Skip to main content
Log in

Host-guest supramolecular chemistry at solid-liquid interface: An important strategy for preparing two-dimensional functional nanostructures

  • Feature Articles
  • Progress of Projects Supported by NSFC Special Issue Chemical Methodology
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Supramolecular self-assembly, an important strategy in nanotechnology, has been widely studied in the past two decades. In this review, we have introduced the recent progress on construction of two-dimensional (2D) nanostructures by host-guest supramolecular chemistry at solid-liquid interface, and the interactions between the host assembly and the guest molecules are the major concerns. At first, the hydrogen bonds connected hybrid structures are discussed. And then we have paid a close attention on the surface-confined condensation reactions that has flourished recently in direct preparing novel nanostructures with increasing structural complexity. In the end, the cavity confinement of the 2D supramolecular host-guest architectures has been studied. On the basis of the above-mentioned interactions, a group of functional hybrid structures have been prepared. Notably, scanning tunneling microscopy (STM), a unique technique to probe the surface morphology and information at the single molecule level, has been used to probe the formed structures on highly oriented pyrolytic graphite (HOPG) surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shimomura M, Sawadaishi T. Bottom-up strategy of materials fabrication: A new trend in nanotechnology of soft materials. Curr Opin Colloid Interface Sci, 2001, 6: 11–16

    CAS  Google Scholar 

  2. Geissler M, Xia YN. Patterning: Principles and some new develop ments. Adv Mater, 2004, 16: 1249–1269

    CAS  Google Scholar 

  3. Philp D, Stoddart JF. Self-assembly in natural and unnatural systems. Angew Chem Int Ed, 1996, 35: 1155–1196

    CAS  Google Scholar 

  4. Barth JV, Costantini G, Kern K. Engineering atomic and molecular nanostructures at surfaces. Nature, 2005, 437: 671–679

    CAS  Google Scholar 

  5. Blake AJ, Champness NR, Hubberstey P, Li WS, Withersby MA, Schroder M. Inorganic crystal engineering using self-assembly of tailored building-blocks. Coord Chem Rev, 1999, 183: 117–138

    CAS  Google Scholar 

  6. Leininger S, Olenyuk B, Stang PJ. Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem Rev, 2000, 100: 853–908

    CAS  Google Scholar 

  7. Lehn JM. Perspectives in supramolecular chemistry—From molecular recognition towards molecular information processing and self-organization. Angew Chem Int Ed, 1990, 29: 1304–1319

    Google Scholar 

  8. Jin X, Yang S, Li Z, Liu KS, Jiang L. Bio-inspired special wetting surfaces via self-assembly. Sci China Chem, 2012, 55: 2327–2333

    CAS  Google Scholar 

  9. Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 1997, 277: 1232–1237

    CAS  Google Scholar 

  10. Zhang SG. Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnol, 2003, 21: 1171–1178

    CAS  Google Scholar 

  11. Xiong YS, Tang ZY. Role of self-assembly in construction of inorganic nanostructural materials. Sci China Chem, 2012, 55: 2272–2282

    CAS  Google Scholar 

  12. Rosler A, Vandermeulen GWM, Klok HA. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Delivery Rev, 2001, 53: 95–108

    CAS  Google Scholar 

  13. Fendler JH. Self-assembled nanostructured materials. Chem Mater, 1996, 8: 1616–1624

    CAS  Google Scholar 

  14. Smith RK, Lewis PA, Weiss PS. Patterning self-assembled monolayers. Prog Surf Sci, 2004, 75: 1–68

    CAS  Google Scholar 

  15. Hu S, Wang X. From cluster assembly to ultrathin nanocrystals and complex nanostructures. Sci China Chem, 2012, 55: 2257–2271

    CAS  Google Scholar 

  16. Yu Z, Lu K, Wei ZX. Self-assembly of conjugated polymers for anisotropic nanostructures. Sci China Chem, 2012, 55: 2283–2291

    CAS  Google Scholar 

  17. Cao AM, Hu JS, Wan LJ. Morphology control and shape evolution in 3D hierarchical superstructures. Sci China Chem, 2012, 55: 2249–2256

    CAS  Google Scholar 

  18. Bishop KJM, Wilmer CE, Soh S, Grzybowski BA. Nanoscale forces and their uses in self-assembly. Small, 2009, 5: 1600–1630

