Skip to main content
Log in

Reversible photoswitching self-assembly of azobenzene-functionalized hyperbranched polyglycerol induced by host-guest chemistry

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Reversible assembly and disassembly of rod-like large complex micelles have been achieved by applying photoswitching of supramolecular inclusion and exclusion of azobenzene-functionalized hyperbranched polyglycerol and α-cyclodextrin as driving force, promising a versatile system for self-assembly switched by light. Hydrogen-nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FT-IR) spectroscopy were applied to characterize the azobenzene-functionalized hyperbranched polyglycerol. Atomic force microscopy (AFM), transmission electron microscopy (TEM) and dynamic laser light scattering (DLS) were employed to investigate and track the morphology of the rod-like large complex micelles before and after irradiation of UV light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo B, Sun XY, Zhou YF, Yan DY. Supramolecular self-assembly and controllable drug release of thermosensitive hyperbranched multiarm copolymers. Sci China Chem, 2010, 53(3): 487–494

    Article  CAS  Google Scholar 

  2. Han J, Gao C. Host-Guest Supramolecular Chemistry of Dendritic Macromolecules. Curr Org Chem, 2011, 15(1): 2–26

    Article  CAS  Google Scholar 

  3. Adeli M, Haag R. Multiarm star nanocarriers containing a poly(ethylene imine) core and polylactide arms. J Polym Sci Pol Chem, 2006, 44(19): 5740–5749

    Article  CAS  Google Scholar 

  4. Gao C, Yan DY. Hyperbranched polymers: From synthesis to applications. Prog Polym Sci, 2004, 29(3): 183–275

    Article  CAS  Google Scholar 

  5. Zhou YF, Yan DY. Supramolecular self-assembly of amphiphilic hyperbranched polymers at all scales and dimensions: Progress, characteristics and perspectives. Chem Commun, 2009(10): 1172–1188

    Article  Google Scholar 

  6. Yan DY, Gao C, Frey H. Hyperbranched Polymers: Synthesis, Properties, and Applications. New York: Wiley, 2011

    Book  Google Scholar 

  7. Yan DY, Zhou YF, Hou J. Supramolecular self-assembly of macroscopic tubes. Science, 2004, 303: 65–67

    Article  CAS  Google Scholar 

  8. Gao C, Zheng X. Facile synthesis and self-assembly of multihetero-arm hyperbranched polymer brushes. Soft Matter, 2009, 5(23): 4788–4796

    Article  CAS  Google Scholar 

  9. Liu C, Gao C, Yan DY. Honeycomb-patterned photoluminescent films fabricated by self-assembly of hyperbranched polymers. Angew Chem Int Ed, 2007, 46(22): 4128–4131

    Article  CAS  Google Scholar 

  10. Whitesides GM, Grzybowski B. Self-assembly at all scales. Science, 2002, 295(5564): 2418–2421

    Article  CAS  Google Scholar 

  11. Asakawa M, Ashton PR, Balzani V, Brown CL, Credi A, Matthews OA, Newton SP, Raymo FM, Shipway AN, Spencer N, Quick A, Stoddart JF, White AJP, Williams DJ. Photoactive azobenzene-containing supramolecular complexes and related interlocked molecular compounds. Chem-Eur J, 1999, 5(3): 860–875

    Article  CAS  Google Scholar 

  12. Chen L, Zhu XY, Yan DY, Chen Y, Chen Q, Yao YF. Controlling polymer architecture through host-guest interactions. Angew Chem Int Ed, 2006, 45(1): 87–90

    Article  Google Scholar 

  13. Guo MY, Jiang M. Macromolecular self-assembly based on inclusion complexation of cyclodextrins. Prog Chem, 2007, 19(4): 557–566

    CAS  Google Scholar 

  14. Harada A, Hashidzume A, Yamaguchi H, Takashima Y. Polymeric rotaxanes. Chem Rev, 2009, 109(11): 5974–6023

    Article  CAS  Google Scholar 

  15. Callari F, Petralia S, Sortino S. Highly photoresponsive monolayerprotected gold clusters by self-assembly of a cyclodextrinazobenzene-derived supramolecular complex. Chem Commun, 2006(9): 1009–1011

    Article  Google Scholar 

  16. Chen X, Hong L, You X, Wang YL, Zou G, Su W, Zhang QJ. Photo-controlled molecular recognition of alpha-cyclodextrin with azobenzene containing polydiacetylene vesicles. Chem Commun, 2009, 11: 1356–1358

