Skip to main content
Log in

Bimetallic blends and chitosan nanocomposites: novel antifungal agents against cotton seedling damping-off

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Phytopathological studies of chitosan nanocomposites are mainly focused on in vitro efficiency, so it is essential to perform a complementary greenhouse assay to find eco-friendly alternatives for plant disease management. In the present study, Cu-chitosan and Zn-chitosan nanocomposites were prepared by reduction of metal precursors in the presence of chitosan in sc CO2 medium and deposition of organosol on chitosan, respectively. Physicochemical properties of the nanocomposites were characterized by X-ray fluorescence analysis (XRF), Small angles X-ray Scattering (SAXS), X-ray Photoelectron spectroscopy (XPS), and Transmission electron microscopy (TEM). The bimetallic blends (BBs) based on nanoscale Cu(OH)2 were obtained through simple precipitation and grinding methods. In vitro and in vivo studies of the antifungal activity of Cu-chitosan, Zn-chitosan and BBs at concentrations of 30, 60, and 100 μg ml−1 were conducted against two anastomosis groups of Rhizoctonia solani for control of cotton seedling damping-off. Effect of metal-chitosan nanocomposites at 100 μg ml−1 combined with Cu-tolerant Trichoderma longibrachiatum strains was also evaluated for control of cotton seedling damping-off under greenhouse conditions. The BBs and Cu-chitosan nanocomposite showed the highest antifungal efficacy against both anastomosis groups of R. solani in vitro. These results indicated that BBs, Cu-chitosan nanocomposite, and BBs combined with Trichoderma may suppress cotton seedling disease caused by R. solani in vivo. The evaluation of R. solani in a greenhouse with a Trichoderma strain showed synergistic inhibitory effect with BBs. Light micrographs of mycelia treated with BBs showed the disruption of the hyphal structures. The interaction of the nanocomposites with DNA isolated from the exposed fungal cells, by means of bonding and/or degradation, was also investigated. DNA interaction in terms of binding and degradation for treated DNA with BBs and chitosan nanocomposites was demonstrated. The results showed the absence of DNA amplification by a microsatellite primed PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abd-El-Khair, H., & El-Gamal Nadia, G. (2011). Effects of aqueous extracts of some plant species against Fusarium solani and Rhizoctonia solani in Phaseolus vulgaris plants. Archives of Phytopathology and Plant Protection, 44, 1–16.

    Article  Google Scholar 

  • Abd-Elsalam, K. A., & Alghuthaymi, M. A. (2015). Nanobiofungicides: are they the next-generation of fungicides? J Nanotech Mater Sci, 2, 1–3.

    Google Scholar 

  • Abd-Elsalam, K. A., & Khokhlov, A. R. (2015). Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds. Applied Nanoscience, 5, 255–265.

    Article  CAS  Google Scholar 

  • Abd-Elsalam, K. A., Asran-Amal, A., & El-Samawaty, A. (2007). Isolation of high quality DNA from cotton and its fungal pathogens. Journal of Plant Diseases and Protection, 114, 113–116.

    Article  CAS  Google Scholar 

  • Ait Barka, E., Eullaffroy, P., Clément, C., & Vernet, G. (2004). Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Reports, 22, 608–614.

    Article  CAS  PubMed  Google Scholar 

  • Bahkali, A. H., Abd-Elsalam, K. A., Guo, J.-R., Khiyami, M. A., & Verreet, J.-A. (2012). Characterization of Novel Di-, Tri-, and Tetranucleotide microsatellite primers suitable for genotyping various plant pathogenic fungi with special emphasis on Fusaria and Mycospherella graminicola. International Journal of Molecular Sciences, 13, 2951–2964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barreca, D., Comini, E., Ferrucci, A. P., Gasparotto, A., Maccato, C., Maragno, C., Sberveglieri, G., & Tondello, E. (2007a). First example of ZnO-TiO2 nanocomposites by chemical vapor deposition: structure, morphology, composition, and gas sensing performances. Chemistry of Materials, 19, 5642–5649.

    Article  CAS  Google Scholar 

  • Barreca, D., Gasparotto, A., Maccato, C., Maragno, C., & Tondello, E. (2007b). ZnO nanoplatelets obtained by chemical vapor deposition, studied by XPS. Surface Science Spectra, 14, 19–26.

    Article  CAS  Google Scholar 

  • Borkow, G., & Gabbay, J. (2005). Copper as a biocidal tool. Current Medicinal Chemistry, 12, 2163–2175.

    Article  CAS  PubMed  Google Scholar 

  • Brunel, F., Gueddari, N. E., & Moerschbacher, B. M. (2013). Complexation of copper (II) with chitosan nanogels: toward control of microbial growth. Carbohydrate Polymers, 92, 1348–1356.

    Article  CAS  PubMed  Google Scholar 

  • Dey, K. K., Kumar, A., Shanker, R., Dhawan, A., Wan, M., Yadav, R. R., & Srivastava, A. K. (2012). Growth morphologies, phase formation, optical & biological responses of nanostructures of CuO and their application as cooling fluid in high energy density devices. RSC Advances, 2, 1387–1403.