    CAS  Google Scholar 

  19. Prins LJ, Reinhoudt DN, Timmerman P. Noncovalent synthesis using hydrogen bonding. Angew Chem Int Ed, 2001, 40: 2382–2486

    CAS  Google Scholar 

  20. Wurthner F, You CC, Saha-Moller CR. Metallosupramolecular squares: From structure to function. Chem Soc Rev, 2004, 33: 133–146

    Google Scholar 

  21. Zhang DW, Zhao X, Hou JL, Li ZT. Aromatic amide foldamers: Structures, properties, and functions. Chem Rev, 2012, 112: 5271–5316

    CAS  Google Scholar 

  22. Claessens CG, Stoddart JF. π-π Interactions in self-assembly. J Phys Org Chem, 1997, 10: 254–272

    CAS  Google Scholar 

  23. Gale PA, Quesada R, Anion coordination and anion-templated assembly: Highlights from 2002 to 2004. Coord Chem Rev, 2006, 250: 3219–3244

    CAS  Google Scholar 

  24. Faul CFJ, Antonietti M. Metal nuclearity modulated four-, six-, and eight-connected entangled frameworks based on mono-, bi-, and trimetallic cores as nodes. Chem Eur J, 2006, 12: 2680–2691

    Google Scholar 

  25. Mali KS, Adisoejoso J, Ghijsens E, de Cat I, de Feyter S. Exploring the complexity of supramolecular interactions for patterning at the liquid-solid interface. Acc Chem Res, 2012, 45: 1309–1320

    CAS  Google Scholar 

  26. Ciesielski A, Samorì P. Supramolecular assembly/reassembly processes: Molecular motors and dynamers operating at surfaces. Nanoscale, 2011, 3: 1397–1410

    CAS  Google Scholar 

  27. Xu L, Miao XR, Zhao B, Deng WL. Hydrogen-bonding-induced polymorphous phase transitions in 2D organic nanostructures. Chem-Asian J, 2013, 8, 5: 926–933

    Google Scholar 

  28. Xu LR, Yang L, Cao LL, Li T, Chen SS, Zhao DH, Lei SB, Ma J. Effect of bulky substituents on the self-assembly and mixing behavior of arylene ethynylene macrocycles at the solid/liquid interface. Phys Chem Chem Phys, 2013, 15: 11748–11757

    CAS  Google Scholar 

  29. Mamdouh W, Uji-i H, Ladislaw JS, Dulcey AE, Percec V, de Schryver FC, de Feyter S. Solvent controlled self-assembly at the liquid/solid interface revealed by STM. J Am Chem Soc, 2006, 128: 317–325

    CAS  Google Scholar 

  30. Yang YL, Wang C. Solvent effects on two-dimensional molecular self-assemblies investigated by using scanning tunneling microscopy. Curr Opin Colloid Interface Sci, 2009, 14: 135–147

    CAS  Google Scholar 

  31. Shen YT, Zhu NB, Zhang XM, Deng K, Feng W, Yan QF, Lei SB, Zhao DH, Zeng QD, Wang C. A foldamer at the liquid/graphite interface: The effect of interfacial interactions, solvent, concentration and temperature. Chem Eur J, 2011, 17: 7061–7068

    CAS  Google Scholar 

  32. Zhang XM, Xu HJ, Shen YT, Wang YB, Shen Z, Zeng QD, Wang C. Solvent dependent supramolecular self-assembly and surface reversal of a modified porphyrin. Phys Chem Chem Phys, 2013, 15: 12510–12515

    CAS  Google Scholar 

  33. Balandina T, Tahara K, Sandig N, Blunt MO, Adisoejoso J, Lei S, Zerbetto F, Tobe Y, de Feyter S. Role of substrate in directing the self-assembly of multicomponent supramolecular networks at the liquid-solid interface. ACS Nano, 2012, 6: 8381–8389

    CAS  Google Scholar 

  34. Zhang XM, Zeng QD, Wang C. Reversible phase transformation at solid-liquid interface: STM reveals. Chem Asian J, 2013: doi: 10.1002/asia.201300605

    Google Scholar 

  35. Gutzler R, Sirtl T, Dienstmaier JF, Mahata K, Heckl WM, Schmittel M, Lackinger M. Reversible phase transitions in self-assembled monolayers at the liquid-solid interface: Temperature-controlled opening and closing of nanopores. J Am Chem Soc, 2010, 132: 5084–5090

