Skip to main content
Log in

Microstructural and Tribological Behavior of Thermal Spray CrMnFeCoNi High Entropy Alloy Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

High entropy alloys (HEAs) are characterized as alloys containing five or more principal elements in equal or close to equal atomic percentage. HEAs as bulk materials and coatings are considered a potential candidate for high-temperature applications owing to their superior combination of mechanical and thermal properties. In the present study, the CrMnFeCoNi HEA coatings were developed using high-velocity oxygen fuel (HVOF) and annealed at 800 °C for 2 h. The microstructure and wear behavior of the as sprayed and annealed HEA coatings were systematically evaluated on rough and polished surfaces. The wear behavior of these HEA coatings against an alumina (Al2O3) ball was tested at room temperature. Ex situ characterization was performed using XRD and Raman spectroscopy for phase analysis, SEM-EDS for cross-section microscopy and phase compositions of the HEA coatings. Both the as sprayed and annealed coatings comprised the FCC solid solution phase with the formation of oxides. The tribological results showed equivalent behavior of as sprayed and heat-treated coatings on the polished surfaces. Rough surfaces, on the other hand, revealed significantly higher wear rates compared to the polished surfaces due to third body abrasion during sliding. A strong emphasis was placed on correlating the interfacial processes to the tribological behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared due to legal or ethical reasons.

References

  1. J. Yeh, S. Chen, S. Lin, J. Gan, T. Chin, T. Shun, C. Tsau and S. Chang, Nanostructured High-entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303.

    Article  CAS  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375, p 213–218.

    Google Scholar 

  3. S. Ranganathan, Alloyed Pleasures: Multimetallic Cocktails, Curr. Sci., 2003, 85, p 1404–1406.

    Google Scholar 

  4. P. Stoyanov, K.M. Harrington and A. Frye, Insights into the Tribological Characteristic of Cu-Based Coatings Under Extreme Contact Conditions, JOM, 2020, 72, p 2191–2197.

    Article  CAS  Google Scholar 

  5. S. Aouadi, E. Broitman, C.A. Figueroa, G. Greczynski, J.A. Zapien and M. Stüber, ICMCTF 2018—Preface, Surf Coatings Technol., 2019, 357, p 1014.

    Article  Google Scholar 

  6. M.-H. Tsai and J.-W. Yeh, High-entropy Alloys: A Critical Review, Mater. Res. Lett., 2014, 2, p 107–123.

    Article  CAS  Google Scholar 

  7. ZhangC, Gao M C, Yeh J W, Liaw P K and Zhang Y 2016 High-Entropy alloys: fundamentals and applications

  8. Taylor P, Tsai M and Yeh J (2014) High-Entropy Alloys : A Critical Review High-Entropy Alloys : A Critical Review 37–41

  9. J. Li, Y. Huang, X. Meng and Y. Xie, A Review on High Entropy Alloys Coatings: Fabrication Processes and Property Assessment, Adv. Eng. Mater., 2019, 1900343, p 1–27.

    Google Scholar 

  10. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler and E.P. George, The Influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi High-entropy Alloy, Acta Mater., 2013, 61, p 5743–5755.

    Article  CAS  Google Scholar 

  11. O.N. Senkov, G.B. Wilks, J.M. Scott and D.B. Miracle, Mechanical Properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 Refractory High Entropy Alloys, Intermetallics, 2011, 19, p 698–706.

    Article  CAS  Google Scholar 

  12. M.T. Wall, M.V. Pantawane, S. Joshi, F. Gantz, N.A. Ley, R. Mayer, A. Spires, M.L. Young and N. Dahotre, Laser-coated CoFeNiCrAlTi High Entropy Alloy onto a H13 Steel Die Head, Surf Coat. Technol, 2020, 387, p 125473.

