhang Q, van der Wall EE, Chan YS, Kong SL, Bax JJ. Left ventricular reverse remodeling but not clinical improvement predicts long-term survival after cardiac resynchronization therapy. Circulation 2005;112:1580-6.

    Article  Google Scholar 

  17. Garcia EV, Cooke CD, Van Train KF, Folks R, Peifer J, DePuey EG, Maddahi J, Alazraki N, Galt J, Ezquerra N. Technical aspects of myocardial SPECT imaging with technetium-99 m sestamibi. Am J Cardiol 1990;66:23E-31E.

    Article  CAS  Google Scholar 

  18. Zhou W, Garcia EV. Nuclear image-guided approaches for CRT. Curr Cardiol Rep 2016;18:1-11.

    Article  Google Scholar 

  19. Chen J, Garcia EV, Folks RD, Cooke CD, Faber TL, Tauxe EL, Iskandrian AE. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: Development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol 2005;12:687-95.

    Article  Google Scholar 

  20. Khan FZ, Virdee MS, Fynn SP, Dutka DP. Left ventricular lead placement in cardiac resynchronization therapy: Where and how? Europace 2009;11:554-61.

    Article  Google Scholar 

  21. Tayal B, Gorcsan J, Bax JJ, Risum N, Olsen NT, Singh JP, Abraham WT, Borer JS, Dickstein K, Gras D, Krum H, Brugada J, Robertson M, Ford I, Holzmeister J, Ruschitzka F, Sogaard P. Cardiac resynchronization therapy in patients with heart failure and narrow QRS complexes. J Am Coll Cardiol 2018;71:1325-33.

    Article  Google Scholar 

  22. Ansalone G, Giannantoni P, Ricci R, Trambaiolo P, Fedele F, Santini M. Doppler Myocardial imaging to evaluate the effectiveness of pacing sites in patients receiving biventricular pacing. J Am Coll Cardiol 2002;39:489-99.

    Article  Google Scholar 

  23. Hess PL, Shaw LK, Fudim M, Iskandrian AE, Borges-Neto S. The prognostic value of mechanical left ventricular dyssynchrony defined by phase analysis from gated single-photon emission computed tomography myocardial perfusion imaging among patients with coronary heart disease. J Nucl Cardiol 2017;24:482-90.

    Article  Google Scholar 

  24. Fudim M, Fathallah M, Shaw LK, Liu PR, James O, Samad Z, Piccini JP, Hess PL, Borges-Neto S. The prognostic value of diastolic and systolic mechanical left ventricular dyssynchrony among patients with coronary heart disease. JACC Cardiovasc Imaging 2018;18:1876-7591.

    Google Scholar 

  25. Saba S, Marek J, Schwartzman D, Jain S, Adelstein E, White P, Oyenuga OA, Onishi T, Soman P, Gorcsan J 3rd. Echocardiography-guided left ventricular lead placement for cardiac resynchronization therapy: Results of the Speckle Tracking Assisted Resynchronization Therapy for Electrode Region trial. Circ Heart Fail 2013;6:427-34.

    Article  CAS  Google Scholar 

  26. Kočková R, Sedláček K, Wichterle D, Šikula V, Tintěra J, Jansová H, Pravečková A, Langová R, Krýže L, El-Husseini W, Segeťová M, Kautzner J. Cardiac resynchronization therapy guided by cardiac magnetic resonance imaging: A prospective, single-centre randomized study (CMR-CRT). Int J Cardiol 2018;270:325-30.

    Article  Google Scholar 

  27. Sommer A, Kronborg MB, Nørgaard BL, Poulsen SH, Bouchelouche K, Böttcher M, Jensen HK, Jensen JM, Kristensen J, Gerdes C, Mortensen PT, Nielsen JC. Multimodality imaging-guided left ventricular lead placement in cardiac resynchronization therapy: a randomized controlled trial. Eur J Heart Fail 2016;18:1365-74.