    Article  Google Scholar 

  17. Luo CH, Zuo F, Ding XB, Zheng ZH, Cheng X, Peng YX. Lighttriggered reversible solubility of alpha-cyclodextrin and azobenzene moiety complexes in PDMAA-co-PAPA via molecular recognition. J Appl Polym Sci, 2008, 107(4): 2118–2125

    Article  CAS  Google Scholar 

  18. Luo CH, Zuo F, Zheng ZH, Cheng X, Ding XB, Peng YX. Tunable smart surface of gold nanoparticles achieved by light-controlled molecular recognition effection. Macromol Rapid Commun, 2008, 29(2): 149–154

    Article  CAS  Google Scholar 

  19. Liu Z, Jiang M. Reversible aggregation of gold nanoparticles driven by inclusion complexation. J Mater Chem, 2007, 17(40): 4249–4254

    Article  CAS  Google Scholar 

  20. Fujimoto T, Nakamura A, Inoue Y, Sakata Y, Kaneda T. Photoswitching of the association of a permethylated alphayclodextrin-zobenzene dyad forming a Janus 2 pseudorotaxane. Tetrahedron Lett, 2001, 42(45): 7987–7989

    Article  CAS  Google Scholar 

  21. Zheng PJ, Hu X, Zhao XY, Li L, Tam KC, Gan LH. Photoregulated sol-gel transition of novel azobenzene-functionalized hydroxypropyl methylcellulose and its alpha-cyclodextrin complexes. Macromol Rapid Comm, 2004, 25(5): 678–682

    Article  CAS  Google Scholar 

  22. Luo CH, Zuo F, Zheng ZH, Ding XB, Peng YX. Temperature/ight dual-responsive inclusion complexes of alpha-cyclodextrins and azobenzene-containing polymers. J Macromol Sci Pure, 2008, 45(5): 364–371

    Article  CAS  Google Scholar 

  23. Wang YP, Ma N, Wang ZQ, Zhang X. Photocontrolled reversible supramolecular assemblies of an azobenzene-containing surfactant with alpha-cyclodextrin. Angew Chem Int Ed, 2007, 46(16): 2823–2826

    Article  CAS  Google Scholar 

  24. Zou J, Guan B, Liao XJ, Jiang M, Tao FG. Dual reversible self-assembly of pnipam-based amphiphiles formed by inclusion complexation. Macromolecules, 2009, 42(19): 7465–7473

    Article  CAS  Google Scholar 

  25. Zhou L, Gao C, Xu WJ. Efficient grafting of hyperbranched polyglycerol from hydroxyl-functionalized multiwalled carbon nanotubes by surface-initiated anionic ring-opening polymerization. Macromol Chem Phys, 2009, 210(12): 1011–1018

    Article  CAS  Google Scholar 

  26. Zhang Y, He H, Gao C. Clickable macroinitiator strategy to build amphiphilic polymer brushes on carbon nanotubes. Macromolecules, 2008, 41(24): 9581–9594

    Article  CAS  Google Scholar 

  27. Kainthan RK, Muliawan EB, Hatzikiriakos SG, Brooks DE. Synthesis, characterization, and viscoelastic properties of high molecular weight hyperbranched polyglycerols. Macromolecules, 2006, 39(22): 7708–7717

    Article  CAS  Google Scholar 

  28. Gao C, He H, Zhou L, Zheng X, Zhang Y. Scalable functional group engineering of carbon nanotubes by improved one-step nitrene chemistry. Chem Mater, 2008, 21(2): 360–370

    Article  Google Scholar 

  29. Gao HF, Matyjaszewski K. Synthesis of star polymers by a combination of ATRP and the “click” coupling method. Macromolecules, 2006, 39(15): 4960–4965

    Article  CAS  Google Scholar 

  30. He X, Zhang H, Yan D, Wang X. Synthesis of side-chain liquid-crystalline homopolymers and triblock copolymers with p-methoxyazobenzene moieties and poly(ethylene glycol) as coil segments by atom transfer radical polymerization and their thermotropic phase behavior. J Polym Sci Pol Chem, 2003, 41(18): 2854–2864

    Article  CAS  Google Scholar 

  31. Han Y, Gao C. Miktoarms hyperbranched polymer brushes: One-step fast synthesis by parallel click chemistry and hierarchical self-assembly. Sci China Chem, 2010, 53(12): 2461–2471

    Article  CAS  Google Scholar 

  32. Wu J, He H, Gao C. β-Cyclodextrin-capped polyrotaxanes: One-pot facile synthesis via click chemistry and use as templates for platinum nanowires. Macromolecules, 2010, 43(5): 2252–2260

