Skip to main content
Log in

Lattice energetics and thermochemistry of acridine derivatives and substituted acridinium trifluoromethanesulphonates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The enthalpies and temperatures of melting of eight 9-substituted acridines (alkyl, aryl or alkoxy) (I) and six their 10-methylated-acridinium trifluoromethanesulphonate (II) derivatives were measured by DSC. The enthalpies and temperatures of volatilisation of the first group of compounds were also determined by DSC or obtained by fitting TG curves to the Clausius–Clapeyron relationship. By combining the enthalpies of formation of gaseous acridines or 10-methylacridinium trifluoromethanesulphonate ions, obtained by the DFT method, and the corresponding enthalpies of sublimation and/or crystal lattice enthalpies, the enthalpies of formation of the compounds in the solid phase were predicted. For compounds whose crystal structures are known, experimental enthalpies of sublimation correspond reasonably well to crystal lattice enthalpies predicted theoretically as the sum of electrostatic, dispersive and repulsive interactions. Analysis of crystal lattice enthalpy contributions indicates that dispersive interactions between molecules always predominate in the case of acridine derivatives, whilst the crystal lattices of their quaternary salts are stabilised by electrostatic interactions between ions. Only in the case of 9-bromomethylacridine derivative, which crystallises in the monohydrated form, electrostatic contribution to the crystal lattice energy is significantly higher than in the other investigated acridines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zomer G, Stavenuiter JFC. Chemiluminogenic labels, old and new. Anal Chim Acta. 1989;227:11–9.

    Article  CAS  Google Scholar 

  2. Roda A, Pasini P, Guardigli M, Baraldini M, Musiani M, Mirasoli M. Bio- and chemiluminescence in bioanalysis. Fresenius J Anal Chem. 2000;366:752–9.

    Article  CAS  Google Scholar 

  3. Dodeigne C, Thunus L, Lejeune R. Chemiluminescence as diagnostic tool. A review. Talanta. 2000;51:415–39.

    Article  CAS  Google Scholar 

  4. Roda A, Guardigli M, Michelini E, Mirasoli M, Pasini P. Analytical bioluminescence and chemiluminescence. Anal Chem. 2003;1:462A–70A.

    Google Scholar 

  5. Roda A, Guardigli M. Analytical chemiluminescence and bioluminescence: latest achievements and new horizons. Anal Bioanal Chem. 2012;402:69–76.

    Article  CAS  Google Scholar 

  6. Mirasoli M, Guardigli M, Michelini E, Roda A. Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis. J Pharm Biomed Anal. 2014;87:36–52.

    Article  CAS  Google Scholar 

  7. Radziszewski B. Ueber die Phosphorescenz der organischen und organisirten Körper. Liebtg’s Ann Chem. 1880;203:305–36.

    Article  Google Scholar 

  8. Rak J, Skurski P, Błażejowski J. Toward an understanding of the chemiluminescence accompanying the reaction of 9-carboxy-10-methylacridinium phenyl ester with hydrogen peroxide. J Org Chem. 1999;64:3002–8.

    Article  CAS  Google Scholar 

  9. Kricka LJ. Clinical applications of chemiluminescence. Anal Chim Acta. 2003;500:279–86.

    Article  CAS  Google Scholar 

  10. Baj S, Krawczyk T. Chemiluminescence detection of organic peroxides in a two-phase system. Anal Chim Acta. 2007;585:147–53.

    Article  CAS  Google Scholar 

  11. García-Campaña AM, Lara FJ. Trends in the analytical applications of chemiluminescence in the liquid phase. Anal Bioanal Chem. 2007;387:165–9.

    Article  Google Scholar 

  12. Gámiz-Gracia L, García-Campaña AM, Huertas-Pérez JF, Lara FJ. Chemiluminescence detection in liquid chromatography: applications to clinical, pharmaceutical, environmental and food analysis—a review. Anal Chim Acta. 2009;640:7–28.

