Skip to main content
Log in

Thermal Aging and the Hall–Petch Relationship of PM-HIP and Wrought Alloy 625

  • Advanced Manufacturing for Nuclear Energy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Powder metallurgy with hot isostatic pressing (PM-HIP) is an advanced alloy processing method capable of fabricating complex nuclear reactor components near-net shape, reducing the need for machining and welding. For heat exchangers and steam generators, thermal aging of PM-HIP materials must be comparable or superior to conventional castings or forgings. This study compares thermal aging effects in PM-HIP and wrought alloy 625. Isothermal aging is carried out over 400–800°C for 100 h. Both PM-HIP and wrought materials have equiaxed grains with a uniform orientation distribution. The PM-HIP material has finer grains than the wrought material at all aging conditions. Both PM-HIP and wrought materials have a comparable hardness and modulus measured by nanoindentation. Hardness remains unchanged with aging except the wrought material aged at 800°C, which exhibits softening. Overall, PM-HIP alloy 625 responds comparably to wrought alloy 625 and is superior at 800°C. Results are used to calculate a Hall–Petch coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.H. Gessinger and M.J. Bomford, Int. Metall. Rev. 19, 51 (1974).

    Article  Google Scholar 

  2. D.W. Gandy, J. Siefert, L. Lherbier, and D. Novotnak, in ASME 2014 Small Modul. React. Symp. Washingt. DC, SMR2014-33, V001T06A001 (2014).

  3. D.P. Guillen, D.C. Pagan, E.M. Getto, and J.P. Wharry, Mater. Sci. Eng. A 738, 380 (2018).

    Article  Google Scholar 

  4. D. Gandy, Electric Power Research Institute (EPRI) Report 1025491.

  5. T.R. Allen, J.T. Busby, M. Meyer, and D. Petti, Mater. Today 13, 15 (2010).

    Article  Google Scholar 

  6. S.J. Zinkle and G.S. Was, Acta Mater. 61, 735 (2013).

    Article  Google Scholar 

  7. NUREG-1144, Washington, DC (1991).

  8. NUREG/CR-6490, Washington, DC (1996).

  9. V. Shankar, K. Bhanu Sankara Rao, and S. Mannan, J. Nucl. Mater. 288, 222 (2001).

    Article  Google Scholar 

  10. M.A. Shaikh, M. Ahmad, K.A. Shoaib, J.I. Akhter, and M. Iqbal, Mater. Sci. Technol. 16, 129 (2000).

    Article  Google Scholar 

  11. F. Cortial, J.M. Corrieu, and C. Vernot-Loier, Metall. Mater. Trans. A 26, 1273 (1995).

    Article  Google Scholar 

  12. R. Lackner, G. Mori, R. Egger, F. Winter, M. Albu, and W. Grogger, BHM Berg- Huettenmaenn. Monatsh. 159, 12 (2014).

    Article  Google Scholar 

  13. Y. Tian, B. Ouyang, A. Gontcharov, R. Gauvin, P. Lowden, and M. Brochu, Mater. Sci. Eng. A 684, 275 (2017).

    Article  Google Scholar 

  14. K.H. Chung, R. Rodriguez, E.J. Lavernia, and J. Lee, Metall. Mater. Trans. A 33, 125 (2002).

    Article  Google Scholar 

  15. S. Malej, J. Medved, B.S. Batic, F. Tehovnik, and M. Godec, Metabk 56, 319 (2017).

    Google Scholar 

  16. V.H.C. de Albuquerque, C.C. Silva, P.G. Normando, E.P. Moura, and J.M.R.S. Tavares, Mater. Des. 36, 337 (2012).

    Article  Google Scholar 

  17. H.K. Kohl and K. Peng, J. Nucl. Mater. 101, 243 (1981).

    Article  Google Scholar 

  18. G.P. Dinda, A.K. Dasgupta, and J. Mazumder, Mater. Sci. Eng. A 509, 98 (2009).

    Article  Google Scholar 

  19. L.M. Suave, J. Cormier, P. Villechaise, A. Soula, Z. Hervier, D. Bertheau, and J. Laigo, Metall. Mater. Trans. A 45, 2963 (2014).

