Skip to main content
Log in

A first-principles study of the effect of doping and vacancy defects on the magnetic properties of ZnSnAs2:V

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Ab initio study of the electronic and magnetic properties of vanadium-doped and vacancy-defected chalcopyrite semiconductor ZnSnAs2 was carried out using density functional theory within the spin generalized gradient approximation with Hubbard-like correction (SGGA + U). Investigation of magnetic properties shows that adding a transition element contributes to the magnetization of ZnSnAs2. The total energy calculations for a number of supercells show that a ferromagnetic spin ordering is favorable when V replaces Zn. The ferromagnetic alignment in V-doped ZnSnAs2 systems behaves half-metallic state. The presence of a single Zn- or Sn- or As-vacancy affects the ferromagnetism and may even strengthen the magnetization of V-doped ZnSnAs2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S Choi et al Solid State Commun. 122 165 (2002)

    Article  ADS  Google Scholar 

  2. N Uchitomi, H Oomae, J Asubar, H Endoh and Y Jinbo Jpn. J. Appl. Phys. 50 5 (2011)

    Article  Google Scholar 

  3. J Asubar, Y Jinbo and N Uchitomi J. Cryst. Growth 311 929 (2009)

    Article  ADS  Google Scholar 

  4. G Medvedkin, T Ishibashi, T Nishi, K Hayata, Y Hasegawa and K Sato Jpn. J. Appl. Phys. 39 L949 (2000)

    Article  ADS  Google Scholar 

  5. S Choi, J Choi, S C Hong, S Cho, Y Kim and J B Ketterson J. Korean Phys. Soc. 42 739 (2003)

    Google Scholar 

  6. H Kizaki and Y Morikawa Jpn. J. Appl. Phys. 57 020306 (2018)

    Article  ADS  Google Scholar 

  7. N Uchitomi, J T Asubar, H Oomae, H Endoh and Y Jinbo e J Surf. Sci. Nanotech. 9 95 (2011)

    Article  Google Scholar 

  8. V Brudnyi and T Vedernikova Russian J. Phys. Techn. Semicon. 43 433 (2009)

    Google Scholar 

  9. B Delley J. Chem. Phys. 113 7756 (2000)

    Article  ADS  Google Scholar 

  10. G A Seryogin S A Nikishin and H Temkin J. Vac. Sci. Technol. B 16 1456 (1998)

    Article  Google Scholar 

  11. B Mercey, D Chippaux, J Vizot And A Deshanvres J. Phys. Chem. Solids 47 37 (1986)

    Article  ADS  Google Scholar 

  12. S Francoeur, G A Seryogin, S A Nikishin and H Temkin Appl Phys. Lett. 76 2017 (2000)

    Article  ADS  Google Scholar 

  13. S D Setzler, P G Schunemann and T M Pollak J. Appl. Phys. 86 6677 (1999)

    Article  ADS  Google Scholar 

  14. H Munekata, H Ohno, S von Molnar, A Segmuller, L L Chang and L Esaki Phys Rev. Lett. 63 1849 (1989

    Article  ADS  Google Scholar 

  15. H Ohno, A Shen, F Matsukura, A Oiwa, A Endo, S Katsumoto and Y Iye Appl Phys. Lett. 69 363 (1996)

    Article  ADS  Google Scholar 

  16. T Dietl Nat. Mater. 9 965 (2014)

    Article  ADS  Google Scholar 

  17. T Dietl and H Ohno Rev. Mod. Phys. 86 187 (2014)

    Article  ADS  Google Scholar 

  18. S A Wolf et al Science 294 1488 (2001)

    Article  ADS  Google Scholar 

  19. K Sato et al Rev. Mod. Phys. 82 1633 (2010)

    Article  ADS  Google Scholar 

  20. V Jafarova, S Huseynova, G Orudzhev, N Uchitomi, K Wakita and N Mamedov Phys Stat. Sol. C 12 668 (2015)

    Google Scholar 

  21. G S Orudzhev, V N Jafarova, S S Huseynova and E K Gasimova Int J. Modern Phys. B 34 2050285 (2020)

    Article  ADS  Google Scholar 

  22. P Hohenberg and W Khon Phys. Rev. B 136 B864 (1964)

    Article  ADS  Google Scholar 

  23. J Perdew K Burk and Y Wang Phys Rev. B 54 16533 (1996)

    Article  Google Scholar 

  24. F Martin and S Matthias Comput. Phys. Commun. 119 67 (1999)

    Article  Google Scholar 

  25. W Kohn and L Sham Phys. Rev. 140 A1133 (1965)

    Article  ADS  Google Scholar 

  26. J P Perdew, K Burke and M Ernzerhof Phys Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  27. H Monkhorst and J Pack Phys. Rev. B 13 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  28. D Gasson, P J Holmes, I C Jennings, B R Marathe and J E Parrott J. Phys. Chem. Solids 23 1291 (1962)

    Article  ADS  Google Scholar 

  29. A Vaipolin Fiz. Tverd. Tela Sov. Phys. 15 1430 (1973)

    Google Scholar 

  30. A Mejidov, R Muradov, X Xalilova and T Mextiev Trans Series Phys Math Techn Sci Phys Astron 2 110 (2004

    Google Scholar 

  31. M Cococcioni and S de Gironcoli Phys. Rev. B 71 035105 (2005)

    Article  ADS  Google Scholar 

  32. J Kaczkowski and A Jezierski Acta Phys. Pol. A 116 5 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ph.D. Gurban Eyyubov of the Institute of Physics of ANAS for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Jafarova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarova, V.N., Orudzhev, G.S. A first-principles study of the effect of doping and vacancy defects on the magnetic properties of ZnSnAs2:V. Indian J Phys 96, 2379–2384 (2022). https://doi.org/10.1007/s12648-021-02188-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02188-w

Keywords

Navigation