    Article  Google Scholar 

  13. Zhao L, Sun L, Chu X. Chemiluminescence immunoassay. Trends. Anal Chem. 2009;28:404–15.

    CAS  Google Scholar 

  14. Watanabe F, Takenaka S, Abe K, Tamura Y, Nakano Y. Comparison of a microbiological assay and a fully automated chemiluminescent system for the determination of vitamin B12 in food. J Agric Food Chem. 1998;46:1433–6.

    Article  CAS  Google Scholar 

  15. Gámiz-Gracia L, García-Campaña AM, Soto-Chinchilla JJ, Huertas Pérez JF, González CA. Analysis of pesticides by chemiluminescence detection in the liquid phase. Trends Anal Chem. 2005;24:927–42.

    Article  Google Scholar 

  16. McCapra F. The chemiluminescence of organic compounds. Pure Appl Chem. 1970;24:611–30.

    Article  CAS  Google Scholar 

  17. Gundermann KD, McCapra F. Acridine derivatives. In: Hafner K, Rees CW, Trost BM, Lehn JM, von Rague Schleyer P, Zahradnik R, editors. Reactivity and structure concepts in organic chemistry. Berlin-Heidelberg: Springer; 1987. p. 109–18.

    Google Scholar 

  18. McCapra F. Chemical mechanisms in bioluminescence. Acc Chem Res. 1976;9:201–8.

    Article  CAS  Google Scholar 

  19. Smith K, Yang JJ, Li Z, Weeks I, Woodhead JS. Synthesis and properties of novel chemiluminescent biological probes: 2- and 3-(2-Succinimidyloxycarbonylethyl)phenyl acridinium esters. J Photochem Photobiol A Chem. 2009;203:72–9.

    Article  CAS  Google Scholar 

  20. Zomer B, Colle L, Jedyńska A, Pasterkamp G, Kooter I, Bloemen H. Chemiluminescent reductive acridinium triggering (CRAT)— mechanism and applications. Anal Bioanal Chem. 2011;401:2945–54.

    Article  CAS  Google Scholar 

  21. Natrajan A, Wen D. Facile N-alkylation of acridine esters with 1,3-propane sultone in ionic liquids. Green Chem. 2011;13:913–21.

    Article  CAS  Google Scholar 

  22. Krzymiński K, Ożóg A, Malecha P, Roshal AD, Wróblewska A, Zadykowicz B, Błażejowski J. Chemiluminogenic features of 10-methyl-9-(phenoxycarbonyl)acridinium trifluoromethanesulfonates alkyl substituted at the benzene ring in aqueous media. J Org Chem. 2011;76:1072–85.

    Article  Google Scholar 

  23. Krzymiński K, Roshal AD, Zadykowicz B, Białk-Bielińska A, Sieradzan A. Chemiluminogenic properties of 10-methyl-9-(phenoxycarbonyl)acridinium cations in organic environments. J Phys Chem. 2010;114:10550–62.

    Article  Google Scholar 

  24. Wang S, Natrajan A. Synthesis and properties of chemiluminescent acridinium esters with different N-alkyl groups. RSC Adv. 2015;5:19989–20002.

    Article  CAS  Google Scholar 

  25. Zadykowicz B, Czechowska J, Ożóg A, Renkevich A, Krzymiński K. Effective chemiluminogenic systems based on acridinium esters bearing substituents of various electronic and steric properties. Org Biomol Chem. 2016;14:652–68.

    Article  CAS  Google Scholar 

  26. Wróblewska A, Huta OM, Midyanyj SV, Patsay IO, Rak J, Błażejowski J. Origin of chemiluminescence accompanying the reaction of the 9-cyano-10-methylacridinium cation with hydrogen peroxide. J Org Chem. 2004;69:1607–14.

    Article  Google Scholar 

  27. Wróblewska A, Huta OM, Patsay IO, Petryshyn RS, Błażejowski J. Addition of nucleophiles to the 9-cyano-10-methylacridinium cation: utilization in their chemiluminescent assay. Anal Chim Acta. 2004;507:229–36.

    Article  Google Scholar 

  28. Storoniak P, Krzymiński K, Błażejowski J. Enthalpies of sublimation and crystal lattice energies of 9-acridinamine and its derivatives. J Therm Anal. 1998;54:183–7.

