Skip to main content

Functional Domains in Myelinated Axons

  • Chapter
  • First Online:
Myelin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1190))

Abstract

Propagation of action potentials along axons is optimized through interactions between neurons and myelinating glial cells. Myelination drives division of the axons into distinct molecular domains including nodes of Ranvier. The high density of voltage-gated sodium channels at nodes generates action potentials allowing for rapid and efficient saltatory nerve conduction. At paranodes flanking both sides of the nodes, myelinating glial cells interact with axons, forming junctions that are essential for node formation and maintenance. Recent studies indicate that the disruption of these specialized axonal domains is involved in the pathophysiology of various neurological diseases. Loss of paranodal axoglial junctions due to genetic mutations or autoimmune attack against the paranodal proteins leads to nerve conduction failure and neurological symptoms. Breakdown of nodal and paranodal proteins by calpains, the calcium-dependent cysteine proteases, may be a common mechanism involved in various nervous system diseases and injuries. This chapter reviews recent progress in neurobiology and pathophysiology of specialized axonal domains along myelinated nerve fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amor V, Feinberg K, Eshed-Eisenbach Y, Vainshtein A, Frechter S, Grumet M, Rosenbluth J, Peles E (2014) Long-term maintenance of Na+ channels at nodes of Ranvier depends on glial contact mediated by gliomedin and NrCAM. J Neurosci 34:5089–5098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amor V, Zhang C, Vainshtein A, Zhang A, Zollinger DR, Eshed-Eisenbach Y, Brophy PJ, Rasband MN, Peles E (2017) The paranodal cytoskeleton clusters Na+ channels at nodes of Ranvier. elife 6:e21392

    Article  PubMed  PubMed Central  Google Scholar 

  • Baalman KL, Cotton RJ, Rasband SN, Rasband MN (2013) Blast wave exposure impairs memory and decreases axon initial segment length. J Neurotrauma 30:741–751

    Article  PubMed  PubMed Central  Google Scholar 

  • Babbs CF, Shi R (2013) Subtle paranodal injury slows impulse conduction in a mathematical model of myelinated axons. PLoS One 8:e67767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banik NL (1992) Pathogenesis of myelin breakdown in demyelinating diseases: role of proteolytic enzymes. Crit Rev Neurobiol 6:257–271

    CAS  PubMed  Google Scholar 

  • Battefeld A, Tran BT, Gavrilis J, Cooper EC, Kole MHP (2014) Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons. J Neurosci 34:3719–3732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender KJ, Trussell LO (2012) The physiology of the axon initial segment. Annu Rev Neurosci 35:249–265

    Article  CAS  PubMed  Google Scholar 

  • Benusa SD, George NM, Sword BA, DeVries GH, Dupree JL (2017) Acute neuroinflammation induces AIS structural plasticity in a NOX2-dependent manner. J Neuroinflammation 14:116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat MA, Rios JC, Lu Y, Garcia-Fresco GP, Ching W, St Martin M, Li J, Einheber S, Chesler M, Rosenbluth J, Salzer JL, Bellen HJ (2001) Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron 30:369–383

    Article  CAS  PubMed  Google Scholar 

  • Boyle ME, Berglund EO, Murai KK, Weber L, Peles E, Ranscht B (2001) Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve. Neuron 30:385–397

    Article  CAS  PubMed  Google Scholar 

  • Brivio V, Faivre-Sarrailh C, Peles E, Sherman DL, Brophy PJ (2017) Assembly of CNS nodes of Ranvier in myelinated nerves is promoted by the axon cytoskeleton. Curr Biol 27:1068–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buffington SA, Rasband MN (2011) The axon initial segment in nervous system disease and injury. Eur J Neurosci 34:1609–1619

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang K-J, Rasband MN (2013) Excitable domains of myelinated nerves: axon initial segments and nodes of Ranvier. Curr Top Membr 72:159–192

    Article  CAS  PubMed  Google Scholar 

  • Chang K-J, Zollinger DR, Susuki K, Sherman DL, Makara MA, Brophy PJ, Cooper EC, Bennett V, Mohler PJ, Rasband MN (2014) Glial ankyrins facilitate paranodal axoglial junction assembly. Nat Neurosci 17:1673–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark KC, Josephson A, Benusa SD, Hartley RK, Baer M, Thummala S, Joslyn M, Sword BA, Elford H, Oh U, Dilsizoglu-Senol A, Lubetzki C, Davenne M, DeVries GH, Dupree JL (2016) Compromised axon initial segment integrity in EAE is preceded by microglial reactivity and contact. Glia 64:1190–1209