    Article  CAS  Google Scholar 

  13. A.S.M. Ang, C.C. Berndt, M.L. Sesso, A.S.P. Anupam, R.S. Kottada and B.S. Murty, Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi, Metall Mater Trans. A Phys. Metall Mater Sci., 2015, 46, p 791–800.

    Article  CAS  Google Scholar 

  14. S.-T. Chen, W.-Y. Tang, Y.-F. Kuo, S.-Y. Chen, C.-H. Tsau, T.-T. Shun and J.-W. Yeh, Microstructure and Properties of Age-hardenable AlxCrFe1. 5MnNi0. 5 Alloys, Mater. Sci. Eng. A, 2010, 527, p 5818–5825.

    Article  CAS  Google Scholar 

  15. C.M. Liu, H.M. Wang, S.Q. Zhang, H.B. Tang and A.L. Zhang, Microstructure and Oxidation Behavior of New Refractory High Entropy Alloys, J. Alloys Compd., 2014, 583, p 162–169.

    Article  CAS  Google Scholar 

  16. Z.S. Nong, Y.N. Lei and J.C. Zhu, Wear and Oxidation Resistances of AlCrFeNiTi-based High Entropy Alloys, Intermetallics, 2018, 101, p 144–151.

    Article  CAS  Google Scholar 

  17. C. Huang, Y. Zhang, J. Shen and R. Vilar, Thermal Stability and Oxidation Resistance of Laser Clad TiVCrAlSi High Entropy Alloy Coatings on Ti-6Al-4V Alloy, Surf. Coat. Technol., 2011, 206, p 1389–1395.

    Article  CAS  Google Scholar 

  18. Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh and H.C. Shih, Microstructure and Electrochemical Properties of High Entropy Alloys—A Comparison with Type-304 Stainless Steel, Corros. Sci., 2005, 47, p 2257–2279.

    Article  CAS  Google Scholar 

  19. Y.-J. Hsu, W.-C. Chiang and J.-K. Wu, Corrosion Behavior of FeCoNiCrCux High-entropy Alloys in 3.5% Sodium Chloride Solution, Mater Chem. Phys., 2005, 92, p 112–117.

    Article  CAS  Google Scholar 

  20. P. Shi, Y. Yu, N. Xiong, M. Liu, Z. Qiao, G. Yi, Q. Yao, G. Zhao, E. Xie and Q. Wang, Microstructure and Tribological Behavior of a Novel Atmospheric Plasma Sprayed AlCoCrFeNi High Entropy Alloy Matrix Self-lubricating Composite Coatings, Tribol Int, 2020, 151, p 106470.

    Article  CAS  Google Scholar 

  21. X. Qiu, Microstructure, Hardness and Corrosion Resistance of Al2CoCrCuFeNiTix High-entropy Alloy Coatings Prepared by Rapid Solidification, J. Alloys Compd., 2018, 735, p 359–364.

    Article  CAS  Google Scholar 

  22. Y. Zhang, B. Zhang, K. Li, G.-L. Zhao and S.M. Guo, Electromagnetic Interference Shielding Effectiveness of High Entropy AlCoCrFeNi Alloy Powder Laden Composites, J. Alloys Compd., 2018, 734, p 220–228.

    Article  CAS  Google Scholar 

  23. L. Tian, Microstructure and Wear Behavior of Atmospheric Plasma-Sprayed AlCoCrFeNiTi High-Entropy Alloy Coating, J. Mater. Eng. Perform, 2016, 25, p 5513.

    Article  CAS  Google Scholar 

  24. Qiu X 2017 AC J. Alloys Compd.

  25. Li Z 2018 Designing and understanding novel high- entropy alloys towards superior properties

  26. Jin G, Cai Z, Guan Y, Cui X, Liu Z and Li Y 2018 Institute of Surface / Interface Science and Technology , Key Laboratory of College of Material Science and Chemical Engineering, Harbin

  27. W. Hsu, Y. Yang, C. Chen and J. Yeh, Intermetallics Improved Mechanical Properties and Oxidation Resistance, Intermetallics, 2017, 89, p 105–110.

