Skip to main content
Log in

Probing the kinetics in supramolecular chemistry and molecular assembly by microfluidic-NMR spectroscopy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 12 March 2019

This article has been updated

Abstract

Microfluidic-NMR spectroscopy has been extended to study the kinetics in supramolecular chemistry and molecular assembly. Kinetics of a multicomponent host-guest supramolecular system containing viologen derivatives, β-cyclodextrins and cucurbit [7]urils are studied by a PMMA based microfluidic chip combined with a dedicated transmission line probe for NMR detection. By combining microfluidic technology with NMR spectroscopy, the amount of material required for a full kinetic study could be minimized. This is crucial in supramolecular chemistry, which often involves highly sophisticated and synthetically costly building blocks. The small size of the microfluidic structure is crucial in bringing the time scale for kinetic monitoring down to seconds. At the same time, the transmission line NMR probe provides sufficient sensitivity to work at low (2 mM) concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 12 March 2019

    In the above referenced publication [1], there is a mistake in the Supporting Information. The corrected caption of Figure S2 is:

References

  1. Zhang XM, Zeng QD, Wang C. Sci China Chem, 2014, 57: 13–25

    Article  CAS  Google Scholar 

  2. Lehn JM. Angew Chem Int Ed, 2013, 52: 2836–2850

    Article  CAS  Google Scholar 

  3. Elemans JAAW, Rowan AE, Nolte RJM. J Mater Chem, 2003, 13: 2661–2670

    Article  CAS  Google Scholar 

  4. Ludlow RF, Otto S. Chem Soc Rev, 2008, 37: 101–108

    Article  CAS  PubMed  Google Scholar 

  5. Korevaar PA, George SJ, Markvoort AJ, Smulders MMJ, Hilbers PAJ, Schenning APHJ, De Greef TFA, Meijer EW. Nature, 2012, 481: 492–496

    Article  CAS  PubMed  Google Scholar 

  6. Bohne C. Chem Soc Rev, 2014, 43: 4037–4050

    Article  CAS  PubMed  Google Scholar 

  7. Enright GD, Udachin KA, Ripmeester JA. CrystEngComm, 2010, 12: 1450–1453

    Article  CAS  Google Scholar 

  8. Clore GM, Gronenborn AM. Proc Natl Acad Sci USA, 1998, 95: 5891–5898

    Article  CAS  PubMed  Google Scholar 

  9. Schneider HJ, Hacket F, Rüdiger V, Ikeda H. Chem Rev, 1998, 98: 1755–1786

    Article  CAS  PubMed  Google Scholar 

  10. Jiang W, Nowosinski K, Löw NL, Dzyuba EV, Klautzsch F, Schäfer A, Huuskonen J, Rissanen K, Schalley CA. J Am Chem Soc, 2012, 134: 1860–1868