    Article  CAS  Google Scholar 

  33. Lutz JF. 1,3-Dipolar cycloadditions of azides and alkynes: A universal ligation tool in polymer and materials science. Angew Chem Int Ed, 2007, 46(7): 1018–1025

    Article  CAS  Google Scholar 

  34. Kumar GS, Neckers DC. Photochemistry of azobenzene-containing polymers. Chem Rev, 1989, 89(8): 1915–1925

    Article  CAS  Google Scholar 

  35. Zimmerman G, Chow LY, Paik UJ. The photochemical isomerization of azobenzene. J Am Chem Soc, 1958, 80(14): 3528–3531

    Article  CAS  Google Scholar 

  36. Hartley GS. 113 The cis-form of azobenzene and the velocity of the thermal cis -> trans-conversion of azobenzene and some derivatives. J Chem Soc, 1938, 633–642

  37. Cheng F, Zhang KK, Chen DY, Zhu L, Jiang M. Self-assembly of heteroarms core-shell polymeric nanoparticles (HCPNs) and templated synthesis of gold nanoparticles within HCPNs and the superparticles. Macromolecules, 2009, 42(18): 7108–7113

    Article  CAS  Google Scholar 

  38. Cheng L, Hou GL, Miao JJ, Chen DY, Jiang M, Zhu L. Efficient synthesis of unimolecular polymeric janus nanoparticles and their unique self-assembly behavior in a common solvent. Macromolecules, 2008, 41(21): 8159–8166

    Article  CAS  Google Scholar 

  39. Kodaka M. A general rule for circular dichroism induced by a chiral macrocycle. J Am Chem Soc, 1993, 115(9): 3702–3705

    Article  CAS  Google Scholar 

  40. Zhu XY, Chen L, Yan DY, Chen Q, Yao YF, Xiao Y, Hou J, Li JY. Supramolecular self-assembly of inclusion complexes of a multiarm hyperbranched polyether with cyclodextrins. Langmuir, 2004, 20(2): 484–490

    Article  Google Scholar 

  41. Zhao YL, Stoddart JF. Azobenzene-based light-responsive hydrogel system. Langmuir, 2009, 25(15): 8442–8446

    Article  CAS  Google Scholar 

  42. Pang Y, Liu JY, Su Y, Zhu BS, Huang W, Zhou YF, Zhu XY, Yan DY. Bioreducible unimolecular micelles based on amphiphilic multiarm hyperbranched copolymers for triggered drug release. Sci China Chem, 2010, 53(12): 2497–2508

    Article  CAS  Google Scholar 

  43. Yagai S, Kitamura A. Recent advances in photoresponsive supramolecular self-assemblies. Chem Soc Rev, 2008, 37(8): 1520–1529

    Article  CAS  Google Scholar 

  44. Kolb HC, Finn MG, Sharpless KB. Click chemistry: Diverse chemical function from a few good reactions. Angew Chem Int Ed, 2001, 40(11): 2004–2021

    Article  CAS  Google Scholar 

  45. Ladmiral V, Legge TM, Zhao YL, Perrier S. “Click” chemistry and radical polymerization: Potential loss of orthogonality. Macromolecules, 2008, 41(18): 6728–6732

    Article  CAS  Google Scholar 

  46. Zhai S, Hong HY, Zhou YF, Yan DY. Synthesis of cationic hyperbranched multiarm copolymer and its application in self-reducing and stabilizing gold nanoparticles. Sci China Chem, 2010, 53(5): 1114–1121

    Article  CAS  Google Scholar 

  47. Zhang JX, Ma PX. Polymeric core-shell assemblies mediated by host-guest interactions: Versatile nanocarriers for drug delivery. Angew Chem Int Ed, 2009, 48(5): 964–968

    Article  CAS  Google Scholar 

  48. Wang YP, Zhang M, Moers C, Chen SL, Xu HP, Wang ZQ, Zhang X, Li ZB. Block copolymer aggregates with photo-responsive switches: Towards a controllable supramolecular container. Polymer, 2009, 50(20): 4821–4828

    Article  CAS  Google Scholar 

  49. Sun XY, Zhou YF, Yan DY. Drug release property of a pH-responsive double-hydrophilic hyperbranched graft copolymer. Sci China Ser B Chem, 2009, 52(10): 1703–1710

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Gao or XiaoHua He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Gao, C. & He, X. Reversible photoswitching self-assembly of azobenzene-functionalized hyperbranched polyglycerol induced by host-guest chemistry. Sci. China Chem. 55, 604–611 (2012). https://doi.org/10.1007/s11426-011-4421-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4421-9

Keywords

Navigation