Skip to main content
Log in

Mechanisms and kinetics of the ozonolysis reaction of cis-3-hexenyl acetate and trans-2-hexenyl acetate in atmosphere: a theoretical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Gas-phase reaction mechanisms of ozone with cis/trans-3-hexenyl acetate and cis/trans-2-hexenyl acetate are performed using density functional theory. The reactions are initiated by the formation of the primary ozonides which are followed by the reactions of biradicals with H2O or NO. The formation of the secondary ozonide (SOZ) is also studied. On the basis of the above DFT calculations, the modified multichannel RRKM theory is used to evaluate the rate constants. At 298 K and 101 kPa, the calculated total rate constants are 9.84 × 10−17, 1.39 × 10−17, 2.50 × 10−17, and 7.37 × 10−17 cm3 mol−1 s−1 for cis-3-hexenyl acetate, trans-2-hexenyl acetate, cis-2-hexenyl acetate, and trans-3-hexenyl acetate, respectively. Our results are in good agreement with experimental values. The total rate coefficients are almost pressure-independent in the range of 0.01–10,000 Torr, but show temperature dependence over the whole study range (200–2,000 K). In addition, branching ratios of the favorable reaction channels are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Graedel TE (1978) Chemical Compounds in the Atmosphere. Academic, New York

    Google Scholar 

  2. Wine AM, Arey J, Atkinson R, Aschmann SM, Long WD, Morrison CL (1991) Atmos Environ 25A:1063–1075

    Google Scholar 

  3. Winter M, Willhalm B (1964) Helv Chirn Acta 47:1215–1227

    Article  CAS  Google Scholar 

  4. Smith DF, Kleindienst TE, Hudgens EE, McIver CD, Bufalini J (1992) Int J Che Kinet 24:199–215

    Article  CAS  Google Scholar 

  5. Wallington TJ, Andino JM, Potts AR, Rudy SJ, Siegl WO, Zhang Z, Kurylo MJ, Huie RE (1993) Environ Sci Technol 27:98–104

    Article  CAS  Google Scholar 

  6. Mellouki A, Le Bras G, Sidebottom H (2003) Chem Rev 103:5077–5096

    Article  CAS  Google Scholar 

  7. Arey J, Winer AM, Atkinson R, Aschmann SM, Long WD, Momson CL, Olszyk DM (1991) J Geophys Res 96:9329–9336

    Article  CAS  Google Scholar 

  8. Grosjean E, Grosjean D (1999) J Atmos Chem 32:205–232

    Article  CAS  Google Scholar 

  9. Atkinson R, Arey J, Aschmann SM, Corchnoy SB, Shu Y (1995) Int J Chem Kinet 27:941–955

    Article  CAS  Google Scholar 

  10. Picquet-Varrault B, Scarfogliero M, Doussin JF (2010) Sci Technol 44:4615–4621

    Article  CAS  Google Scholar 

  11. Vogel B, Fiedler F, Vogel H (1995) J Geophys Res 100:22907

    Article  CAS  Google Scholar 

  12. Saxena P, Hildemann LM (1996) J Atmos Chem 24:57–109

    Article  CAS  Google Scholar 

  13. McKeen SA, Hsie E-Y, Trainer M, Tallamraju R, Liu SC (1991) J Geophys Res 96:15377–15394

    Article  CAS  Google Scholar 

  14. Atkinson R, Carter WPL (1984) Chem Rev 84:437–470

    Article  CAS  Google Scholar 

  15. Le Calvé S, Mellouki A, Le Bras G, Treacy J, Wenger J, Sidebottom H (2000) J Atmos Chem 37:161–172

    Article  Google Scholar 

  16. Grosjean E, Grosjean D, Seinfeld JH (1996) Int J Chem Kinet 28:373–382

    Article  CAS  Google Scholar 

  17. He MX, Cao HJ, Sun YH, Han DD, Hu JT (2012) Atmos Environ 49:197–205

    Article  CAS  Google Scholar 

  18. He MX, Sun YH, Cao HJ, Han DD, Hu JT (2012) Struct Chem 23:201–208

    Article  CAS  Google Scholar 

  19. Grosjean E, Grosjean D (1998) Int J Chem Kinet 30:21–29

    Article  CAS  Google Scholar 

  20. Grosjean E, Grosjean D (1997) J Atmos Chem 27:271–289

    Article  CAS  Google Scholar 

  21. Hou H, Wang BS (2007) J Chem Phys 127:054306

    Article  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Gill PWM, Johnson BG, Robb MA, Cheeseman JR, Keith TA, Petersson GA, Montgomery JA, Raghavachari K, Allaham MA, Zakrzewski VG, Ortiz JV, Foresman JB, Cioslowski J, Stefanov BB, Nanayakkara A, Challacombe M, Peng CY, Ayala PY, Chen W, Wong MW, Andres JL, Replogle ES, Gomperts R, Martin RL, Fox DJ, Binkley JS, Defrees DJ, Baker J, Stewart JP, Head-Gordon M, Gonzales C, Pople JA (2003) Gaussian 03. Gaussian Inc, Wallingford

    Google Scholar 

  23. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  24. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  25. Jiang L, Xu YS, Ding AZ (2010) J Phys Chem 114:12452–12461

    Article  CAS  Google Scholar 

  26. Zhang D, Zhang R (2002) J Am Chem Soc 124:2692–2703

    Article  CAS  Google Scholar 

  27. Zhang D, Zhang R (2005) J Chem Phys 122:114308

    Article  Google Scholar 

  28. Wang BS, Gu YS, Kong FN (1999) J Phys Chem 103:2060–2065

    Article  CAS  Google Scholar 

  29. Astholz DC, Troe J, Wieters W (1979) J Chem Phys 70:5107–5116

    Article  CAS  Google Scholar 

  30. Stein SE, Rabinovitch BS (1973) J Chem Phys 58:2438–2445

    Article  CAS  Google Scholar 

  31. Criegee R (1957) Record of Chem Progress 18:111

    CAS  Google Scholar 

  32. Criegee R (1962) In Peroxide Reaction Mechanisms. London, New York

    Google Scholar 

  33. Kohlmiller CK, Andrews L (1981) Am Chem Soc 103:2578–2583

    Article  CAS  Google Scholar 

  34. Anachkov MP, Rakovsky SK, Zaikov GE (2007) J Appl Polym Sci 104:427–433

    Article  CAS  Google Scholar 

  35. Razumovskii SD, Zaikov GE (1980) Russ Chem Rev 49:1163–1180

    Article  Google Scholar 

  36. Neeb P, Moortgat GK (1999) J Phys Chem 103:9003–9012

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the National Nature Science Foundation of China (NSFC No. 21077067), Foundation for Excellent Young and Middle-Aged Scientists of Shandong Province (BS2009SW037, BS2010SF016), and China Postdoctoral Science Special Foundation (200902560).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoxia He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1823 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Sun, Y., Cao, H. et al. Mechanisms and kinetics of the ozonolysis reaction of cis-3-hexenyl acetate and trans-2-hexenyl acetate in atmosphere: a theoretical study. Struct Chem 25, 71–83 (2014). https://doi.org/10.1007/s11224-013-0226-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0226-0

Keywords

Navigation