    Article  PubMed  Google Scholar 

  • Çolakoğlu G, Bergstrom-Tyrberg U, Berglund EO, Ranscht B (2014) Contactin-1 regulates myelination and nodal/paranodal domain organization in the central nervous system. Proc Natl Acad Sci U S A 111:E394–E403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coman I, Aigrot MS, Seilhean D, Reynolds R, Girault JA, Zalc B, Lubetzki C (2006) Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis. Brain 129:3186–3195

    Article  CAS  PubMed  Google Scholar 

  • Conant A, Curiel J, Pizzino A, Sabetrasekh P, Murphy J, Bloom M, Evans SH, Helman G, Taft RJ, Simons C, Whitehead MT, Moore SA, Vanderver A (2018) Absence of axoglial paranodal junctions in a child with CNTNAP1 mutations, hypomyelination, and arthrogryposis. J Child Neurol 33:642–650

    Article  PubMed  PubMed Central  Google Scholar 

  • Czogalla A, Sikorski AF (2005) Spectrin and calpain: a “target” and a “sniper” in the pathology of neuronal cells. Cell Mol Life Sci 62:1913–1924

    Article  CAS  PubMed  Google Scholar 

  • Desmazieres A, Zonta B, Zhang A, Wu L-MN, Sherman DL, Brophy PJ (2014) Differential stability of PNS and CNS nodal complexes when neuronal neurofascin is lost. J Neurosci 34:5083–5088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doppler K, Appeltshauser L, Villmann C, Martin C, Peles E, Krämer HH, Haarmann A, Buttmann M, Sommer C (2016) Auto-antibodies to contactin-associated protein 1 (Caspr) in two patients with painful inflammatory neuropathy. Brain 139:2617–2630

    Article  PubMed  Google Scholar 

  • Doppler K, Frank F, Koschker A-C, Reiners K, Sommer C (2017) Nodes of Ranvier in skin biopsies of patients with diabetes mellitus. J Peripher Nerv Syst 22:182–190

    Article  CAS  PubMed  Google Scholar 

  • Eshed Y, Feinberg K, Poliak S, Sabanay H, Sarig-Nadir O, Spiegel I, Bermingham JR, Peles E (2005) Gliomedin mediates Schwann cell-axon interaction and the molecular assembly of the nodes of Ranvier. Neuron 47:215–229

    Article  CAS  PubMed  Google Scholar 

  • Eshed Y, Feinberg K, Carey DJ, Peles E (2007) Secreted gliomedin is a perinodal matrix component of peripheral nerves. J Cell Biol 177:551–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faivre-Sarrailh C, Gauthier F, Denisenko-Nehrbass N, Le Bivic A, Rougon G, Girault JA (2000) The glycosylphosphatidyl inositol-anchored adhesion molecule F3/contactin is required for surface transport of paranodin/contactin-associated protein (caspr). J Cell Biol 149:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinberg K, Eshed-Eisenbach Y, Frechter S, Amor V, Salomon D, Sabanay H, Dupree JL, Grumet M, Brophy PJ, Shrager P, Peles E (2010) A glial signal consisting of gliomedin and NrCAM clusters axonal Na+ channels during the formation of nodes of Ranvier. Neuron 65:490–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franssen H, Straver DCG (2013) Pathophysiology of immune-mediated demyelinating neuropathies - Part I: Neuroscience. Muscle Nerve 48:851–864

    Article  PubMed  Google Scholar 

  • Freeman SA, Desmazières A, Fricker D, Lubetzki C, Sol-Foulon N (2016) Mechanisms of sodium channel clustering and its influence on axonal impulse conduction. Cell Mol Life Sci 73:723–735

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Sun W, Shi Y, Shi R, Cheng JX (2009) Glutamate excitotoxicity inflicts paranodal myelin splitting and retraction. PLoS One 4:e6705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galiano MR, Jha S, Ho TS-Y, Zhang C, Ogawa Y, Chang K-J, Stankewich MC, Mohler PJ, Rasband MN (2012) A distal axonal cytoskeleton forms an intra-axonal boundary that controls axon initial segment assembly. Cell 149:1125–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Fresco GP, Sousa AD, Pillai AM, Moy SS, Crawley JN, Tessarollo L, Dupree JL, Bhat M a (2006) Disruption of axo-glial junctions causes cytoskeletal disorganization and degeneration of Purkinje neuron axons. Proc Natl Acad Sci U S A 103:5137–5142