    Article  CAS  Google Scholar 

  • El Hadrami, A., Adam, L. R., El Hadrami, I., & Daayf, F. (2010). Chitosan in plant protection. Marine Drugs, 8, 968–987.

    Article  PubMed  PubMed Central  Google Scholar 

  • El Hassni, M., El Hadrami, A., Daayf, F., Barka, E. A., & El Hadrami, I. (2004). Chitosan, antifungal product against Fusarium oxysporum f. sp. albedinis and elicitor of defence reactions in date palm roots. Phytopathologia Mediterranea, 43, 195–204.

    Google Scholar 

  • Fedotov, A. N., Simonov, A. P., Popov, V. K., & Bagratashvili, V. N. (1997). Dielectrometry in supercritical fluids. A new approach to the measurement of solubility and study of dipole moment behavior of polar compounds. The Journal of Physical Chemistry, 101, 2929–2932.

    Article  CAS  Google Scholar 

  • Hernández-Lauzardo, A., Velázquez, M., & Guerra-Sánchez, M. (2011). Current status of action mode and effect of chitosan against phytopathogens fungi. African Journal of Microbiology Research, 5, 4243–4247.

    Google Scholar 

  • Ingle, A. P., Duran, N., & Rai, M. (2013). Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Applied Microbiology and Biotechnology, 98, 1001–1009.

    Article  PubMed  Google Scholar 

  • Jans, D., Katia, P., Dian, S., Gerard, B., & Bertrand, G. (2014). Mycotoxin reduction in animal diets. In J. F. Leslie, & A. F. Logrieco (Eds.), Mycotoxin.

  • Joselito, D., & Soytong, K. (2014). Construction and characterization of copolymer nanomaterials loaded with bioactive compounds from Chaetomium species. Journal of Agricultural Technology, 10, 823–831.

    Google Scholar 

  • Katiyar, D., Hemantarajan, A., & Sing, B. (2015). Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian Journal of Plant Physiology, 20, 1–9.

    Article  CAS  Google Scholar 

  • Kaur, P., Thakur, R., & Choudhary, A. (2012). An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. International Journal of Scientific & Technology Research, 1, 83–86.

    Google Scholar 

  • Kaur, P., Thakur, R., Barnela, M., Chopra, M., Manujaand, A., & Chaudhury, A. (2015). Synthesis, characterization and in vitro evaluation of cytotoxicity and antimicrobial activity of chitosan-metal nanocomposites. Journal of Chemical Technology and Biotechnology, 90, 867–873.

    Article  CAS  Google Scholar 

  • Laflamme, P., Benhamou, N., Bussières, G., & Dessureault, M. (1999). Differential effect of chitosan on root rot fungal pathogens in forest nurseries. Canadian Journal of Botany, 77, 1460–1468.

    Article  Google Scholar 

  • Lindquist, J. M., & Hemminger, J. C. (1989). High energy resolution x-ray photoelectron spectroscopy studies of tetracyanoquinodimethane charge transfer complexes with copper, nickel, and lithium. Chemistry of Materials, 1, 72–78.

    Article  CAS  Google Scholar 

  • Liu, H., Tian, W. X., Li, B., Wu, G. X., Ibrahim, M., Tao, Z. Y., Wang, Y. L., Xie, G. L., Li, H. Y., & Sun, G. C. (2012). Antifungal effect and mechanism of chitosan against the rice sheath blight pathogen, Rhizoctonia solani. Biotechnology Letters, 34, 2291–2298.

    Article  CAS  PubMed  Google Scholar 

  • Ma, L.-J., Li, Y.-Y., Wang, L.-L., Li X.-M., Liu, T., & Bu, N. (2014). Germination and physiological response of wheat (Triticum aestivum) to pre-soaking with oligochitosan. International Journal of Agriculture and Biology, 16, 766–770.

  • Marquez, I. G., Akuaku, J., Cruz, I., Cheetham, J., Golshani, A., & Smith, M. L. (2013). Disruption of protein synthesis as antifungal mode of action by chitosan. International Journal of Food Micobiology, 164, 108–112.

    Article  Google Scholar 

  • Moreno-Olivas, F., Gant, V. U. J., Johnson, K. L., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2014). Random amplified polymorphic DNA reveals that TiO2 nanoparticles are genotoxic to Cucurbita pepo. Journal of Zhejiang University: Science A, 15, 618–623.

    Article  CAS  Google Scholar 

  • Muzzarelli, R. A. A., Muzzarelli, C., Tarsi, R., Miliani, M., Gabbanelli, F., & Cartolari, M. (2001). Fungistatic activity of modified chitosans against Saprolegnia parasitica. Biomacromolecules, 2, 165–169.

    Article  CAS  PubMed  Google Scholar 

  • Naumkin, A. V., Kraut-Vass, A., Gaarenstroom, S. W., & Powell, C. J. (2012). NIST X-ray photoelectron spectroscopy database, version 4.1. Gaithersburg: National Institute of Standards and Technology http://srdata.nist.gov/xps/.