    CAS  Google Scholar 

  36. Lei SB, Deng K, Yang YL, Zeng QD, Wang C, Jiang JZ. Assembling of asymmetric tris(phthalocyaninato) lutetium triple-decker complex at the solid/liquid interface: Recognition of isomerization and electric driven molecular switches. Nano Lett, 2008, 8: 1836–1843

    CAS  Google Scholar 

  37. Ciesielski A, Lena S, Masiero S, Spada GP, Samorì P. Dynamers at the solid-liquid interface: Controlling the reversible assembly/reassembly process between two highly ordered supramolecular guanine motifs. Angew Chem Int Ed, 2010, 49: 1963–1966

    CAS  Google Scholar 

  38. Mali KS, Wu DQ, Feng XL, Müllen K, van der Auweraer M, de Feyter S. Scanning tunneling microscopy-induced reversible phase transformation in the two-dimensional crystal of a positively charged discotic polycyclic aromatic hydrocarbon. J Am Chem Soc, 2011, 133: 5686–5688

    CAS  Google Scholar 

  39. Bleger D, Clesielki A, Samori P, Hecht S. Photoswitching vertically oriented azobenzene self-assembled monolayers at the solid-liquid interface. Chem Eur J, 2010, 16: 14256–14260

    CAS  Google Scholar 

  40. Xu L, Miao XR, Ying X, Deng WL. Two-dimensional self-assembled molecular structures formed by the competition of van der waals forces and dipole-dipole interactions. J Phys Chem C, 2012, 116: 1061–1069

    CAS  Google Scholar 

  41. Li M, Xu HJ, Shen Z, You XZ, Zeng QD, Wang C. Bipyridine mediated assembling characteristics of aromatic acid derivatives. J Phys Chem C, 2010, 114: 1881–1884

    CAS  Google Scholar 

  42. Lei SB, Wan LJ, Wang C, Bai CL. Direct observation of the ordering and molecular folding of poly[(m-phenylenevinylene)-co-(2,5-dioctoxy-p-phenylenevinylene)]. Adv Mater, 2004, 16: 828–831

    CAS  Google Scholar 

  43. Qiu XH, Wang C, Zeng QD, Xu B, Yin SX, Wang H, Xu SL, Bai CL. Alkane-assisted adsorption and assembly of phthalocyanines and porphyrins. J Am Chem Soc, 2000, 122: 5550–5556

    CAS  Google Scholar 

  44. Nath KG, Ivasenko O, Miwa JA, Dang H, Wuest JD, Nanci A, Perepichka DF, Rosei F. Rational modulation of the periodicity in linear hydrogen-bonded assemblies of trimesic acid on surfaces. J Am Chem Soc, 2006, 128: 4212–4213

    CAS  Google Scholar 

  45. Lu J, Zeng QD, Wang C, Zheng QY, Wan LJ, Wan CL. Self-assembled two-dimensional hexagonal networks. J Mater Chem, 2002, 12: 2856–2858

    CAS  Google Scholar 

  46. Baalousha M, Motelica-Heino M, Galaup S, Le Coustumer P. Supramolecular structure of humic acids by TEM with improved sample preparation and staining. Microsc Res Tech, 2005, 66: 299–306

    CAS  Google Scholar 

  47. Hightower JB, Olmos DR, Walmsley JA. Supramolecular structure and polymorphism of alkali metal salts of guanosine 5′-monophosphate: SEM and NMR study. J Phys Chem B, 2009, 113: 12214–12219

    CAS  Google Scholar 

  48. Chung WJ, Oh JW, Kwak K, Lee BY, Meyer J, Wang E, Hexemer A, Lee SW. Biomimetic self-templating supramolecular structures. Nature, 2011, 478: 364–368

    CAS  Google Scholar 

  49. Ye M, Zhang Y, Li H, Xie M, Hu J, Supramolecular structures of amyloid-related peptides in an ambient water nanofilm. J Phys Chem B, 2012, 114: 15759–15765

    Google Scholar 

  50. Liu L, Zhang L, Niu L, Xu M, Mao XB, Yang YL, Wang C. Observation of reduced cytotoxicity of aggregated amyloidogenic peptides with chaperone-like molecules. ACS Nano, 2011, 5: 6001–6007