    Article  CAS  Google Scholar 

  • Gasser A, Ho TS-Y, Cheng X, Chang K-J, Waxman SG, Rasband MN, Dib-Hajj SD (2012) An ankyrinG-binding motif is necessary and sufficient for targeting Nav1.6 sodium channels to axon initial segments and nodes of Ranvier. J Neurosci 32:7232–7243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh A, Sherman DL, Brophy PJ (2017) The axonal cytoskeleton and the assembly of nodes of Ranvier. Neuroscientist. https://doi.org/10.1177/1073858417710897

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffin JW, Li CY, Macko C, Ho TW, Hsieh ST, Xue P, Wang FA, Cornblath DR, McKhann GM, Asbury AK (1996) Early nodal changes in the acute motor axonal neuropathy pattern of the Guillain-Barré syndrome. J Neurocytol 25:33–51

    Article  CAS  PubMed  Google Scholar 

  • Griggs RB, Yermakov LM, Susuki K (2017) Formation and disruption of functional domains in myelinated CNS axons. Neurosci Res 116:77–87

    Article  CAS  PubMed  Google Scholar 

  • Griggs RB, Yermakov LM, Drouet DE, Nguyen DVM, Susuki K (2018) Methylglyoxal disrupts paranodal axoglial junctions via calpain activation. ASN Neuro 10. https://doi.org/10.1177/1759091418766175

    Article  Google Scholar 

  • Harty RC, Kim TH, Thomas EA, Cardamone L, Jones NC, Petrou S, Wimmer VC (2013) Axon initial segment structural plasticity in animal models of genetic and acquired epilepsy. Epilepsy Res 105:272–279

    Article  PubMed  Google Scholar 

  • Howell OW, Palser A, Polito A, Melrose S, Zonta B, Scheiermann C, Vora AJ, Brophy PJ, Reynolds R (2006) Disruption of neurofascin localization reveals early changes preceding demyelination and remyelination in multiple sclerosis. Brain 129:3173–3185

    Article  CAS  PubMed  Google Scholar 

  • Huang CY-M, Rasband MN (2018) Axon initial segments: structure, function, and disease. Ann N Y Acad Sci 1420:46–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang CY-M, Zhang C, Zollinger DR, Leterrier C, Rasband MN (2017) An αII spectrin-based cytoskeleton protects large-diameter myelinated axons from degeneration. J Neurosci 37:11323–11334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamura N, Yamasaki R, Yonekawa T, Matsushita T, Kusunoki S, Nagayama S, Fukuda Y, Ogata H, Matsuse D, Murai H, Kira J-i (2013) Anti-neurofascin antibody in patients with combined central and peripheral demyelination. Neurology 81:714–722

    Article  CAS  PubMed  Google Scholar 

  • Koike H, Kadoya M, Kaida K-I, Ikeda S, Kawagashira Y, Iijima M, Kato D, Ogata H, Yamasaki R, Matsukawa N, Kira J-I, Katsuno M, Sobue G (2017) Paranodal dissection in chronic inflammatory demyelinating polyneuropathy with anti-neurofascin-155 and anti-contactin-1 antibodies. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2016-314895

    Article  Google Scholar 

  • Kole MHP, Stuart GJ (2012) Signal processing in the axon initial segment. Neuron 73:235–247

    Article  CAS  PubMed  Google Scholar 

  • Lakhani S, Doan R, Almureikhi M, Partlow JN, Al Saffar M, Elsaid MF, Alaaraj N, James Barkovich A, Walsh CA, Ben-Omran T (2017) Identification of a novel CNTNAP1 mutation causing arthrogryposis multiplex congenita with cerebral and cerebellar atrophy. Eur J Med Genet. https://doi.org/10.1016/j.ejmg.2017.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  • Laquérriere A et al (2014) Mutations in CNTNAP1 and ADCY6 are responsible for severe arthrogryposis multiplex congenita with axoglial defects. Hum Mol Genet 23:2279–2289

    Article  PubMed  CAS  Google Scholar 

  • Ma M (2013) Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon. Neurobiol Dis 60:61–79