    Article  CAS  Google Scholar 

  28. M. Löbel, T. Lindner, T. Mehner and T. Lampke, Microstructure and Wear Resistance of AlCoCrFeNiTi High-entropy Alloy Coatings Produced by HVOF, Coatings, 2017, 7, p 144.

    Article  CAS  Google Scholar 

  29. L. Chen, K. Bobzin, Z. Zhou, L. Zhao, M. Öte, T. Königstein, Z. Tan and D. He, Surface & Coatings Technology Wear Behavior of HVOF-sprayed Al 0. 6 TiCrFeCoNi High Entropy Alloy Coatings at Different Temperatures, Surf Coat. Technol., 2019, 358, p 215–222.

    Article  CAS  Google Scholar 

  30. J.K. Xiao, H. Tan, Y.Q. Wu, J. Chen and C. Zhang, Microstructure and Wear Behavior of FeCoNiCrMn High Entropy Alloy Coating Deposited by Plasma Spraying, Surf Coatings Technol., 2020, 385, p 125430.

    Article  CAS  Google Scholar 

  31. Y.-F. Kao, S.-K. Chen, T.-J. Chen, P.-C. Chu, J.-W. Yeh and S.-J. Lin, Electrical, Magnetic, and Hall Properties of AlxCoCrFeNi High-entropy Alloys, J. Alloys Compd., 2011, 509, p 1607–1614.

    Article  CAS  Google Scholar 

  32. P. Yang, Y. Liu, X. Zhao, J. Cheng and H. Li, Electromagnetic Wave Absorption Properties of Mechanically Alloyed FeCoNiCrAl High Entropy Alloy Powders, Adv. Powder Technol., 2016, 27, p 1128–1133.

    Article  CAS  Google Scholar 

  33. C.C. Berndt, F. Hasan, U. Tietz and K.P. Schmitz, A review of hydroxyapatite coatings manufactured by thermal spray, Advances in calcium phosphate biomaterials Springer, Berlin, 2014.

    Book  Google Scholar 

  34. K. Alagarsamy, A. Fortier, M. Komarasamy, N. Kumar, A. Mohammad, S. Banerjee, H.C. Han and R.S. Mishra, Mechanical Properties of High Entropy Alloy al 0.1 Cocrfeni for Peripheral Vascular Stent Application, Cardiovasc. Eng. Technol., 2016, 7, p 448–54.

    Article  Google Scholar 

  35. G. Popescu, B. Ghiban, C.A. Popescu, L. Rosu, R. Trusca, I. Carcea, V. Soare, D. Dumitrescu, I. Constantin and M.T. Olaru, New TiZrNbTaFe High Entropy Alloy used for Medical Applications, IOP Conf Ser. Mater. Sci. Eng., 2018, 400, p 22049.

    Article  Google Scholar 

  36. A. Vladescu, I. Titorencu, Y. Dekhtyar, V. Jinga, V. Pruna, M. Balaceanu, M. Dinu, I. Pana, V. Vendina and M. Braic, In vitro Biocompatibility of Si Alloyed Multi-Principal Element Carbide Coatings, PLoS One, 2016, 11, p e0161151.

    Article  CAS  Google Scholar 

  37. A. Meghwal, A. Anupam, B.S. Murty, C.C. Berndt, R.S. Kottada and A.S.M. Ang, Thermal Spray High-Entropy Alloy Coatings: A Review, Springer, US, 2020.

    Book  Google Scholar 

  38. Geant V, Voiculescu I, Mitrica D, Tudor A and Bobzin K 2017 Processing of AlCoCrFeNiTi high entropy alloy by atmospheric plasma spraying Processing of AlCoCrFeNiTi high entropy alloy by atmospheric plasma spraying 0–9

  39. T. Li, Y. Liu, B. Liu, W. Guo and L. Xu, Microstructure and Wear Behavior of FeCoCrNiMo0.2 High Entropy Coatings Prepared by Air Plasma Spray and the High Velocity Oxy-fuel Spray Processes, Coatings, 2017, 7, p 5–8.

