Skip to main content

Advertisement

Log in

Differences in Membrane Properties in Simulated Cases of Demyelinating Neuropathies: Internodal Focal Demyelinations with Conduction Block

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the membrane properties (potentials and axonal excitability indices) in the case of myelin wrap reduction (96%) in one, two and three consecutive internodes along the length of human motor nerve fibre. The internodally focally demyelinated cases (termed as IFD1, IFD2 and IFD3, respectively, with one, two and three demyelinated internodes are simulated using our previous double cable model of the fibre. The progressively greater increase of focal loss of myelin lamellae blocks the invasion of the intracellular potentials into the demyelinated zones. For all investigated cases, the radial decline of the extracellular potential amplitudes increases with the increase of the radial distance and demyelination, whereas the electrotonic potentials show a decrease in the slow part of the depolarizing and hyperpolarizing responses. The time constants are shorter and the rheobases higher for the IFD2 and IFD3 cases than for the normal case. In the recovery cycles, the same cases have less refractoriness, greater supernormality and less late subnormality than the normal case. The simulated membrane abnormalities can be observed in vivo in patients with demyelinating forms of Guillain-Barré syndrome. The study provides new information about the pathophysiology of acquired demyelinating neuropathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birouk, N., Gouider, R., Le Guern, E., Gugenheim, M., Tardieu, S., Maisonobe, T., Le Forestier, N., Agid, Y., Brice, A. and Bouche, P.: Charcot-Marie-Tooth Disease Type 1A with 17p11.2 Duplication. Clinical and Electrophysiological Phenotype Study and Factors Influencing Disease Severity in 119 Cases, Brain 120 (1997), 813–823.

    Article  Google Scholar 

  2. Dyck, P.J., Chance, P., Lebo, R. and Camey, A.J.: Hereditary Motor and Sensory Neuropathies. In: Dyck P.J., Thomas, P.K., Griffin, J.W., Low P.A., Poduslo, J.F. (eds.) Peripheral Neuropathy, 3rd edn. Philadelphia: W.B. Saunders, 1993, pp.1094–1136.

  3. Choudhury, D. and Arora: Axonal Guillain-Barré Syndrome: A Critical Review, Acta Neurol. Scan. 103 (2001), 267–277.

    Article  Google Scholar 

  4. Feasby, T.E., Gilbert, J.J., Brown, W.F., Bolton, C.F., Hahn, A.F., Koopman, W.F. and Zochodne, D.W.: An Acute Axonal form of Guillain-Barré Polyneuropathy, Brain 109 (1986), 1115–1126.

    Article  Google Scholar 

  5. Griffin, J.W., Li, C.Y., Ho, T.W., Xue, P., Macko, C., Gao, C.Y., Yang, C., Tian, M., Mishu, B. and Cornblath, D.R.: Guillain-Barré Syndrome in Northern China. The Spectrum of Neuropathological Changes in Clinically Defined Cases, Brain 118 (1995), 575–595.

    Article  Google Scholar 

  6. Kaji, R.: Physiology of Conduction Block in Multifocal Motor Neurophathy and Other Demyelinating Neuropathies, Muscle Nerve 27 (2003), 285–296.

    Article  Google Scholar 

  7. Priori, A., Bossi, B., Ardolino, G., Bertolasi, L., Carpo, M., Nobile-Orazio, E. and Barbieri, S.: Pathophysiological Heterogeneity of Conduction Blocks in Multifocal Motor Neuropathy, Brain 128 (2005), 1642–1648.

    Article  Google Scholar 

  8. Kiernan, M.C., Guglielmi, J.M., Kaji, R., Murray, N. M.F. and Bostock, H.: Evidence for Axonal Membrane Hyperpolarization in Multifocal Motor Neuropathy with Conduction Block, Brain 125 (2002), 664–675.

    Article  Google Scholar 

  9. Kuwabara, S., Bostock, H., Ogawara, K., Sung, J.Y., Kanai, K., Mori, M., Hattori, T. and Burke, D.: The Refractory Period of Transmission is Impaired in Axonal Guillain-Barré Syndrome. Muscle Nerve 28 (2003), 683–689.

    Article  Google Scholar 

  10. Kuwabara, S., Ogawara, K., Sung, J.Y., Mori, M., Kanai, K., Hattori, T., Yuki, N., Lin, C.S., Burke, D. and Bostock, H.: Differences in Membrane Properties of Axonal and Demyelinating Guillain-Barré Syndromes, Ann. Neurol. 52 (2002), 180–187.

    Article  Google Scholar 

  11. Nodera, H., Bostock, H., Kuwabara, S., Sakamoto, T., Asanuma, K., Sung, J.Y., Ogawara, K., Hattori, N., Hirayama, M., Sobue, G. and Kaji, R.: Nerve Excitability Properties in Charcot-Marie-Tooth Disease Type A1, Brain 127 (2004), 203–211.

    Article  Google Scholar 

  12. Sung, J.Y., Kuwabara, S., Kaji, R., Ogawara, K., Mori, M., Kanai, K., Nodera, H., Hattori, T. and Bostock, H.: Threshold Electrotonus in Chronic Inflammatory Demyelinating Polyneuropathy: Correlation with Clinical Profiles, Muscle Nerve 29 (2004), 28–37.

    Article  Google Scholar 

  13. Stephanova, D.I. and Daskalova, M.: Extracellular Potentials of Human Motor Myelinated Nerve Fibers in Normal Case and in Amyotrophic Lateral Sclerosis, Electromyogr. Clin. Neurophysiol. 42 (2002), 443–448.