    Article  CAS  PubMed  Google Scholar 

  • Maluenda J, Manso C, Quevarec L, Vivanti A, Marguet F, Gonzales M, Guimiot F, Petit F, Toutain A, Whalen S, Grigorescu R, Coeslier AD, Gut M, Gut I, Laquerrière A, Devaux J, Melki J (2016) Mutations in GLDN, encoding gliomedin, a critical component of the nodes of Ranvier, are responsible for lethal arthrogryposis. Am J Hum Genet 99:928–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manso C, Querol L, Mekaouche M, Illa I, Devaux JJ (2016) Contactin-1 IgG4 antibodies cause paranode dismantling and conduction defects. Brain 139:1700–1712

    Article  PubMed  Google Scholar 

  • Marin MA, Ziburkus J, Jankowsky J, Rasband MN (2016) Amyloid-β plaques disrupt axon initial segments. Exp Neurol 281:93–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathey EK, Derfuss T, Storch MK, Williams KR, Hales K, Woolley DR, Al-Hayani A, Davies SN, Rasband MN, Olsson T, Moldenhauer A, Velhin S, Hohlfeld R, Meinl E, Linington C (2007) Neurofascin as a novel target for autoantibody-mediated axonal injury. J Exp Med 204:2363–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGonigal R, Rowan EG, Greenshields KN, Halstead SK, Humphreys PD, Rother RP, Furukawa K, Willison HJ (2010) Anti-GD1a antibodies activate complement and calpain to injure distal motor nodes of Ranvier in mice. Brain 133:1944–1960

    Article  PubMed  Google Scholar 

  • Mierzwa AJ, Arevalo J-C, Schiff R, Chao MV, Rosenbluth J (2010) Role of transverse bands in maintaining paranodal structure and axolemmal domain organization in myelinated nerve fibers: Effect on longevity in dysmyelinated mutant mice. J Comp Neurol 518:2841–2853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neary D, Ochoa J, Gilliatt RW (1975) Sub-clinical entrapment neuropathy in man. J Neurol Sci 24:283–298

    Article  CAS  PubMed  Google Scholar 

  • Nelson AD, Jenkins PM (2017) Axonal membranes and their domains: assembly and function of the axon initial segment and node of Ranvier. Front Cell Neurosci 11:136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ng JKM et al (2012) Neurofascin as a target for autoantibodies in peripheral neuropathies. Neurology 79:2241–2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa Y, Schafer DP, Horresh I, Bar V, Hales K, Yang Y, Susuki K, Peles E, Stankewich MC, Rasband MN (2006) Spectrins and ankyrinB constitute a specialized paranodal cytoskeleton. J Neurosci 26:5230–5239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohara R, Yamakawa H, Nakayama M, Ohara O (2000) Type II brain 4.1 (4.1B/KIAA0987), a member of the protein 4.1 family, is localized to neuronal paranodes. Mol Brain Res 85:41–52

    Article  CAS  PubMed  Google Scholar 

  • Otani Y, Yermakov LM, Dupree JL, Susuki K (2017) Chronic peripheral nerve compression disrupts paranodal axoglial junctions. Muscle Nerve 55:544–554

    Article  PubMed  Google Scholar 

  • Pan Z, Kao T, Horvath Z, Lemos J, Sul J-Y, Cranstoun SD, Bennett V, Scherer SS, Cooper EC (2006) A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon. J Neurosci 26:2599–2613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peles E, Nativ M, Lustig M, Grumet M, Schilling J, Martinez R, Plowman GD, Schlessinger J (1997) Identification of a novel contactin-associated transmembrane receptor with multiple domains implicated in protein-protein interactions. EMBO J 16:978–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillai AM, Thaxton C, Pribisko AL, Cheng G, Dupree JL, Bhat MA (2009) Spatiotemporal ablation of myelinating glia-specific neurofascin (Nfasc NF155) in mice reveals gradual loss of paranodal axoglial junctions and concomitant disorganization of axonal domains. J Neurosci Res 87:1773–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Querol L, Devaux J, Rojas-Garcia R, Illa I (2017) Autoantibodies in chronic inflammatory neuropathies: diagnostic and therapeutic implications. Nat Rev Neurol 13:533–547

    Article  CAS  PubMed  Google Scholar 

  • Rasband MN (2010a) The axon initial segment and the maintenance of neuronal polarity. Nat Rev Neurosci 11:552–562