    Article  CAS  Google Scholar 

  29. Storoniak P, Krzymiński K, Boużyk A, Koval’chuk E, Błażejowski J. Melting, volatilisation and crystal lattice enthalpies of acridin-9(10H)-ones. J Therm Anal Cal. 2003;74:443–50.

    Article  CAS  Google Scholar 

  30. Krzymiński K, Malecha P, Storoniak P, Zadykowicz B, Błażejowski J. Thermochemistry and crystal lattice energetics of phenyl acridine-9-carboxylates and 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulphonates. J Therm Anal Cal. 2010;100:207–14.

    Article  Google Scholar 

  31. Zadykowicz B, Krzymiński K, Storoniak P, Błażejowski J. Lattice energetics and thermochemistry of phenyl acridine-9-carboxylates and 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulphonates. J Therm Anal Cal. 2010;101:429–37.

    Article  CAS  Google Scholar 

  32. Stowell JG, Toma PH, Byrn SR. 9-Phenylacridine and 9-phenylacridine hydrochloride. Acta Cryst. 1991;C47:1637–40.

    CAS  Google Scholar 

  33. Ebead Y, Sikorski A, Krzymiński K, Lis T, Błażejowski J. 9-(2-Chloroethylamino)-acridine monohydrate and its precursor 9-phenoxyacridine. Acta Cryst. 2005;C61:o85–7.

    Google Scholar 

  34. Sikorski A, Kowalska K, Krzymiński K, Błażejowski J. 9-Benzylacridine. Acta Cryst. 2007;E63:o2670–2.

    Google Scholar 

  35. Zadykowicz B, Wera M, Sikorski A, Błażejowski J. 9-Ethyl-10-methylacridinium trifluoromethanesulfonate. Acta Cryst. 2009;E65:o30–1.

    Google Scholar 

  36. Trzybiński D, Zadykowicz B, Krzymiński K, Sikorski A, Błażejowski J. 9-Benzyl-10-methylacridinium trifluoromethanesulfonate. Acta Cryst. 2010;E66:o1548–9.

    Google Scholar 

  37. Wera M, Storoniak P, Serdiuk IE, Zadykowicz B. Structural considerations on acridine/acridinium derivatives: synthesis, crystal structure and Hirshfeld surface analysis. J Mol Struct. 2016;1105:41–53.

    Article  CAS  Google Scholar 

  38. Gale JD. GULP: a computer program for the symmetry-adapted simulation of solids. J Chem Soc, Faraday Trans. 1997;93:629–37.

    Article  CAS  Google Scholar 

  39. Gale JD, Rohl AL. The General utility lattice program (GULP). Mol Simul. 2003;29:291–341.

    Article  CAS  Google Scholar 

  40. Labanowski JK, Andzelm JW. Density functional methods in chemistry. New York: Springer; 1991.

    Book  Google Scholar 

  41. Singh UC, Kollman PA. An approach to computing electrostatic charges for molecules. J Comp Chem. 1984;5:129–45.

    Article  CAS  Google Scholar 

  42. Besler BH, Merz KM Jr, Kollman PA. Atomic charges derived from semiempirical methods. J Comp Chem. 1990;11:431–9.

    Article  CAS  Google Scholar 

  43. Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc. 2008;120:215–41.

    Article  CAS  Google Scholar 

  44. Ditchfield R, Hehre WJ, Pople JA. Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys. 1971;54:724–8.

    Article  CAS  Google Scholar 

  45. Hehre WJ, Ditchfield R, Pople JA. Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys. 1972;56:2257–61.

    Article  CAS  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ Gaussian 09. Revision D.01. Wallingford CT: Gaussian, Inc; 2013.

  47. Mayo SL, Olafson BD, Goddard WA. DREIDING: a generic force field for molecular simulations. J Phys Chem. 1990;94:8897–909.

    Article  CAS  Google Scholar 

  48. Filippini G, Gavezzotti A. Empirical intermolecular potentials for organic crystals: the ‘6-exp’ approximation revisited. Acta Crystallogr B. 1993;49:868–80.

