Skip to main content
Log in

Moisture-Induced Delayed Alumina Scale Spallation on a Ni(Pt)Al Coating

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Delayed interfacial scale failure takes place after cooling for samples of a Ni(Pt)Al-coated CMSX4 single crystal superalloy, cycled at 1150 °C for up to 2000 h. One sample exhibited premature coating grain boundary wrinkling, alumina scale spallation to bare metal, and a final weight loss of 3.3 mg/cm2. Spallation under ambient conditions was monitored with time after cooldown and was found to continue for 24 h. This produced up to 0.05 mg/cm2 additional loss for each hold, accumulating 0.7 mg/cm2 (20% of the total) over the course of the test. After test termination, water immersion produced an additional 0.15 mg/cm2 loss (a duplicate sample produced much less wrinkling and time dependent spalling, maintaining a net weight gain). The results are consistent with the general phenomena of moisture-induced delayed spallation (MIDS) of mature, distressed alumina scales formed on oxidation resistant M-Al alloys. Relative ambient humidity is discussed as the factor controlling adsorbed moisture, reaction with the substrate, and hydrogen effects on interface strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. C. Schaeffer, G. M. Kim, G. H. Meier, and F. S. Pettit, in The Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys, ed. E. Lang (Elsevier, London, 1989), p. 231.

    Google Scholar 

  2. B. Gleeson, N. Mu, and S. Hayashi, Journal of Material Science 44, 1704 (2009).

    Google Scholar 

  3. B. Gleeson, W. Wang, S. Hayashi, and D. Sordelet, Materials Science Forum 461–464, 213 (2004).

    Article  Google Scholar 

  4. E. Copland, NASA CR 2005-213330 (2005).

  5. F. Qin, C. Jiang, J. W. Anderegg, C. J. Jenks, B. Gleeson, D. J. Sordelet, and P. A. Thiel, Surface Science 601, 376 (2007).

    Article  CAS  ADS  Google Scholar 

  6. Y. Cadoret, M. P. Bacos, P. Josso, V. Maurice, P. Marcus, and S. Zanna, Materials Science Forum 461–464, 247 (2004).

    Article  Google Scholar 

  7. P. Y. Hou and K. F. McCarty, Scripta Materialia 54, 937 (2006).

    Article  CAS  Google Scholar 

  8. P. Y. Hou and K. Priimak, Oxidation of Metals 63, 113 (2005).

    Article  CAS  Google Scholar 

  9. P. Y. Hou and V. K. Tolpygo, Surface and Coatings Technology 27, 623 (2007).

    Article  CAS  Google Scholar 

  10. D. Monceau et al., Oxidation of Metals (2009) in press.

  11. A. B. Anderson, C. Ravimohan, and S. P. Mehandru, Surface Science 183, 438 (1987).

    Article  CAS  ADS  Google Scholar 

  12. R. Yu and P. Y. Hou, Applied Physics Letters 91, 011907/1 (2007).

    Google Scholar 

  13. A. Gauffier, E. Saiz, A. P. Tomsia, and P. Y. Hou, Journal of Materials Science 42, 9524 (2007).

    Article  CAS  ADS  Google Scholar 

  14. P. Y. Hou, Annual Review of Materials Research 38, 275 (2008).

    Article  CAS  ADS  Google Scholar 

  15. L. Hu, D. Hovis and A. H. Heuer, Scripta Materialia 61, 157 (2009).

    Google Scholar 

  16. M. Y. He, A. G. Evans, and J. W. Hutchinson, Acta Materialia 48, 2593 (2000).

    Article  CAS  Google Scholar 

  17. J. L. Smialek, Metallurgical Transactions 9A, 308 (1978).

    ADS  Google Scholar 

  18. J. L. Smialek, in N. L. Peterson Mem. Symp. Proc. on Oxidation and Associated Mass Transport (TMS-AIME, Warrendale, PA, 1986), p. 297.

  19. D. R. Sigler, Oxidation of Metals 40, 555 (1993).

    Article  CAS  Google Scholar 

  20. M. A. Smith, W. E. Frazier, and B. A. Pregger, Materials Science and Engineering 203, 388 (1995).

    Article  Google Scholar 

  21. R. Janakiramanan, G. H. Meier, and F. S. Pettit, Metallurgical Transactions 30A, 2905 (1999).

    Google Scholar 

  22. J. L. Smialek, NASA TM 2005-214030 (2005), 29 p.

  23. J. L. Smialek, Materials Science Forum 595–598, 191 (2008).

    Article  Google Scholar 

  24. D. R. Clarke, R. J. Christensen, and V. Tolpygo, Surface and Coatings Technology 94–95, 89 (1997).

    Article  Google Scholar 

  25. J. L. Smialek and G. N. Morscher, Material Science and Engineering A 332, 11 (2002).

    Article  Google Scholar 

  26. V. Tolpygo and D. R. Clarke, Material Science and Engineering A 278, 142 (2000).

    Article  Google Scholar 

  27. V. Sergo and D. R. Clarke, Journal of the American Ceramic Society 81, 142 (1998).

    Article  Google Scholar 

  28. X. Peng and D. R. Clarke, Journal of the American Ceramic Society 83, 1165 (2000).

    Article  CAS  Google Scholar 

  29. J. L. Smialek, in Ceramic Engineering and Science Proceedings, Vol. 23 (American Ceramic Society, Westerville, OH, 2002), p. 485.