    Article  CAS  PubMed  Google Scholar 

  • Rasband MN (2010b) Clustered K+ channel complexes in axons. Neurosci Lett 486:101–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasband MN, Peles E (2015) The nodes of Ranvier: molecular assembly and maintenance. Cold Spring Harb Perspect Biol 8:a020495

    Article  PubMed  Google Scholar 

  • Rasband MN, Peles E, Trimmer JS, Levinson SR, Lux SE, Shrager P (1999) Dependence of nodal sodium channel clustering on paranodal axoglial contact in the developing CNS. J Neurosci 19:7516–7528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reeves TM, Greer JE, Vanderveer AS, Phillips LL (2010) Proteolysis of submembrane cytoskeletal proteins ankyrin-G and αII-spectrin following diffuse brain injury: a role in white matter vulnerability at nodes of Ranvier. Brain Pathol 20:1055–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbluth J (2009) Multiple functions of the paranodal junction of myelinated nerve fibers. J Neurosci Res 87:3250–3258

    Article  CAS  PubMed  Google Scholar 

  • Schafer DP, Jha S, Liu F, Akella T, McCullough LD, Rasband MN (2009) Disruption of the axon initial segment cytoskeleton is a new mechanism for neuronal injury. J Neurosci 29:13242–13254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman DL, Brophy PJ (2005) Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6:683–690

    Article  CAS  PubMed  Google Scholar 

  • Sherman DL, Tait S, Melrose S, Johnson R, Zonta B, Court FA, Macklin WB, Meek S, Smith AJH, Cottrell DF, Brophy PJ (2005) Neurofascins are required to establish axonal domains for saltatory conduction. Neuron 48:737–742

    Article  CAS  PubMed  Google Scholar 

  • Silajdzić E, Willison HJ, Furukawa K, Barnett SC (2009) In vitro analysis of glial cell function in ganglioside-deficient mice. J Neurosci Res 87:2467–2483

    Article  PubMed  CAS  Google Scholar 

  • Sima AA, Nathaniel V, Bril V, McEwen TA, Greene DA (1988) Histopathological heterogeneity of neuropathy in insulin-dependent and non-insulin-dependent diabetes, and demonstration of axo-glial dysjunction in human diabetic neuropathy. J Clin Invest 81:349–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smigiel R, Sherman DL, Rydzanicz M, Walczak A, Mikolajkow D, Krolak-Olejnik B, Kosinska J, Gasperowicz P, Biernacka A, Stawinski P, Marciniak M, Andrzejewski W, Boczar M, Krajewski P, Sasiadek MM, Brophy PJ, Ploski R (2018) Homozygous mutation in the Neurofascin gene affecting the glial isoform of Neurofascin causes severe neurodevelopment disorder with hypotonia, amimia and areflexia. Hum Mol Genet. https://doi.org/10.1093/hmg/ddy277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Takagishi Y, Okabe E, Chishima Y, Kanou Y, Murase S, Mizumura K, Inaba M, Komatsu Y, Hayashi Y, Peles E, Oda S, Murata Y (2009) A novel Caspr mutation causes the shambling mouse phenotype by disrupting axoglial interactions of myelinated nerves. J Neuropathol Exp Neurol 68:1207–1218

    Article  PubMed  Google Scholar 

  • Susuki K (2013) Node of Ranvier disruption as a cause of neurological diseases. ASN Neuro 5:AN20130025

    Article  CAS  Google Scholar 

  • Susuki K, Baba H, Tohyama K, Kanai K, Kuwabara S, Hirata K, Furukawa K, Furukawa K, Rasband MN, Yuki N (2007a) Gangliosides contribute to stability of paranodal junctions and ion channel clusters in myelinated nerve fibers. Glia 55:746–757

    Article  PubMed  Google Scholar 

  • Susuki K, Rasband MN, Tohyama K, Koibuchi K, Okamoto S, Funakoshi K, Hirata K, Baba H, Yuki N (2007b) Anti-GM1 antibodies cause complement-mediated disruption of sodium channel clusters in peripheral motor nerve fibers. J Neurosci 27:3956–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Susuki K, Chang K-J, Zollinger DR, Liu Y, Ogawa Y, Eshed-Eisenbach Y, Dours-Zimmermann MT, Oses-Prieto JA, Burlingame AL, Seidenbecher CI, Zimmermann DR, Oohashi T, Peles E, Rasband MN (2013) Three mechanisms assemble central nervous system nodes of Ranvier. Neuron 78:469–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Susuki K, Otani Y, Rasband MN (2016) Submembranous cytoskeletons stabilize nodes of Ranvier. Exp Neurol 283:446–451

