Skip to main content
Log in

First-Principle Investigation of V and Cr Doping on the Dilute Magnetic Semiconducting Properties of Rutile SnO2: a Modified Becke-Johnson (TB-mBJ) Exchange Potential Study

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Theoretical investigations on rutile SnO2 doped with V and Cr were performed by using recently implemented Tran and Blaha’s modified Becke-Johnson exchange potential model (TB-mBJ) based on density functional theory. The electronic, magnetic, dielectric and optical properties of V and Cr-doped tin oxide have been calculated by full-potential linearized augmented plane wave method (FP-LAPW) by WIEN2k code. The present works demonstrate accurate prediction of band structures and properties using the TB-mBJ model. The calculated values of magnetic moment, dielectric constant and refractive index of doped and undoped compounds agree well with the experimental results. The TB-mBJ model is a direct method without using empirical corrections and hence, the furnished data are useful in material modelling for spintronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Park, W.K., Ortega-Hertogs, R.J., Moodera, J.S., Punnoose, A., Seehra, M.S.: J. Appl. Phys. 91, 8093–8095 (2002)

    Article  ADS  Google Scholar 

  2. Wang, Z., Wang, W., Tang, J., Le, D., Spinu, L., Zhou, W.: J. Appl. Phys. 83, 518–520 (2003)

    Google Scholar 

  3. Schwartz, D.A., Kittilstved, K.R., Gamelina, D.R.: Appl. Phys. Lett. 85, 1395–1397 (2004)

    Article  ADS  Google Scholar 

  4. Ogale, S.B., Choudhary, R.J., Buban, J.P., Shinde, S.R.: Phys. Rev. Lett. 91, 077205–077208 (2003)

    Article  ADS  Google Scholar 

  5. Hong, N.H., Sakai, J., Prellier, W, Hassini, A.: J. Phys: Condens. Matter. 17, 1697–1702 (2005)

    ADS  Google Scholar 

  6. Vaja(Dumitru), F., Ficai, D., Ficai, A., Oprea, O., Guran, C.: J. Optoelectron. Adv. Mater. 15 (1–2), 107 (2013)

    Google Scholar 

  7. Mihaiescu, DE, Horja, M, Gheorghe, I, Ficai, A, Grumezescu, AM, Bleotu, C, et al.: Lett. Appl. NanoBioSci. 1(2), 45 (2012)

    Google Scholar 

  8. Oprea, O., Vasile, O.R., Voicu, G., Craciun, L., Andronescu, E.: Dig. J. Nanomater. Bios. 7(4), 1757 (2012)

    Google Scholar 

  9. Sato, K., Katayama-Yoshida, H.: J. Appl. Phys. 39, L555–L558 (2000)

    Article  ADS  Google Scholar 

  10. Srinivas, K., Vithali, M., Sreedhar, B., Manivel Raja, M., Venugopalreddy, P.: J. Phys. Chem. C 113(9), 3543–3552 (2009)