    Google Scholar 

  14. Stephanova, D.I. and Daskalova, M.: Differences in Potentials and Excitability Properties in Simulated Cases of Demyelinating Neuropathies. Part II. Paranodal demyelination. Clin. Neurophysiol, 116 (2005), 1159–1166.

    Article  Google Scholar 

  15. Stephanova, D.I. and Daskalova, M.: Differences in Potentials and Excitability Properties in Simulated Cases of Demyelinating Neuropathies. Part III. Paranodal Internodal Demyelination, Clin. Neurophysiol. 116 (2005), 2334–2341.

    Article  Google Scholar 

  16. Stephanova, D.I., Daskalova, M. and Alexandrov, A.S.: Differences in Potentials and Excitability Properties in Simulated Cases of Demyelinating Neuropathies. Part I, Clin. Neurophysiol. 116 (2005),1153–1158.

    Article  Google Scholar 

  17. Stephanova, D.I., Daskalova, M. and Alexandrov, A.S.: Differences in Membrane Properties in Simulated Cases of Demyelinating Neuropathies: Internodal Focal Demyelinations Without Conduction Block, J. Biol. Phys. (2006), DOI: 10.1007/s10867-006-9001-9.

  18. Stephanova, D.I. and Bostock, H.: A Distributed-Parameter Model of the Myelinated Human Motor Nerve Fibre: Temporal and Spatial Distributions of Action Potentials and Ionic Currents. Biol. Cybern. 73 (1995), 275–280.

  19. Stephanova, D.I. and Bostock, H.: A Distributed-Parameter Model of the Myelinated Human Motor Nerve Fibre: Temporal and Spatial Distributions of Electrotonic Potentials and Ionic Currents, Biol. Cybern, 74 (1996), 543–547.

    Google Scholar 

  20. Stephanova, D.I. and Mileva, K.: Different Effects of Blocked Potassium Channels on Action Potentials, Accommodations, Adaptation and Anode Break Excitation in Human Motor and Sensory Myelinated Nerve Fibres: Computer Simulations, Biol. Cybern. 83 (2000), 161–167.

  21. Bostock, H., Baker, M. and Reid, G.: Changes in Excitability of Human Motor Axons Underlying Post-Ischaemic Fasciculations: Evidence for Two Stable States, J. Physiol. (Lond.) 441 (1991), 537–557.

    Google Scholar 

  22. Scholz, A., Reid, G., Vogel, W. and Bostock H.: Ion Channels in Human Axons, J. Neurophysiol, 70 (1993), 1274–1279.

    Google Scholar 

  23. Schwarz, J.R., Reid, G. and Bostock, H.: Action Potentials and Membrane Currents in the Human Node of Ranvier, Pflügers Arch. 430 (1995), 283–292.

    Article  Google Scholar 

  24. Chiu, S.Y., Ritchie, J.M., Rogart, R. B. and Stagg, D.: A Quantitative Description of Membrane Current in Rabbit Myelinated Nerve, J. Physiol. (Lond.) 292 (1979), 149–166.

    Google Scholar 

  25. Brismar T.: Potential Clamp Analysis of Membrane Currents in Rat Myelinated Nerve Fibres, J. Physiol. (Lond) 298 (1980), 171–184.

    Google Scholar 

  26. Neumcke, B. and Stämpftly, R.: Sodium Currents and Sodium Current Fluctuation in Rat Myelinated Nerve Fibres. J. Physiol. (Lond) 329 (1982), 163–184.

    Google Scholar 

  27. Schwarz, J.R. and Eikhof, G.: Na Currents and Action Potentials in Rat Myelinated Nerve Fibres at 20 and 37 C, Pflügers Arch. 409 (1987), 569–577.

    Article  Google Scholar 

  28. Stephanova, D.I., Trayanova, N., Gydikov, A. and Kossev, A.: Extracellular Potentials of a Single Myelinated Nerve Fiber in An Unbounded Volume Conductor, Biol. Cybern. 61 (1989), 205–210.

    Article  Google Scholar 

  29. Bostock, H. and Rothwell, J.C.: Latent Addition in Motor and Sensory Fibres of Human Peripheral Nerve, J. Physiol. (Lond) 498 (1997), 277–294.

    Google Scholar 

  30. Dimitrov, A.G.: Internodal Sodium Channels Ensure Active Processes Under Myelin Manifesting in Depolarizing Afterpotentials. J. Theor. Biol 235 (2005), 451–462.

    Google Scholar 

  31. Halter, J. and Clark, J.: A Distributed-Parameter Model of the Myelinated Nerve Fibre, J. Theor. Biol. 148 (1991), 345–382.

    Article  Google Scholar 

  32. Stephanova, D. and Kossev, A.: Action Potentials and Ionic Currents Through Internodally Demyelinated Human Motor Nerve Fibres: I. Computer Simulations, Comp. Rend. l'Acad. Bulg. Sci. 50(3) (1997), 107–110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Stephanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephanova, D.I., Daskalova, M.S. & Alexandrov, A.S. Differences in Membrane Properties in Simulated Cases of Demyelinating Neuropathies: Internodal Focal Demyelinations with Conduction Block. J Biol Phys 32, 129–144 (2006). https://doi.org/10.1007/s10867-006-9008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-006-9008-x

Keywords

Navigation