    Article  CAS  Google Scholar 

  40. L. Chen, K. Bobzin, Z. Zhou, L. Zhao, M. Öte, T. Königstein, Z. Tan and D. He, Wear Behavior of HVOF-sprayed Al0. 6TiCrFeCoNi High Entropy Alloy Coatings at Different Temperatures, Surf Coatings Technol., 2019, 358, p 215–222.

    Article  CAS  Google Scholar 

  41. L.H. Tian, W. Xiong, C. Liu, S. Lu and M. Fu, Microstructure and Wear Behavior of Atmospheric Plasma-Sprayed AlCoCrFeNiTi High-Entropy Alloy Coating, J. Mater. Eng. Perform., 2016, 25, p 5513–5521.

    Article  CAS  Google Scholar 

  42. G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler and E.P. George, Temperature Dependencies of the Elastic Moduli and Thermal Expansion Coefficient of an Equiatomic, Single-Phase CoCrFeMnNi High-Entropy Alloy, J. Alloys Compd., 2015, 623, p 348–353.

    Article  CAS  Google Scholar 

  43. A. Haglund, M. Koehler, D. Catoor, E.P. George and V. Keppens, Polycrystalline Elastic Moduli of a High-Entropy Alloy at Cryogenic Temperatures, Intermetallics, 2015, 58, p 62–64.

    Article  CAS  Google Scholar 

  44. Y.Z. Xia, H. Bei, Y.F. Gao, D. Catoor and E.P. George, Synthesis, Characterization, and Nanoindentation Response of Single Crystal Fe–Cr–Ni Alloys with FCC and BCC Structures, Mater Sci. Eng. A, 2014, 611, p 177–187.

    Article  CAS  Google Scholar 

  45. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George and R.O. Ritchie, A Fracture-resistant High-entropy Alloy for Cryogenic Applications, Science, 2014, 345, p 1153.

    Article  CAS  Google Scholar 

  46. Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai and J. Wei, Hierarchical Microstructure and Strengthening Mechanisms of a CoCrFeNiMn High Entropy Alloy Additively Manufactured by Selective Laser Melting, Scr. Mater., 2018, 154, p 20–24.

    Article  CAS  Google Scholar 

  47. S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang and Z.F. Zhang, Enhanced Strength and Ductility of Bulk CoCrFeMnNi High Entropy Alloy Having Fully Recrystallized Ultrafine-Grained Structure, Mater Des., 2017, 133, p 122–127.

    Article  CAS  Google Scholar 

  48. Q. Ye, K. Feng, Z. Li, F. Lu, R. Li, J. Huang and Y. Wu, Microstructure and Corrosion Properties of CrMnFeCoNi High Entropy Alloy Coating, Appl. Surf. Sci., 2017, 396, p 1420–1426.

    Article  CAS  Google Scholar 

  49. Z. Wang, Y. Huang, Y. Yang, J. Wang and C.T. Liu, Atomic-size Effect and Solid Solubility of Multicomponent Alloys, Scr Mater., 2015, 94, p 28–31.

    Article  CAS  Google Scholar 

  50. F. Otto, Y. Yang, H. Bei and E.P. George, Relative Effects of Enthalpy and Entropy on the Phase Stability of Equiatomic High-entropy Alloys, Acta Mater., 2013, 61, p 2628–2638.

    Article  CAS  Google Scholar 

  51. X. Ji, H. Duan, H. Zhang and J. Ma, Slurry Erosion Resistance of Laser Clad NiCoCrFeAl3 High-entropy Alloy Coatings, Tribol Trans., 2015, 58, p 1119–1123.