    Article  Google Scholar 

  11. Liu, B., Cheng, C.W., Chen, R., Shen, Z.X., Fan, H.J., Sun, H.D.: J. Phys. Chem. C. 114, 3407–3410 (2010)

    Article  Google Scholar 

  12. Sharma, A., Varshney, M., Kumar, S., Verma, K.D., Kumar, R.: Nanomater. Nanotechnol. 1(1), 24–28 (2011)

    Google Scholar 

  13. Liu, B, Cheng, C W, Chen, R, Shen, ZX, Fan, HJ, Sun, HD: J. Phys. Chem. C 114, 3407–3410 (2010)

    Article  Google Scholar 

  14. Gurakar, S., Serin, T., Serin, N.: Adv. Mat. Lett. 5(6), 309–314 (2014)

    Article  Google Scholar 

  15. Korber, C., Agoston, P., Klein, A.: Sens. Actuators B 139, 665 (2009)

    Article  Google Scholar 

  16. Gu, F., Wang, S.F., Lu, M.K., Zhou, G.J., Xu, D., Yuan, D.R.: J. Phys. Chem. B 108, 8119 (2004)

    Article  Google Scholar 

  17. Kawazoe, H., Yasukawa, M., Hyodo, H., Kurita, M., Yanagi, H., Hosono, H.: Nature (London) 389, 939 (1997)

    Article  ADS  Google Scholar 

  18. Lewis, B.G., Paine, D.C.: MRS Bull. 25, 22 (2000)

    Article  Google Scholar 

  19. Ogale, S.B., Choudhary, R.J., Buban, J.P., Lofland, S.E., Shinde, S.R., Kale, S.N., Kulkarni, V.N., Higgins, J., Lanci, C., Simpson, J.R., Browning, N.D., Das Sarma, S., Drew, H.D., Greene, R.L., Venkatesan, T.: Phys. Rev. Lett. 91, 077205 (2003)

    Article  ADS  Google Scholar 

  20. Tran, F., Blaha, P.: PRL 102, 226401 (2009)

    Article  ADS  Google Scholar 

  21. Singh, D.J.: Plane waves, Pseudopotential and the LAPW method. Kluwer Academic Publisher, Boston (1994)

    Book  Google Scholar 

  22. Baizaee, S.M., Mousavi, N.: Physica B 404, 2111–2116 (2009)

    Article  ADS  Google Scholar 

  23. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  24. Monkhorst, H.J., Pack, J.D.: Phys. Rev. B 13, 1758 (1976)

    Article  Google Scholar 

  25. Vest, A., Tela, K.T., Prilozheniya, T.I., Mir, Moskva, T.: 28 (1988)

  26. Haines, J., Leger, J.M.: Phys. Rev. B 55, 11144 (1997)

    Article  ADS  Google Scholar 

  27. Agekyan, V.T.: Phys. Status Solidi A 43, 11 (1977)

    Article  ADS  Google Scholar 

  28. Liu, Q. I.-J., Liu, Z.-T., Feng, L. I.-P.: Com. Mat. Sci. 47, 1016 (2010)

    Article  Google Scholar 

  29. Azam, A., et al.: J. Alloys Compd. 523, 83–87 (2012)

    Article  Google Scholar 

  30. Kasar, R.R., Gosavi, S.R., Ghosh, A., Deshpande, N.G., Sharma, R.P.: J. Appl. Phys. (IOSR-JAP), 2278-4861 7(1), 21–26 (2015). Ver. I

    Google Scholar 

  31. Gao, G.Y., et al.: J. Magn. Magn. Mater. 313, 210–213 (2007)

    Article  ADS  Google Scholar 

  32. Shao, G.: J. Phys. Chem. C 112, 18677–18685 (2008)

    Article  Google Scholar 

  33. Wang, X.L., Dai, Z.X., Zeng, Z.: J. Phys.: Condens. Matter. 20, 045214 (8pp) (2008)

    ADS  Google Scholar 

  34. Baizaee, S.M., Mousavi, N.: Physica B 404, 2111–2116 (2009)

    Article  ADS  Google Scholar 

  35. Bassani, F., Parravicini, G.P., Ballinger, R.A, Pamplin, B.R.: Electronic states and optical transitions in solids. Pergamon Press, London (1975)

    Google Scholar 

  36. Lynch, W.D.: Interband Absorption-Mechanisms and Interpretations. In: Palik, E. D. (ed.) Handbook of Optical Constants of Solids. Academic, New York (1985)

    Google Scholar 

  37. Penn, D.R.: Phys. Rev. 128, 2093–2097 (1962)

    Article  ADS  Google Scholar 

  38. Baizaee, S.M., Mousavi, N.: Physica B 404, 2111–2116 (2009)

    Article  ADS  Google Scholar 

  39. Stashans, A., Puchaicela, P., Rivera, R.: J. Mater. Sci., doi:10.1007/s10853-013-7999-9

Download references

Acknowledgments

The authors thank UGC, India for funding this work through a minor research project (MRP-6318/15(SERO/UGC)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Venugopal Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahesh, R., Raju, E.M. & Reddy, P.V. First-Principle Investigation of V and Cr Doping on the Dilute Magnetic Semiconducting Properties of Rutile SnO2: a Modified Becke-Johnson (TB-mBJ) Exchange Potential Study. J Supercond Nov Magn 30, 3415–3422 (2017). https://doi.org/10.1007/s10948-017-4119-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4119-0

Keywords

Navigation