Skip to main content
Log in

Comparative Thermal Aging Effects on PM-HIP and Forged Inconel 690

  • Powder Metallurgy of Non-Ferrous Metals
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study compares thermal aging effects in Inconel 690 (IN690) produced by forging and powder metallurgy with hot isostatic pressing (PM-HIP). Isothermal aging is carried out over 400–800°C for up to 1000 h and then metallography and nanoindentation are utilized to relate grain microstructure with hardness and yield strength. The PM-HIP IN690 maintains a constant grain size through all aging conditions, while the forged IN690 exhibits limited grain growth at the highest aging temperature and longest aging time. The PM-HIP IN690 exhibits comparable mechanical integrity as the forged material throughout aging: hardness and yield strength are unchanged with 100 h aging, but increase after 1000 h aging at all temperatures. In both the PM-HIP and forged IN690, the Hall–Petch relationship for Ni-based superalloys predicts yield strength for 0–100 h aged specimens, but underestimates yield strength in the 1000 h aged specimens because of thermally induced precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G.H. Gessinger and M.J. Bomford, Int. Metall. Rev. 19, 51 (1974).

    Google Scholar 

  2. D. W. Gandy, J. Siefert, L. Lherbier, and D. Novotnak, in ASME 2014 Small Modul. React. Symp. (Washington, DC: 2014), SMR2014-33, pp. V001T06A001.

  3. D. Gandy, Electric Power Research Institute Report 1025491.

  4. D.P. Guillen, J.P. Wharry, and D.W. Gandy, Trans. Am. Nucl. Soc. 116, 392 (2017).

    Google Scholar 

  5. T. Allen, J. Busby, M. Meyer, and D. Petti, Mater. Today 13, 15 (2010).

    Article  Google Scholar 

  6. S.J. Zinkle and G.S. Was, Acta Mater. 61, 735 (2013).

    Article  Google Scholar 

  7. T.M. Angeliu and G.S. Was, Metall. Trans. A 21A, 2097 (1990).

    Article  Google Scholar 

  8. T.-H. Lee, Y.-J. Lee, S.-H. Joo, H.H. Nersisyan, K.-T. Park, and J.-H. Lee, Metall. Mater. Trans. A 46, 4020 (2015).

    Article  Google Scholar 

  9. B. Tang, L. Jiang, R. Hu, and Q. Li, Mater. Charact. 78, 144 (2013).

    Article  Google Scholar 

  10. H. Li, S. Xia, B. Zhou, and J. Peng, Mater. Charact. 81, 1 (2013).

    Article  Google Scholar 

  11. M. Casales, M.A. Espinoza-Medina, A. Martinez-Villafane, V.M. Salinas-Bravo, and J.G. Gonzalez-Rodriguez, Corrosion 56, 1133 (2000).

    Article  Google Scholar 

  12. R.S. Dutta and R. Tewari, Br. Corros. J. 34, 201 (1999).

    Article  Google Scholar 

  13. Y.S. Lim, D.J. Kim, S.S. Hwang, H.P. Kim, and S.W. Kim, Mater. Charact. 96, 28 (2014).

    Article  Google Scholar 

  14. H.B. Park, Y.H. Kim, B.W. Lee, and K.S. Rheem, J. Nucl. Mater. 231, 204 (1996).

    Article  Google Scholar 

  15. J.-I. Jang, S. Shim, S.-I. Komazaki, and T. Honda, J. Mater. Res. 22, 175 (2007).

    Article  Google Scholar 

  16. S.A. Sajjadi, S. Nategh, and R.I.L. Guthrie, Mater. Sci. Eng. 325, 484 (2002).

    Article  Google Scholar 

  17. W.C. Oliver and G.M. Pharr, J. Mater. Res. 19, 3 (2004).

    Article  Google Scholar 

  18. W.D. Nix and H.J. Gao, J. Mech. Phys. Solids 46, 411 (1998).

    Article  Google Scholar 

  19. P. Hosemann, E. Stergar, L. Peng, Y. Dai, S.A. Maloy, M.A. Pouchon, K. Shiba, D. Hamaguchi, and H. Leitner, J. Nucl. Mater. 417, 274 (2011).

    Article  Google Scholar 

  20. G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin: Springer, 2007).

    Google Scholar 

  21. A.C. Fischer-Cripps, Nanoindentation (New York: Springer, 2011).

    Book  Google Scholar 

  22. C.K. Dolph, D.J. da Silva, M.J. Swenson, and J.P. Wharry, J. Nucl. Mater. 481, 33 (2016).

    Article  Google Scholar 

  23. D.J. Abson and J.J. Jonas, Met. Sci. J. 4, 24 (1970).

    Article  Google Scholar 

  24. T. A. Parthasarathy, S. I. Rao, and D. M. Dimiduk, in Superalloys 2004, eds. K. Green, T. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston (The Minerals, Metals, & Materials Society, 2004), pp. 887–896.

  25. M. Jouiad, F. Pettinari, N. Clément, and A. Coujou, Philos. Mag. A 79, 2591 (1999).

    Article  Google Scholar 

  26. J.K. Hong, I.S. Kim, C.Y. Park, and E.S. Kim, Wear 259, 349 (2005).

    Article  Google Scholar 

  27. J. Blaizot, T. Chaise, D. Nélias, M. Perez, S. Cazottes, and P. Chaudet, Int. J. Plast 80, 139 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the US Department of Energy Office of Nuclear Energy, Nuclear Science User Facilities Project 15-8242. The authors also acknowledge in-kind support from the Electric Power Research Institute. AB and EB acknowledge support from the Purdue Summer Undergraduate Research Fellowship (SURF) and Network for Computational Nanotechnology (NCN) Programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janelle P. Wharry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bullens, A.L., Bautista, E., Jaye, E.H. et al. Comparative Thermal Aging Effects on PM-HIP and Forged Inconel 690. JOM 70, 2218–2223 (2018). https://doi.org/10.1007/s11837-018-2818-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2818-z

Navigation