    CAS  Google Scholar 

  51. Mao XB, Wang CX, Wu XK, Ma XJ, Liu L, Zhang L, Niu L, Guo YY, Li DH, Yang YL, Wang C. Beta structure motifs of islet amyloid polypeptides identified through surface-mediated assemblies. Proc Natl Acad Sci USA, 2011, 108: 19605–19610

    CAS  Google Scholar 

  52. Zhan D, Liu L, Xu YN, Ni ZH, Yan JX, Zhao C, Shen ZX. Low temperature edge dynamics of AB-stacked bilayer graphene: Naturally favored closed zigzag edges. Sci Rep, 2011, 1: 12

    Google Scholar 

  53. Binning G, Rohrer H, Gerbe C, Weibel E. Surface studies by scanning tunneling microscopy. Phys Rev Lett, 1982, 49: 57–61

    CAS  Google Scholar 

  54. Binnig G, Rohrer H. Scanning tunneling microscopy—From birth to adolescence. Rev Mod Phys, 1987, 59: 615–625

    CAS  Google Scholar 

  55. de Feyter S, de Schryver FC. Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chem Soc Rev, 2003, 32: 139–150

    Google Scholar 

  56. de Feyter S, de Schryver FC. Self-assembly at the liquid/solid interface: STM reveals. J Phys Chem B, 2005, 109: 4290–4302

    Google Scholar 

  57. Mali KS, Adisoejoso J, Ghijsens E, de Cat I, de Feyter S. Exploring the complexity of supramolecular interactions for patterning at the liquid-solid interface. Acc Chem Res, 2012, 45: 1309–1320

    CAS  Google Scholar 

  58. Xu LR, Yang L, Lei SB. Self-assembly of conjugated oligomers and polymers at the interface: Structure and properties. Nanoscale, 2012, 4: 4399–4415

    CAS  Google Scholar 

  59. Lei SB, Tahara K, Feng XL, Furukawa S, de Schryver FC, Müllen K, Tobe Y, de Feyter S. Molecular clusters in two-dimensional surface-confined nanoporous molecular networks: Structure, rigidity, and dynamics. J Am Chem Soc, 2008, 130: 7119–7129

    CAS  Google Scholar 

  60. Furukawa S, de Feyter S. Two-dimensional crystal engineering at the liquid-solid interface. Top Curr Chem, 2009, 287: 87–133

    CAS  Google Scholar 

  61. Liang HL, He Y, Ye Y, Xu X, Cheng F, Sun W, Shao X, Wang Y, Li J, Wu K. Two-dimensional molecular porous networks constructed by surface assembling. Coord Chem Rev, 2009, 253: 2959–2979

    CAS  Google Scholar 

  62. Besenbacher F, Lauritsen JV, Linderoth TR, Lægsgaard E, Vang RT, Wendt S. Atomic-scale surface science phenomena studied by scanning tunneling microscopy. Sur Sci, 2009, 603: 1315–1327

    CAS  Google Scholar 

  63. Yang YL, Wang C. Hierarchical construction of self-assembled low-dimensional molecular architectures observed by using scanning tunneling microscopy. Chem Soc Rev, 2009, 38: 2576–2589

    CAS  Google Scholar 

  64. Otsuki J. STM studies on porphyrins. Coord Chem Rev, 2010, 254: 2311–2341

    CAS  Google Scholar 

  65. de Feyter S, GesquièRe A, Mottaleb MMA, Grim PCM, de Schryver FC. Scanning tunneling microscopy: A unique tool in the study of chirality, dynamics, and reactivity in physisorbed organic monolayers. Acc Chem Res, 2000, 33: 520–531

    Google Scholar 

  66. Vang RT, Lauritsen JV, Læsgaard E, Besenbacher F. Scanning tunneling microscopy as a tool to study catalytically relevant model systems. Chem Soc Rev, 2008, 37: 2191–2203

    CAS  Google Scholar 

  67. Rossel F, Pivetta M, Schneider WD. Luminescence experiments on supported molecules with the scanning tunneling microscope. Sur Sci Rep, 2010, 65: 129–144

    CAS  Google Scholar 

  68. Xie RS, Song YH, Wan LL, Yuan HZ, Li PC, Xiao XP, Liu L, Ye SH, Lei SB, Wang L. Two-dimensional polymerization and reaction at the solid/liquid interface: Scanning tunneling microscopy study. Anal Sci, 2011, 27: 129–138