    Article  Google Scholar 

  49. Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D’Arco P, Llunell M. Crystal09. Torino: Universita di Torino; 2009.

    Google Scholar 

  50. Civalleri B, Zicovich-Wilson CM, Valenzano L, Ugliengo P. B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals. CrystEngComm. 2008;10:405–10.

    Article  CAS  Google Scholar 

  51. Boys SF, Bernardi M. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys. 1970;19:553–66.

    Article  CAS  Google Scholar 

  52. Becke AD. A new mixing of Hartree-Fock and local-density functional theories. J Chem Phys. 1993;98:1372–7.

    Article  CAS  Google Scholar 

  53. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–52.

    Article  CAS  Google Scholar 

  54. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–9.

    Article  CAS  Google Scholar 

  55. Hariharan PC, Pople JA. The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta. 1973;28:213–22.

    Article  CAS  Google Scholar 

  56. Dunning TH Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys. 1989;90:1007–23.

    Article  CAS  Google Scholar 

  57. Hehre WJ, Radom L, von Schleyer PR, Pople A. Ab initio molecular orbital theory. New York: Wiley; 1986.

    Google Scholar 

  58. Dewar MJS, Ford GP. Ground states of molecules. 44. MINDO/3 calculations of absolute heat capacities and entropies of molecules without internal rotations. J Am Chem Soc. 1977;99:7822–9.

    Article  CAS  Google Scholar 

  59. Atkins P, de Paula J. Physical chemistry. 9th ed. Oxford: Freeman WH; 2009.

    Google Scholar 

  60. Kamiya I, Sugimoto T, Yamabe K. A kinetic study on the chemiluminescence of 9-alkylacridines upon air oxidation in alkaline aprotic solvents. Bull Chem Soc Jpn. 1984;57:1735–9.

    Article  CAS  Google Scholar 

  61. Abbotto A, Beverina L, Bradamante S, Facchetti A, Klein C, Pagani GA, Redi-Abshiro M, Wortmann R. A distinctive example of the cooperative interplay of structure and environment in tuning of intramolecular charge transfer in second-order nonlinear optical chromophores. Chem Eur J. 2003;9:1991–2007.

    Article  CAS  Google Scholar 

  62. Gude L, Fernández M-J, Grant KB, Lorente A. Syntheses and copper(II)-dependent DNA photocleavage by acridine and anthracene 1,10-phenanthroline conjugate systems. Org Biomol Chem. 2005;3:1856–62.

    Article  CAS  Google Scholar 

  63. Perrine TD. 9-Vinylacridine: preparation and some reactions of it and related substances of possible application in the synthesis of acridine amino alcohols. J Org Chem. 1960;25:1516–9.

    Article  CAS  Google Scholar 

  64. Paláta K, Stevens MFG. Structural studies on bioactive compounds. Part 33. Synthesis of 9-arylacridines by palladium-mediated couplings. J Chem Research (S). 2000;136–7.

  65. Bratulescu G. A facile and quick synthesis of 9-aryl-substituted-acridines mediated by DMP. Curr Org Synth. 2013;10:947–50.

    Article  CAS  Google Scholar 

  66. Baumhover NJ, Anderson K, Fernandez CA, Rice KG. Synthesis and in vitro testing of new potent polyacridine-melittin gene delivery peptides. Bioconjugate Chem. 2010;21:74–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Julian D. Gale for supplying the GULP program and permission to use it. They would also like to thank Mrs Gabriela Nowak-Wiczk for her contribution to the DSC and TG measurements. This study was financed from the State Funds for Scientific Research through National Science Centre grant 2011/03/D/ST4/02419 (contract No. UMO-2011/03/D/ST4/02419). Calculations were carried out on the computers of the Wroclaw Centre for Networking and Supercomputing (WCSS) (Grants No. 196 and 215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Zadykowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadykowicz, B., Storoniak, P. Lattice energetics and thermochemistry of acridine derivatives and substituted acridinium trifluoromethanesulphonates. J Therm Anal Calorim 129, 1613–1624 (2017). https://doi.org/10.1007/s10973-017-6306-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6306-4

Keywords

Navigation