    Article  CAS  PubMed  Google Scholar 

  11. Wojciechowski JP, Martin AD, Thordarson P. J Am Chem Soc, 2018, 140: 2869–2874

    Article  CAS  PubMed  Google Scholar 

  12. Yang J, Wu K, Konák C, Kopecek J. Biomacromolecules, 2008, 9: 510–517

    Article  CAS  PubMed  Google Scholar 

  13. Cai W, Wang GT, Du P, Wang RX, Jiang XK, Li ZT. J Am Chem Soc, 2008, 130: 13450–13459

    Article  CAS  PubMed  Google Scholar 

  14. Grzesiek S, Sass HJ. Curr Opin Struct Biol, 2009, 19: 585–595

    Article  CAS  PubMed  Google Scholar 

  15. Wu N, Peck TL, Webb AG, Magin RL, Sweedler JV. J Am Chem Soc, 1994, 116: 7929–7930

    Article  CAS  Google Scholar 

  16. Subramanian R, Kelley WP, Floyd PD, Tan ZJ, Webb AG, Sweedler JV. Anal Chem, 1999, 71: 5335–5339

    Article  CAS  PubMed  Google Scholar 

  17. Pusecker K, Schewitz J, Gfrörer P, Tseng LH, Albert K, Bayer E. Anal Chem, 1998, 70: 3280–3285

    Article  CAS  PubMed  Google Scholar 

  18. Ciobanu L, Jayawickrama DA, Zhang X, Webb AG, Sweedler JV. Angew Chem Int Ed, 2003, 42: 4669–4672

    Article  CAS  Google Scholar 

  19. Badilita V, Meier RC, Spengler N, Wallrabe U, Utz M, Korvink JG. Soft Matter, 2012, 8: 10583–10597

    Article  CAS  Google Scholar 

  20. Bart J, Kolkman AJ, Oosthoek-de Vries AJ, Koch K, Nieuwland PJ, Janssen HJWG, van Bentum JPJM, Ampt KAM, Rutjes FPJT, Wijmenga SS, Gardeniers HJGE, Kentgens APM. J Am Chem Soc, 2009, 131: 5014–5015

    Article  CAS  PubMed  Google Scholar 

  21. Wensink H, Benito-Lopez F, Hermes DC, Verboom W, Gardeniers HJGE, Reinhoudt DN, van den Berg A. Lab Chip, 2005, 5: 280–284

    Article  CAS  PubMed  Google Scholar 

  22. Gomez MV, Rodriguez AM, de la Hoz A, Jimenez-Marquez F, Fratila RM, Barneveld PA, Velders AH. Anal Chem, 2015, 87: 10547–10555

    Article  CAS  PubMed  Google Scholar 

  23. Christianson MD, Tan EHP, Landis CR. J Am Chem Soc, 2010, 132: 11461–11463

    Article  CAS  PubMed  Google Scholar 

  24. Finch G, Yilmaz A, Utz M. J Magn Reson, 2016, 262: 73–80

    Article  CAS  PubMed  Google Scholar 

  25. Yilmaz A, Utz M. Lab Chip, 2016, 16: 2079–2085

    Article  CAS  PubMed  Google Scholar 

  26. Nieto-Ortega B, Villalva J, Vera-Hidalgo M, Ruiz-González L, Burzurí E, Pérez EM. Angew Chem Int Ed, 2017, 56: 12240–12244

    Article  CAS  Google Scholar 

  27. Jiang L, Peng Y, Yan Y, Huang J. Soft Matter, 2011, 7: 1726–1731

    Article  CAS  Google Scholar 

  28. Han Y, Gao C, He XH. Sci China Chem, 2012, 55: 604–611

    Article  CAS  Google Scholar 

  29. Rekharsky MV, Inoue Y. Chem Rev, 1998, 98: 1875–1918

    Article  CAS  PubMed  Google Scholar 

  30. Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA. Chem Rev, 2015, 115: 12320–12406

    Article  CAS  PubMed  Google Scholar 

  31. Takegoshi K, Tsuda S, Hikichi K. J Magn Reson (1969), 1990, 89: 399–405

    Article  CAS  Google Scholar 

  32. Bart J, Janssen JWG, van Bentum PJM, Kentgens APM, Gardeniers JGE. J Magn Reson, 2009, 201: 175–185

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2015CB856500), the National Natural Science Foundation of China (21722304, 21573181, 91227111, 91427304) and the Fundamental Research Funds for the Central Universities of China (20720160050). Development and Construction of the NMR probe was supported in part by a Marie Curie Career Integration Grant to MU by the European Commission (Project uf-NMR). We thank Billy Hale for the help on the bonding protocol of microfluidic chip, Chen Jia-He for the help on NMR data acquirement, Chai Hong-Xin and Li Ming-Shuang for the ITC data acquirement, Lin Dong-Hai and Yao Hong-Wei for discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyu Cao, Marcel Utz or Zhongqun Tian.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, H., Sun, Y., Wang, X. et al. Probing the kinetics in supramolecular chemistry and molecular assembly by microfluidic-NMR spectroscopy. Sci. China Chem. 61, 1460–1464 (2018). https://doi.org/10.1007/s11426-018-9293-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9293-3

Keywords

Navigation