    CAS  Google Scholar 

  69. Okawa Y, Mandal SK, Hu C, Tateyama Y, Goedecker S, Tsukamoto S, Hasegawa T, Gimzewski JK, Aono M. Chemical wiring and soldering toward all-molecule electronic circuitry. J Am Chem Soc, 2011, 133: 8227–8233

    CAS  Google Scholar 

  70. Mielke J, Leyssner F, Koch M, Meyer S, Luo Y, Selvanathan S, Haag R, Tegeder P, Grill L. Imine derivatives on Au(111): Evidence for “inverted” thermal isomerization. ACS Nano, 2011, 5: 2090–2097

    CAS  Google Scholar 

  71. Grill L, Dyer M, Lafferentz L, Persson M, Peters MV, Hecht S. Nano-architectures by covalent assembly of molecular building blocks. Nat Nanotechnol, 2007, 2: 687–691

    CAS  Google Scholar 

  72. Zhang XM, Xu SD, Li M, Shen YT, Wei ZQ, Wang S, Zeng QD, Wang C. Photo-induced polymerization and isomerization on the surface observed by scanning tunneling microscopy. J Phys Chem C, 2012, 116: 8950–8955

    CAS  Google Scholar 

  73. Zhong DY, Franke JH, Podiyanachari SK, Blömker T, Zhang HM, Kehn G, Erker G, Chi LF. Linear alkane polymerization on a gold surface. Science, 2011, 334: 213–216

    CAS  Google Scholar 

  74. Tahara K, Yamaga H, Ghijsens E, Inukai K, Adisoejoso J, Blunt MO, de Feyter S, Tobe Y. Control and induction of surface-confined homochiral porous molecular networks. Nat Chem, 2011, 3: 714–719

    CAS  Google Scholar 

  75. de Cat I, Guo ZX, George SJ, Meijer EW, Schenning APHJ, de Feyter S. Induction of chirality in an achiral monolayer at the liquid/solid interface by a supramolecular chiral auxiliary. J Am Chem Soc, 2012, 134: 3171–3177

    Google Scholar 

  76. Cai JM, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng XL, Müllen K, Fasel R. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 2010, 466: 470–473

    CAS  Google Scholar 

  77. Zhang YQ, Kepčija N, Kleinschrodt M, Diller K, Fischer S, Papageorgiou AC, Allegretti F, Björk J, Klyatskaya S, Klappenberger F, Ruben M, Barth JV. Homo-coupling of terminal alkynes on a noble metal surface. Nat Commun, 2012, 3: 1286

    Google Scholar 

  78. Bebensee F, Bombis C, Vadapoo SR, Cramer JR, Besenbacher F, Gothelf KV, Linderoth TR. On-surface azide-alkyne cycloaddition on Cu(111): Does it “click” in ultrahigh vacuum? J Am Chem Soc, 2012, 135: 2136–2139

    Google Scholar 

  79. Zhang XM, Zeng QD, Wang C. Molecular templates and nano-reactors: Two-dimensional hydrogen bonded supramolecular networks on solid/liquid interfaces. RSC Adv, 2013, 3: 11351–11366

    CAS  Google Scholar 

  80. Elemans JAAW, Lei SB, de Feyter S. Molecular and Supramolecular Networks on surfaces: From two-dimensional crystal engineering to reactivity. Angew Chem Int Ed, 2009, 48: 7298–7332

    CAS  Google Scholar 

  81. Li M, Zeng QD, Wang C. Self-assembled supramolecular networks at interfaces: Molecular immobilization and recognition using nanoporous templates. Sci China Phys Mech Astron, 2011, 54: 1739–1748

    CAS  Google Scholar 

  82. Zeng QD, Wang C. Construction of tunable supramolecular networks studied by scanning tunneling microscopy. Sci China Chem, 2010, 53: 310–317

    CAS  Google Scholar 

  83. Zhang, XM, Zeng QD, Wang C. On-surface single molecule synthesis chemistry: A promising bottom-up approach towards functional surfaces. Nanoscale, 2013, 5: 8269–8287

    CAS  Google Scholar 

  84. Zhang XM, Wang S, Shen YT, Yang YL, Deng K, Zhao KQ, Zeng QD, Wang C. Triphenylene substituted pyrene derivative: Synthesis and single molecule investigation. J Phys Chem C, 2013, 117: 307–312