    Article  CAS  Google Scholar 

  52. H. Zhang, W. Wu, Y. He, M. Li and S. Guo, Formation of Core–shell Structure in High Entropy Alloy Coating by Laser Cladding, Appl Surf. Sci., 2016, 363, p 543–547.

    Article  CAS  Google Scholar 

  53. L. Chen, K. Bobzin, Z. Zhou, L. Zhao, M. Öte, T. Königstein, Z. Tan and D. He, Wear Behavior of HVOF-sprayed Al0.6TiCrFeCoNi High Entropy Alloy Coatings at Different Temperatures, Surf. Coatings Technol., 2019, 358, p 215–222.

    Article  CAS  Google Scholar 

  54. W.L. Hsu, H. Murakami, J.W. Yeh, A.C. Yeh and K. Shimoda, On the Study of Thermal- sprayed Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 HEA Overlay Coating, Surf Coatings Technol., 2017, 316, p 71–74.

    Article  CAS  Google Scholar 

  55. J.A. Picas, M. Punset, M.T. Baile, E. Martín and A. Forn, Effect of Oxygen/fuel Ratio on the In-flight Particle Parameters and Properties of HVOF WC-CoCr Coatings, Surf Coatings Technol., 2011, 205, p S364–S368.

    Article  CAS  Google Scholar 

  56. T.Y. Cho, J.H. Yoon, K.S. Kim, K.O. Song, Y.K. Joo, W. Fang, S.H. Zhang, S.J. Youn, H.G. Chun and S.Y. Hwang, A Study on HVOF Coatings of Micron and Nano WC–Co Powders, Surf Coatings Technol., 2008, 202, p 5556–5559.

    Article  CAS  Google Scholar 

  57. Heberlein J V R Thermal Spray Fundamentals

  58. Gao, Yu R C 2020 Characterization and Mechanical Properties for Diamalloy 3001 and Diamalloy 3002NS Thermally Sprayed Coatings

  59. J. Chen, J. Xiao, H. Tan, Y. Wu, J. Chen and C. Zhang, Microstructure and Wear Behavior of FeCoNiCrMn High Entropy Alloy Coating Deposited by Plasma Spraying Surface & Coatings Technology Microstructure and Wear Behavior of FeCoNiCrMn High Entropy Alloy Coating Deposited by Plasma Spraying, Surf. Coat. Technol., 2020, 385, p 125430.

    Article  CAS  Google Scholar 

  60. M. Löbel, T. Lindner, S. Clauß, R. Pippig, D. Dietrich and T. Lampke, Microstructure and Wear Behavior of the High-Velocity- Oxygen-Fuel Sprayed and Spark Plasma Sintered High-Entropy Alloy AlCrFeCoNi, Adv. Eng. Mater, 2021, 23, p 2001253.

    Article  CAS  Google Scholar 

  61. B.C.N.M. de Castilho, N. Sharifi, S.A. Alidokht, K. Harrington, P. Stoyanov, C. Moreau and R.R. Chromik, Short-time Exposure Oxidation Studies on Multi-component Coatings and their Influence on Tribological Behavior, Wear, 2021, 477, p 203892.

    Article  CAS  Google Scholar 

  62. C. Coating, H. Li, J. Li, C. Yan, X. Zhang and D. Xiong, Microstructure and Tribological Properties of Plasma-Sprayed Al0.2Co1.5CrFeNi1.5Ti-Ag Composite Coating from 25 to 750_C, J. Mater. Eng. Perform., 2020, 29, p 1640.

    Article  CAS  Google Scholar 

  63. M.V. Tran, A.T. Ha and P.M.L. Le, Nanoflake Manganese Oxide and Nickel- Manganese Oxide Synthesized by Electrodeposition for Electrochemical Capacitor, J Nanomater, 2015, 2015, p 609273.

