Skip to main content
Log in

Effect of Fe Doping and O Vacancies on the Magnetic Properties of Rutile TiO2

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Magnetism sources of Fe doping and O vacancies, which coexist in the presence of rutile TiO2, are controversial and require a resolution. The effects of Fe doping and point defect on the magnetism of rutile TiO2 were studied using geometry optimization and energy calculation based on the first principle generalized gradient approximation + U method (GGA+U) of density functional theory. Fe/Vo ratio is 1:1 in rutile TiO2. The next closest distance between Fe and Vo is 0.04082 nm. The formation energy of the doping system is the smallest. This doping system has the highest stability. The coexistence of Fe doping and O vacancy achieved ferromagnetic long-range order. The different ratios of Fe/Vo are 1:1, 1:2, 2:1, and 2:2. The magnetic properties of the doping system are significantly different. At a ratio of 2:1, the magnetic moment is the largest among all doping systems. Moreover, the Curie temperature of the doping system can be higher than room temperature. These findings can obtain dilute magnetic semiconductors with potential application value. At a Fe/VO ratio of 2:2, the Ti14Fe2O30 system produces a half-metallic property of 100% electron spin polarizability. This is the most valuable application for designing and preparing novel spintronic injection source dilute magnetic semiconductors. The magnetic source is mainly mediated by the holes generated by Fe doping and O vacancy complexes, thereby causing the spin polarization double exchange effect on the electron of Ti–3d orbital atoms near the O vacancy, O–2p electron orbital, and Fe–3d electron orbital. This feature is consistent with the following theories: the mean field approximation and the double exchange mechanism theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang, X., Song, Y., Tao, L.L.: Origin of ferromagnetism in aluminum-doped TiO2 thin films: theory and experiments. Appl. Phys. Lett. 105, 262402 (2014)

    Article  ADS  Google Scholar 

  2. Matsumoto, Y., Murakami, M., Shono, T.: Room-temperature ferromagnetismin transparent transition metal-doped titanium dioxide. Science. 291, 854–856 (2001)

    Article  ADS  Google Scholar 

  3. Zarhri, Z., Houmad, M., Ziat, Y.: Ab-initio study of magnetism behavior in TiO2 semiconductor with structural defects. J. Magn. Magn. Mater. 406, 212–216 (2016)

    Article  ADS  Google Scholar 

  4. Xu, N.N., Li, G.P., Lin, Q.L.: Structural and magnetic study of undoped and Cu-doped rutile TiO2 single crystals. J. Supercond. Nov. M. 30, 2591–2596 (2017)

    Article  Google Scholar 

  5. Thu, D.X., Trung, V.Q., Nghia, N.M.: Effects of Fe doping on the structural, optical, and magnetic properties of TiO2 nanoparticles. J. Electron. Mater. 45(11), 6033–6037 (2016)

    Article  ADS  Google Scholar 

  6. Yang, S., Jiang, D., Zeng, Q.: Room temperature ferromagnetism of Fe-doped and (Fe, Cu)-codoped TiO2 powders prepared by mechanical alloying. J. Mater. Sci. 6, 6570–6577 (2016)

    Google Scholar 

  7. Akdogan, N., Nefedov, A.H., Zabel, K., Westerholt, H.: High-temperature ferromagnetism in Co-implanted TiO2 rutile. J. Phys. D. Appl. Phys. 42(11), 115005 (2009)

    Article  ADS  Google Scholar 

  8. Ahmed, S.A.: Ferromagnetism in Cr-, Fe-, and Ni-doped TiO2 samples. J. Magn. Magn. Mater. 442, 152–157 (2017)

    Article  ADS  Google Scholar 

  9. Zou, Z., Zhou, Z., Wang, H.: Oxygen defect-mediated magnetism in Fe-C Co doped TiO2. Adv. Mater. Sci. Eng. 11, 1–7 (2016)

    Article  Google Scholar 

  10. Waseem, S., Anjum, S., Mustafa, L.: Effects of Fe and Co co-doping on structural, magnetic, sand optical properties of Ti0.9Fe0.1xCoxO2 magnetic semiconductors. J. Supercond. Nov. Magn. 57, 103002–103005 (2018)

    Google Scholar 

  11. Mudarra, Navarro, A.M., Rodríguez, T., Claudia, E., Bilovol, V.: Study of the relation between oxygen vacancies and ferromagnetism in Fe-doped TiO2 nano-powders. J. Appl. Phys. 14, 223908 (2014)