    Article  PubMed  Google Scholar 

  • Susuki K, Zollinger DR, Chang K-J, Zhang C, Huang CY-M, Tsai C-R, Galiano MR, Liu Y, Benusa SD, Yermakov LM, Griggs RB, Dupree JL, Rasband MN (2018) Glial βII spectrin contributes to paranode formation and maintenance. J Neurosci 38:3647–3617

    Article  Google Scholar 

  • Tait S, Gunn-Moore F, Collinson JM, Huang J, Lubetzki C, Pedraza L, Sherman DL, Colman DR, Brophy PJ (2000) An oligodendrocyte cell adhesion molecule at the site of assembly of the paranodal axo-glial junction. J Cell Biol 150:657–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagishi Y, Katanosaka K, Mizoguchi H, Murata Y (2016) Disrupted axon-glia interactions at the paranode in myelinated nerves cause axonal degeneration and neuronal cell death in the aged Caspr mutant mouse shambling. Neurobiol Aging 43:34–46

    CAS  PubMed  Google Scholar 

  • Takano J, Tomioka M, Tsubuki S, Higuchi M, Iwata N, Itohara S, Maki M, Saido TC (2005) Calpain mediates excitotoxic DNA fragmentation via mitochondrial pathways in adult brains. J Biol Chem 280:16175–16184

    Article  CAS  PubMed  Google Scholar 

  • Taylor AM, Saifetiarova J, Bhat MA (2017) Postnatal loss of neuronal and glial neurofascins differentially affects node of Ranvier maintenance and myelinated axon function. Front Cell Neurosci 11:11

    PubMed  PubMed Central  Google Scholar 

  • Vallat J-M, Nizon M, Magee A, Isidor B, Magy L, Péréon Y, Richard L, Ouvrier R, Cogné B, Devaux J, Zuchner S, Mathis S (2016) Contactin-associated protein 1 (CNTNAP1) mutations induce characteristic lesions of the paranodal region. J Neuropathol Exp Neurol 75:1155–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallat J-M, Yuki N, Sekiguchi K, Kokubun N, Oka N, Mathis S, Magy L, Sherman DL, Brophy PJ, Devaux JJ (2017) Paranodal lesions in chronic inflammatory demyelinating polyneuropathy associated with anti-Neurofascin 155 antibodies. Neuromuscul Disord 27:290–293

    Article  PubMed  Google Scholar 

  • von Reyn CR, Spaethling JM, Mesfin MN, Ma M, Neumar RW, Smith DH, Siman R, Meaney DF (2009) Calpain mediates proteolysis of the voltage-gated sodium channel -α-subunit. J Neurosci 29:10350–10356

    Article  CAS  Google Scholar 

  • Vosler PS, Brennan CS, Chen J (2008) Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration. Mol Neurobiol 38:78–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao D, McGonigal R, Barrie JA, Cappell J, Cunningham ME, Meehan GR, Fewou SN, Edgar JM, Rowan E, Ohmi Y, Furukawa K, Furukawa K, Brophy PJ, Willison HJ (2014) Neuronal expression of GalNAc transferase is sufficient to prevent the age-related neurodegenerative phenotype of complex ganglioside-deficient mice. J Neurosci 34:880–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yermakov LM, Drouet DE, Griggs RB, Elased KM, Susuki K (2018) Type 2 diabetes leads to axon initial segment shortening in db/db mice. Front Cell Neurosci 12:146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoo S-W, Motari MG, Susuki K, Prendergast J, Mountney A, Hurtado A, Schnaar RL (2015) Sialylation regulates brain structure and function. FASEB J 29:3040–3053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Susuki K, Zollinger DR, Dupree JL, Rasband MN (2013) Membrane domain organization of myelinated axons requires βII spectrin. J Cell Biol 203:437–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichiro Susuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yermakov, L.M., Hong, L.A., Drouet, D.E., Griggs, R.B., Susuki, K. (2019). Functional Domains in Myelinated Axons. In: Sango, K., Yamauchi, J., Ogata, T., Susuki, K. (eds) Myelin. Advances in Experimental Medicine and Biology, vol 1190. Springer, Singapore. https://doi.org/10.1007/978-981-32-9636-7_6

Download citation

Publish with us

Policies and ethics