    Google Scholar 

  64. Id Q L, Huang M, Zhang S, Deng S and Gong F 2018 Effects of Annealing on Residual Stress in Ta 2 O 5 Films Deposited by Dual Ion Beam Sputtering 1–10

  65. L. Aihaiti, K. Tuokedaerhan, B. Sadeh, M. Zhang, X. Shen and A. Mijiti, Effect of Annealing Temperature on Microstructure and Resistivity of TiC Thin Films, Coatings, 2021, 11, p 457.

    Article  CAS  Google Scholar 

  66. Coatings S, Savoie S, Schulz R and Moreau C 2019 Electrochemical Behavior, Microstructure, and Surface Chemistry of Thermal-Sprayed Stainless-Steel Coatings

  67. Davis J R 2004 Handbook of thermal spray technology (ASM international)

  68. L. Zhao, M. Maurer, F. Fischer, R. Dicks and E. Lugscheider, Influence of Spray Parameters on the Particle In-flight Properties and the Properties of HVOF Coating of WC-CoCr, Wear, 2004, 257, p 41–46.

    Article  CAS  Google Scholar 

  69. Kuroda S, Kawakita J, Watanabe M and Katanoda H 2008 Warm spraying—a novel coating process based on high-velocity impact of solid particles Sci. Technol. Adv. Mater.

  70. S. Alvi and F. Akhtar, High Temperature Tribology of CuMoTaWV High Entropy Alloy, Wear, 2019, 426, p 412–419.

    Article  CAS  Google Scholar 

  71. M. Mohammadtaheri, Q. Yang, Y. Li and J. Corona-Gomez, The Effect of Deposition Parameters on the Structure and Mechanical Properties of Chromium Oxide Coatings Deposited by Reactive Magnetron Sputtering, Coatings, 2018, 8, p 111.

    Article  CAS  Google Scholar 

  72. Soler MAG, Qu F (2012) Raman Spectroscopy of Iron Oxide Nanoparticles BT - Raman Spectroscopy for Nanomaterials Characterization ed C S S R Kumar (Berlin, Heidelberg: Springer Berlin Heidelberg) pp 379–416

  73. J.H. Kim and I.S. Hwang, Development of an In situ Raman Spectroscopic System for Surface Oxide Films on Metals and Alloys in High Temperature Water, Nucl Eng. Des., 2005, 235, p 1029–1040.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The work was conducted in collaboration between two groups of Concordia University and McGill University, Canada. The authors sincerely acknowledge the support of Dr. Fadhel Ben Ettouil and Mr. Saeed Garmeh in experiments of the reported work. The authors express their sincere gratitude to Dr. Vamsi Mungala for his support during experimental work and Dr. Sadegh Mahdipoor for helping in procurement of powders. The authors would also like to acknowledge the financial support from Natural Sciences and Engineering Research Council (NSERC) Project Number CRDPJ 530409-18 and the Consortium for Research and Innovation in Aerospace in Québec (CRIAQ) Project Number MANU-1719.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Payank Patel, Pantcho Stoyanov, Richard R. Chromik or Christian Moreau.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in the Journal of Thermal Spray Technology on High Entropy Alloy and Bulk Metallic Glass Coatings. The issue was organized by Dr. Andrew S.M. Ang, Swinburne University of Technology; Prof. B.S. Murty, Indian Institute of Technology Hyderabad; Distinguished Prof. Jien-Wei Yeh, National Tsing Hua University; Prof. Paul Munroe, University of New South Wales; Distinguished Prof. Christopher C. Berndt, Swinburne University of Technology. The issue organizers were mentored by Emeritus Prof. S. Ranganathan, Indian Institute of Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, P., Alidokht, S.A., Sharifi, N. et al. Microstructural and Tribological Behavior of Thermal Spray CrMnFeCoNi High Entropy Alloy Coatings. J Therm Spray Tech 31, 1285–1301 (2022). https://doi.org/10.1007/s11666-022-01350-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01350-y

Keywords

Navigation