    Article  ADS  Google Scholar 

  12. Meng, H.J., Hou, D.L., Jia, X.J.: Role of oxygen vacancies on ferromagnetism in Fe-doped TiO2 thin films. J. Appl. Phys. 102, 073905 (2007)

    Article  ADS  Google Scholar 

  13. Li, J.P., Meng, S.H., Qin, L.Y.: Optical properties of anatase and rutile TiO2 studied by GGA+U. Chin. Phys B. 26, 087101 (2017)

    Article  ADS  Google Scholar 

  14. Hsuan, C.W., Sheng, H.L., Syuan, W.L.: Effect of Fe concentration on Fe-doped anatase TiO2 from GGA +U calculations. Int. J. Photoenergy. 2, 91–98 (2012)

    Google Scholar 

  15. Atanelov, J., Gruber, C., Mohn, P.: The electronic and magnetic structure of p-element (C,N) doped rutile-TiO2; a hybrid DFT study. Comput. Mater. Sci. 98, 42–50 (2015)

    Article  Google Scholar 

  16. Bader, R.F.W.: The International Series of Monographs on Chemistry. Oxford University, Oxford (1990)

    Google Scholar 

  17. Liu, B., Zhao, X.: The synergetic effect of V and Fe-co-doping in TiO2, studied from the DFT + U first-principle calculation. Appl. Surf. Sci. 399, 654–662 (2017)

    Article  ADS  Google Scholar 

  18. Wang, Y., Ma, J., Zhou, J.P.: First-principles study of the electronic structure of nonmetal-doped anatase TiO2. J. Korean Phys. Soc. 68, 409–414 (2016)

    Article  ADS  Google Scholar 

  19. Xin, L., Quan, X., Zean, T.: A DFT study of electronic structures and optical properties of nickel, nitrogen doped rutile TiO2. Chem. Phys. Lett. 710, 143–146 (2018)

    Article  ADS  Google Scholar 

  20. Fisher, C.A.J., Prieto, V.M.H., Islam, M.S.: Lithium battery materials LiMPO4 (M = Mn, Fe, Co, and Ni): insights into defect association, transport mechanisms, and doping behavior. Chem. Mater. 20, 5907–5915 (2008)

    Article  Google Scholar 

  21. Zhang, S., Zhou, Z., Xiong, R.: The origin of ferromagnetism of Co-doped TiO2, nanoparticles: experiments and theory investigation. Mod. Phys. Lett. B. 30, 1650296 (2016)

    Article  ADS  Google Scholar 

  22. Liu, H., Zhang, J.M.: Effect of two identical 3d transition-metal atoms M doping (M = V, Cr, Mn, Fe, Co, and Ni) on the structural, electronic, and magnetic properties of ZnO. Phys. Status. Solidi. B. 254, 1700098 (2017)

    Article  ADS  Google Scholar 

  23. Fakhim, L.A., Ouchri, M., Belaiche, M.: The effect of fluorine doping on electronic structure and ferromagnetic stability of Os-doped TiO2 rutile phase: first-principles calculations. J. Magn. Ater. 401, 977–981 (2016)

    Article  ADS  Google Scholar 

  24. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science. 287, 1019–1022 (2000)

    Article  ADS  Google Scholar 

  25. Sato, K., Katayama-Yoshida, H.: Material design fortransparent ferromagnets with ZnO-based magnetic semiconductors. Jpn. J. Appl. Phys. 39, L555–L558 (2000)

    Article  ADS  Google Scholar 

  26. Sato, K., Dederics, P.H., Katayama-Yoshida, Y.H.: Curie temperatures of III–V diluted magnetic semiconductors calculated from first principles. Europhys. Lett. 61, 403–408 (2003)

    Article  ADS  Google Scholar 

  27. Pan, F.C., Lin, X.L., H.M., C., Guo, Y.R., Wang, X.M.: Ferromagnetism of Cu-doped anatase TiO2: the first-principles calculation study. Jpn. J. Appl. Phys. 57, 103002 (2018)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 61664007) and Technology Major Project of Inner Mongolia Autonomous Region (2018-810).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyu Hou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, D., Hou, Q. & Guan, Y. Effect of Fe Doping and O Vacancies on the Magnetic Properties of Rutile TiO2. J Supercond Nov Magn 32, 3615–3621 (2019). https://doi.org/10.1007/s10948-019-5129-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-5129-x

Keywords

Navigation