  30. J. L. Smialek, Journal of Thermal Spray Technology 13, 66 (2004).

    Article  CAS  ADS  Google Scholar 

  31. J. L. Smialek, D. Zhu, and M. D. Cuy, Scripta Materialia 59, 67 (2008); also NASA TM 2008-215210 (2008).

    Google Scholar 

  32. M. Rudolphi, D. Renusch, and M. Schütze, Scripta Materialia 59, 255 (2008).

    Article  CAS  Google Scholar 

  33. Y. Cadoret and A. Raffaitin, in Presented at Workshop on High Temperature Corrosion and Protection for Aeronautic Applications (D. Monceau, Chair, U. Toulouse, May 16, 2008).

  34. J. L. Smialek, Unpublished research (NASA Glenn Research Center, 2009).

  35. M. C. Maris-Sida, G. H. Meier, and F. S. Pettit, Metallurgical Transactions 34A, 2609 (2003).

    CAS  Google Scholar 

  36. J. A. Nesbitt and J. L. Smialek, Unpublished research (NASA Glenn Research Center, 2008).

  37. V. K. Tolpygo and D. R. Clarke, Acta Materialia 48, 3283 (2000).

    Article  CAS  Google Scholar 

  38. J. L. Smialek and A. Garg, Unpublished research (NASA Glenn Research Center, 2009).

  39. B. A. Pint, J. A. Haynes, Y. Zhang, K. L. More, and I. G. Wright, Surface and Coatings Technology 201, 3852 (2006).

    Article  CAS  Google Scholar 

  40. D. Monceau and D. Ponquillon, Oxidation of Metals 61, 143 (2004).

    Article  CAS  Google Scholar 

  41. V. K. Tolpygo, D. R. Clarke, and K. S. Murphy, Surface and Coatings Technology 146–147, 124 (2001).

    Article  Google Scholar 

  42. S. T. Shiue, H. C. Lin, T. Y. Shen, and H. C. Hseuh, Materials Science and Engineering 434, 202 (2006).

    Article  CAS  Google Scholar 

  43. J. H. Keenan, F. G. Keyes, P. G. Hill, and J. G. Moore, Steam Tables: Thermodynamic Properties of Water Including Vapor, Liquid, and Solid Phases (Wiley, New York, 1978).

    Google Scholar 

  44. J. L. Smialek, JOM, 1, 29 (2006).

  45. V. Kucera and E. Mattson, in Corrosion Mechanisms, ed. F. Mansfield (Marcel Dekker, New York, 1989), p. 211.

    Google Scholar 

  46. V. K. Tolpygo and D. R. Clarke, Acta Materialia 46, 5153 (1998).

    Article  CAS  Google Scholar 

  47. V.K. Tolpygo and D.R. Clarke, Surface and Coatings Technology, in press.

  48. V. K. Tolpygo and D. R. Clarke, Acta Metallurgica: I & II 52, 5115 (2004).

    Google Scholar 

  49. Y. Zhang, J. A. Haynes, B. A. Pint, I. G. Wright, and W. Y. Lee, Surface and Coatings Technology 163–164, 19 (2003).

    Article  Google Scholar 

  50. M. W. Chen, R. W. Ott, T. C. Hufnagel, P. K. Wright, and K. J. Hemker, Surface and Coatings Technology 163–164, 25 (2003).

    Article  Google Scholar 

  51. D. Pan, M. W. Chen, P. K. Wright, and K. J. Hemker, Acta Materialia 51, 2205 (2003).

    Article  CAS  Google Scholar 

  52. D. J. Sordelet, M. F. Besser, R. T. Ott, B. J. Zimmerman, W. D. Porter, and B. Gleeson, Acta Materialia 55, 2433 (2007).

    Article  CAS  Google Scholar 

  53. V. K. Tolpygo and D. R. Clarke, Surface and Coatings Technology 163–164, 81 (2003).

    Article  Google Scholar 

  54. V. K. Tolpygo and D. R. Clarke, Surface and Coatings Technology 200, 1726 (2005).

    Article  CAS  Google Scholar 

  55. S. Sridharan, L. Xie, E. H. Jordon, M. Gell, and K. S. Murphy, Materials Science and Engineering A393, 51 (2005).

    CAS  Google Scholar 

  56. M. Wen, E. H. Jordon, and M. Gell, Surface and Coatings Technology 201, 3289 (2006).

    Article  CAS  Google Scholar 

  57. N. Vialas and D. Monceau, Oxidation of Metals 66, 155 (2006).

    Google Scholar 

  58. N. Vialas and D. Monceau, Oxidation of Metals, 68, 223 (2007).

    Google Scholar 

  59. K. S. Murphy, Private communication (Howmet Corp., 2008).

  60. J. A. Haynes, Scripta Materialia 44, 1147 (2001).

    Article  CAS  Google Scholar 

  61. V. K. Tolpygo, K. S. Murphy, and D. R. Clarke, Acta Metallurgica 56, 489 (2008).

    Google Scholar 

  62. H. Pint and W. More, in Superalloys 2004, eds. K. A. Green, T. M. Pollock, H. Harada, T. E. Howson, R. C. Reed, J. J. Shirra, and S. Walston (The Minerals, Metals and Materials Society, 2004), p. 597.

Download references

Acknowledgements

The author is grateful for SEM/EDS analyses by Dr. A. Garg, NASA Glenn Research Center, insightful discussions with V.K. Tolpygo, Honeywell, and helpful comments from K.S. Murphy, Howmet, and B. Gleeson, University of Pittsburgh. This work was initiated from support by Dr. Kang Lee, Rolls Royce and Donna Ballard, WPAFB, as part of a coatings life prediction study under the Metals Affordability Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Smialek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smialek, J.L. Moisture-Induced Delayed Alumina Scale Spallation on a Ni(Pt)Al Coating. Oxid Met 72, 259–278 (2009). https://doi.org/10.1007/s11085-009-9159-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-009-9159-9

Keywords

Navigation