    CAS  Google Scholar 

  85. Qiu XH, Nazin GV, Ho W. Vibrationally resolved fluorescence excited with submolecular precision. Science, 2003, 299: 542–546

    CAS  Google Scholar 

  86. Lei SB, Deng K, Yang DL, Zeng QD, Wang C. Charge-transfer effect at the interface of phthalocyanine-electrode contact studied by scanning tunneling spectroscopy. J Phys Chem B, 2006, 110: 1256–1260

    CAS  Google Scholar 

  87. Kong XH, Wang M, Lei SB, Yang YL, Wang C. Electronic sensory behavior of titanylphthalocyanine revealed by scanning tunneling spectroscopy and cyclic voltammetry methods. J Mater Chem, 2006, 16: 4265–4269

    CAS  Google Scholar 

  88. Fischer O, Kygler M, Maggio-Aprile I, Berthod C, Renner C. Scanning tunneling spectroscopy of high-temperature superconductors. Rev Mod Phys, 2007, 79: 353–419

    CAS  Google Scholar 

  89. Griessl SJH, Lackinger M, Jamitzky F, Markert T, Hietschold M, Heckl WM. Room-temperature scanning tunneling microscopy manipulation of single C60 molecules at the liquid-solid interface: Playing nanosoccer. J Phys Chem B, 2004, 108: 11556–11560

    CAS  Google Scholar 

  90. Griessl SJH, Lackinger M, Jamitzky F, Markert T, Hietschold M, Heckl WM. Incorporation and manipulation of coronene in an organic template structure. Langmuir, 2004, 20: 9403–9407

    CAS  Google Scholar 

  91. Nath KG, Ivasenko O, Miwa JA, Dang H, Wuest JD, Nanci A, Perepichka DF, Rosei F. Rational modulation of the periodicity in linear hydrogen-bonded assemblies of trimesic acid on surfaces. J Am Chem Soc, 2006, 128: 4212–4213

    CAS  Google Scholar 

  92. Li M, Yang YL, Zhao KQ, Zeng QD, Wang C. Bipyridine-mediated assembling characteristics of aromatic acid derivatives. J Phys Chem C, 2008, 112: 10141–10144

    CAS  Google Scholar 

  93. Li M, Deng K, Lei SB, Yang YL, Wang TS, Shen YT, Wang CR, Zeng QD, Wang C. Site-selective fabrication of two-dimensional fullerene arrays by using a supramolecular template at the liquid-solid interface. Angew Chem Int Ed, 2008, 47: 6717–6721

    CAS  Google Scholar 

  94. Zhang XM, Wang S, Shen YT, Guo YY, Zeng QD, Wang C. Two-dimensional networks of an azobenzene derivative: Bi-pyridine mediation and photo regulation. Nanoscale, 2012, 4: 5039–5042

    CAS  Google Scholar 

  95. Li YB, Deng K, Wu XK, Lei SB, Zhao KQ, Yang YL, Zeng QD, Wang C. Molecular arrays formed in anisotropically rearranged supramolecular network with molecular substitutional asymmetry. J Mater Chem, 2010, 20: 9100–9103

    CAS  Google Scholar 

  96. Li YB, Zhao KQ, Yang YL, Deng K, Zeng QD, Wang C. Functionalization of two-component molecular networks: Recognition of Fe3+. Nanoscale, 2012, 4: 148–151

    CAS  Google Scholar 

  97. Li YB, Wan JH, Deng K, Han XN, Lei SB, Yang YL, Zheng QY, Zeng QD, Wang C. Transformation of self-assembled structure by the addition of active reactant. J Phys Chem C, 2011, 115: 6540–6544

    CAS  Google Scholar 

  98. Tanoue R, Higuchi R, Enoki N, Miyasato Y, Uemura S, Kimizuka N, Stieg AZ, Gimzewski JK, Kunitake M. Termodynamically controlled self-assembly of covalent nanoarchitectures in aqueous solution. ACS Nano, 2011, 5: 3923–3929

    CAS  Google Scholar 

  99. Hu FY, Zhang XM, Wang XC, Wang S, Wang HQ, Duan WB, Zeng QD, Wang C. In situ STM investigation of two-dimensional chiral assemblies through schiff-base condensation at a liquid/solid interface. ACS Appl Mater Interfaces, 2013, 5: 1583–1587