    Article  Google Scholar 

  28. Dekker AL, Phelps B, Dijkman B, van der Nagel T, van der Veen FH, Geskes GG, Maessen JG. Epicardial left ventricular lead placement for cardiac resynchronization therapy: optimal pace site selection with pressure-volume loops. J Thorac Cardiovasc Surg 2004;127:1641-7.

    Article  CAS  Google Scholar 

  29. Singh JP, Klein HU, Huang DT, Reek S, Kuniss M, Quesada A, Barsheshet A, Cannom D, Goldenberg I, McNitt S, Daubert JP, Zareba W, Moss AJ. Left ventricular lead position and clinical outcome in the multicenter automatic defibrillator implantation trial-cardiac resynchronization therapy (MADIT-CRT) trial. Circulation 2011;123:1159-66.

    Article  Google Scholar 

  30. Adelstein EC, Tanaka H, Soman P, Miske G, Haberman SC, Saba SF, Gorcsan J 3rd. Impact of scar burden by single-photon emission computed tomography myocardial perfusion imaging on patient outcomes following cardiac resynchronization therapy. Eur Heart J 2011;32:93-103.

    Article  Google Scholar 

  31. White JA, Yee R, Yuan X, Krahn A, Skanes A, Parker M, Klein G, Drangova M. Delayed enhancement magnetic resonance imaging predicts response to cardiac resynchronization therapy in patients with intraventricular dyssynchrony. J Am Coll Cardiol 2006;48:1953-60.

    Article  Google Scholar 

  32. Delgado V, van Bommel RJ, Bertini M, Borleffs CJ, Marsan NA, Arnold CT, Nucifora G, van de Veire NR, Ypenburg C, Boersma E, Holman ER, Schalij MJ, Bax JJ. Relative merits of left ventricular dyssynchrony, left ventricular lead position, and myocardial scar to predict long-term survival of ischemic heart failure patients undergoing cardiac resynchronization therapy. Circulation 2011;123:70-8.

    Article  Google Scholar 

  33. Zhou W, Hou X, Piccinelli M, Tang X, Tang L, Cao K, Garcia E, Zou J, Chen J. 3D fusion of LV venous anatomy on fluoroscopy venograms with epicardial surface on SPECT myocardial perfusion images for guiding CRT LV lead placement. JACC 2014;7:1239-48.

    PubMed  Google Scholar 

  34. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2016;37:2129-200.

    Article  Google Scholar 

  35. Rickard J, Brennan DM, Martin DO, Hsich E, Tang WH, Lindsay BD, Starling RC, Wilkoff BL, Grimm RA. The impact of left ventricular size on response to cardiac resynchronization therapy. Am Heart J 2011;162:646-53.

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate Daniel McGonigle, a master student of Computer Science at USM and Zhuo He, a PhD student of Computer Science at USM for proofreading the manuscript.

Disclosure

This research was supported by grants from the Science and Technology Department of Jiangsu Province (Social Development-Clinical Frontier Technology Foundation) (Project Number: BE2016764, PI: Jiangang Zou) and the American Heart Association (Project Number: 17AIREA33700016, PI: Weihua Zhou). Ernest V. Garcia receives royalties from the sales of Emory Cardiac Toolbox. The terms of this arrangement have been reviewed and approved by Emory University in accordance with it is conflict-of-interest practice. Xinwei Zhang, Zhiyong Qian, Haipeng Tang, Wei Hua, Yangang Su, Geng Xu, Xingbin Liu, Xiaolin Xue, Jie Fan, Lin Cai, Li Zhu, Yao Wang, Xiaofeng Hou, Weihua Zhou and Jiangang Zou do not have anything to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weihua Zhou PhD or Jiangang Zou MD, PhD, FHRS.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Qian, Z., Tang, H. et al. A new method to recommend left ventricular lead positions for improved CRT volumetric response and long-term prognosis. J. Nucl. Cardiol. 28, 672–684 (2021). https://doi.org/10.1007/s12350-019-01735-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-019-01735-7

Keywords

Navigation