    Article  Google Scholar 

  20. C. Thomas and P. Tait, Int. J. Press. Vessel. Pip. 59, 41 (1994).

    Article  Google Scholar 

  21. N.D. Evans, P.J. Maziasz, J.P. Shingledecker, and Y. Yamamoto, Mater. Sci. Eng. A 498, 412 (2008).

    Article  Google Scholar 

  22. M.D. Mathew, K.L. Murty, K.B.S. Rao, and S.L. Mannan, Mater. Sci. Eng. A 264, 159 (1999).

    Article  Google Scholar 

  23. M.D. Mathew, P. Parameswaran, and K. Bhanu Sankara Rao, Mater. Charact. 59, 508 (2008).

    Article  Google Scholar 

  24. A.V. Shulga, in Euro PM 2012Hot Isostatic Pressing, vol. 3 (2012), pp. 1–6.

  25. A.L. Bullens, E. Bautista, E.H. Jaye, N.L. Vas, N.B. Cain, K. Mao, D.W. Gandy, and J.P. Wharry, JOM 70, 2218 (2018).

    Article  Google Scholar 

  26. W.C. Oliver and G.M. Pharr, J. Mater. Res. 19, 3 (2004).

    Article  Google Scholar 

  27. T. Volz, R. Schwaiger, J. Wang, S.M. Weygand, and I.O.P. Conf, Ser. Mater. Sci. Eng. 257, 012013 (2017).

    Google Scholar 

  28. W.D. Nix and H.J. Gao, J. Mech. Phys. Solids 46, 411 (1998).

    Article  Google Scholar 

  29. Y. Huang, F. Zhang, K.C. Hwang, W.D. Nix, G.M. Pharr, and G. Feng, J. Mech. Phys. Solids 54, 1668 (2006).

    Article  Google Scholar 

  30. C.K. Dolph, D.J. da Silva, M.J. Swenson, and J.P. Wharry, J. Nucl. Mater. 481, 33 (2016).

    Article  Google Scholar 

  31. P. Hosemann, E. Stergar, L. Peng, Y. Dai, S.A. Maloy, M.A. Pouchon, K. Shiba, D. Hamaguchi, and H. Leitner, J. Nucl. Mater. 417, 274 (2011).

    Article  Google Scholar 

  32. B. Yang and H. Vehoff, Mater. Sci. Eng. A 400–401, 467 (2005).

    Article  Google Scholar 

  33. G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, 2nd ed. (New York, NY: Springer, 2017).

    Book  Google Scholar 

  34. A.C. Fischer-Cripps, Nanoindentation (New York, NY: Springer, 2011).

    Book  Google Scholar 

  35. ASME Boiler & Pressure Vessel Code, Section III—Rules for Construction of Nuclear Facility Components, Division 1—Metallic Components, Subsection NB Class 1 Components; 2017.

  36. D.J. Abson and J.J. Jonas, Met. Sci. J. 4, 24 (1970).

    Article  Google Scholar 

  37. K. Mao, H. Wang, Y. Wu, V. Tomar, and J.P. Wharry, Mater. Sci. Eng. A 721, 234 (2018).

    Article  Google Scholar 

  38. M. Jouiad, F. Pettinari, N. Clément, and A. Coujou, Philos. Mag. A 79, 2591 (1999).

    Article  Google Scholar 

  39. M.-Y. Seok, I.-C. Choi, J. Moon, S. Kim, U. Ramamurty, and J. Jang, Scr. Mater. 87, 49 (2014).

    Article  Google Scholar 

  40. R.C. Cammarata, T.E. Schlesinger, C. Kim, S.B. Qadri, and A.S. Edelstein, Appl. Phys. Lett. 56, 1862 (1990).

    Article  Google Scholar 

  41. J.A. Ruud, T.R. Jervis, and F. Spaepen, J. Appl. Phys. 75, 4969 (1994).

    Article  Google Scholar 

  42. D. Wu, J. Zhang, J.C. Huang, H. Bei, and T.G. Nieh, Scr. Mater. 68, 118 (2013).

    Article  Google Scholar 

  43. T. Miura, K. Fujii, K. Fukuya, and K. Takashima, J. Nucl. Mater. 417, 984 (2011).

    Article  Google Scholar 

  44. T. Chen, L. Tan, Z. Lu, and H. Xu, Acta Mater. 138, 83 (2017).

    Article  Google Scholar 

  45. K.S. Mao, C. Sun, Y. Huang, C.-H. Shiau, F.A. Garner, P.D. Freyer, and J.P. Wharry, Materialia 5, 100208 (2019).

    Article  Google Scholar 

  46. A. Godon, J. Creus, S. Cohendoz, E. Conforto, X. Feaugas, P. Girault, and C. Savall, Scr. Mater. 62, 403 (2010).

    Article  Google Scholar 

  47. N. Hansen, Metall. Trans. A 16, 2167 (1985).

    Article  Google Scholar 

  48. N. Hansen, Mater. Sci. Eng. A 409, 39 (2005).

    Article  Google Scholar 

  49. N. Hansen, Scr. Mater. 51, 801 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-051D14517 as part of Nuclear Science User Facilities experiment 15-8242. We also acknowledge in-kind support from the Electric Power Research Institute. AB and EB acknowledge support from the Purdue Summer Undergraduate Research Fellowship (SURF) and Network for Computational Nanotechnology (NCN) Programs. We thank M. Spencer for assistance in sample preparation and B. Baker and the Center for Materials Characterization at the United States Naval Academy for assistance and time on the SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janelle P. Wharry.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Getto, E., Tobie, B., Bautista, E. et al. Thermal Aging and the Hall–Petch Relationship of PM-HIP and Wrought Alloy 625. JOM 71, 2837–2845 (2019). https://doi.org/10.1007/s11837-019-03532-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03532-6

Navigation