    CAS  Google Scholar 

  100. Lei SB, Deng K, Ma Z, Huang W, Wang C. Templated assembling of phthalocyanine arrays along a polymer chain. Chem Commun, 2011, 47: 8829–8831

    CAS  Google Scholar 

  101. Shen YT, Deng K, Li M, Zhang XM, Zhou G, Müllen K, Zeng QD, Wang C. Self-assembling in fabrication of ordered porphyrins and phthalocyanines hybrid nano-arrays on HOPG. CrystEngComm, 2013, 15: 5526–5531

    CAS  Google Scholar 

  102. Shen YT, Li M, Guo YY, Deng K, Zeng QD, Wang C. The site-selective molecular recognition of ternary architectures by using supramolecular nanoporous networks at a liquid-solid interface. Chem Asian J, 2010, 5: 787–790

    CAS  Google Scholar 

  103. Lu J, Lei SB, Zeng QD, Kang SZ, Wang C, Wan LJ, Bai CL. Tem late-induced inclusion structures with copper(II) phthalocyanine and coronene as guests in two-dimensional hydrogen-bonded host networks. J Phys Chem B, 2004, 108: 5161–5165

    CAS  Google Scholar 

  104. Shen YT, Deng K, Zhang XM, Lei D, Xia Y, Zeng QD, Wang C. Selective and competitive adsorptions of guest molecules in phase-separated networks. J Phys Chem C, 2011, 115: 19696–19701

    CAS  Google Scholar 

  105. Shen YT, Zeng LJ, Lei D, Zhang XM, Deng K, Feng YY, Feng W, Lei SB, Li SF, Gan LH, Zeng QD, Wang C. Competitive adsorption and dynamics of guest molecules in 2D molecular sieves. J Mater Chem, 2011, 21: 8787–8791

    CAS  Google Scholar 

  106. Tahara K, Furukawa S, Uji-i H, Uchino T, Ichikawa T, Zhang J, Mamdouh W, Sonoda M, de Schryver FC, de Feyter S, Tobe Y. Molecular geometry directed Kagomé and honeycomb networks: Toward two-dimensional crystal engineering. J Am Chem Soc, 2006, 128: 3502–3503

    Google Scholar 

  107. Lei SB, Surin M, Tahara K, Adisoejoso J, Lazzaroni R, Tobe Y, de Feyter S. Programmable hierarchical three-component 2D assembly at a liquid-solid interface: Recognition, selection, and transformation. Nano Lett, 2008, 8: 2541–2546

    CAS  Google Scholar 

  108. Shen YT, Deng K, Zeng QD, Wang C. Size-selective effects on fullerene adsorption by nanoporous molecular networks. Small, 2010, 6: 76–80

    CAS  Google Scholar 

  109. Shen YT, Guan L, Zhang XM, Wang S, Gan LH, Zeng QD, Wang C. Site-selective effects on guest-molecular adsorption and fabrication of four-component architecture by higher order networks. Phys Chem Chem Phys, 2013, 15: 12475–12479

    CAS  Google Scholar 

  110. Shen YT, Guan L, Zhu XY, Zeng QD, Wang C. Submolecular observation of photosensitive macrocycles andtheir isomerization effects on host-guest network. J Am Chem Soc, 2009, 131: 6174–6180

    CAS  Google Scholar 

  111. Shen YT, Deng K, Zhang XM, Feng W, Zeng QD, Wang C, Gong JR. Switchable ternary nanoporous supramolecular network on photo-regulation. Nano Lett, 2011, 11: 3245–3250

    CAS  Google Scholar 

  112. Zhang XM, Shen YT, Wang S, Guo YY, Zeng QD, Wang C. One plus two: Supramolecular coordination in a nano-reactor on surface. Sci Rep, 2012, 2: 742

    Google Scholar 

  113. Zeng QD, Wu DX, Wang C, Lu J, Ma BC, Shu CY, Ma HW, Li Y, Bai CL. Bipyridine conformations control the solid-state supramolecular chemistry of zinc(II) phthalocyanine with bipyridines. CrystEngComm, 2005, 7: 243–248

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to QingDao Zeng or Chen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Zeng, Q. & Wang, C. Host-guest supramolecular chemistry at solid-liquid interface: An important strategy for preparing two-dimensional functional nanostructures. Sci. China Chem. 57, 13–25 (2014). https://doi.org/10.1007/s11426-013-4975-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4975-9

Keywords

Navigation