    Google Scholar 

  • Nikitin, L. N., Vasil’kov, A. Y., Banchero, M., Manna, L., Naumkin, A. V., Podshibikhin, V. L., Abramchuk, S. S., Buzin, M. I., Korlyukov, A. A., Khokhlov, A. R. (2011). Composite materials for medical purposes based on polyvinylpyrrolidone modified with ketoprofen and silver nanoparticles. Russian Journal of Physical Chemistry A, 85, 1190–1195.

  • Nikraftar, F., Taheri, P., Rastegar, M. F., & Tarighi, S. (2013). Tomato partial resistance to Rhizoctonia solani involves antioxidative defense mechanisms. Physiological and Molecular Plant Pathology, 81, 74–83.

  • Ouda, S. M. (2014). Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternate and Botrytis cinerea. Research Journal of Microbiology, 9, 34–42.

    Article  CAS  Google Scholar 

  • Palza, H. (2015). Antimicrobial polymers with metal nanoparticles. International Journal of Molecular Sciences, 16, 2099–2116.

  • Papavizas, G. C., (1984). Strain of Trichoderma viride to control Fusarium wilt. U.S. Patent No. 4,489,161, 18 Dec 1984.

  • Reddy, M. V., Arul, J., Angers, P., & Couture, L. (1999). Chitosan treatment of wheat seeds induces resistance to Fusarium graminearun and improves seed quality. Journal of Agricultural and Food Chemistry, 47, 1208–1121.

    Article  CAS  Google Scholar 

  • Rubina, M. S., Kamitov, E. E., Zubavichus, Y. V., Peters, G. S., Naumkin, A. V., Suzer, S., & Vasil’kov, A. Y. (2016). Collagen-chitosan scaffold modified with Au and Ag nanoparticles: synthesis and structure. Applied Surface Science, 366, 365–371.

    Article  CAS  Google Scholar 

  • Saharan, V., Mehrotra, A., Khatik, R., Rawal, P., Sharma, S. S., & Pal, A. (2013). Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. International Journal of Biological Macromolecules, 62, 677–683.

    Article  CAS  PubMed  Google Scholar 

  • Saharan, V., Sharma, G., Yadav, M., Choudhary, M. K., Sharma, S. S., Pal, A., Raliya, R., & Biswas, P. (2015). Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules, 75, 346–353.

    Article  CAS  PubMed  Google Scholar 

  • Said-Galiev, E. E., Gamzazade, A. I., Grigor’ev, T. E., Khokhlov, A. R., Bakuleva, N. P., Lyutova, I. G., Shtykova, E. V., Dembo, K. A., & Volkov, V. V. (2011). Synthesis of Ag and Cu-chitosan as an metal-polymer nanocomposites in supercritical carbon dioxide medium and study of their structure and antimicrobial activity. Nanotechnologies in Russia, 6, 341–352.

    Article  Google Scholar 

  • Said-Galiev, E. E., Vasil’kov, A. Y., Nikolaev, A. Y., Lisitsyn, A. I., Naumkin, A. V., Volkov, I. O., Abramchuk, S. S., Lependina, O. L., Khokhlov, A. R., Shtykova, E. V., Dembo, K. A., & Erkey, C. (2012). Structure of mono- and bimetallic heterogeneous catalysts based on noble metals obtained by means of fluid technology and metal-vapor synthesis. Russian Journal of Physical Chemistry A, 86, 1597–1603.

    Article  Google Scholar 

  • Sies, H. (1993). Damage to plasmid DNA by singlet oxygen and its protection. Mutation Research, 299, 183–191.

    Article  CAS  PubMed  Google Scholar 

  • Soltani-Nejad, M., Shahidi Bonjar, G. H., Khatami, M., Amini, A., & Aghighi, S. (2016). In vitro and in vivo antifungal properties of silver nanoparticles against Rhizoctonia solani, a common agent of rice sheath blight disease. IET Nanobiotechnology. https://doi.org/10.1049/iet-nbt.2015.0121.

  • Soytong, K., Charoenporn, C., & Kanokmedhakul, S. (2013). Evaluation of microbial elicitors to induce plant immunity for tomato wilt. African Journal of Microbiology Research, 7, 1993–2000.

  • Stoeva, S. I., Smetana, A. B., Sorensen, C. M., & Klabunde, K. J. (2007). Gram-scale synthesis of aqueous gold colloids stabilized by various ligands. Journal of Colloid and Interface Science, 309, 94–98.

    Article  CAS  PubMed  Google Scholar 

  • Svergun, D. I. (1992). Determination of the regnlarization parameter in indirect-transform methods using perceptual criteria. Journal of Applied Crystallography, 25, 95–503.

    Article  Google Scholar 

  • Tatsadjieu, L., Dongmo Jazet, P. M., Ngassoum, M. B., Etoa, F. X., & Mbofung, C. M. F. (2009). Investigations on the essential oil of Lippia rugosa from Cameroun for its potential use as antifungal agent against Aspergillus flavus Link ex Fries. Food Control, 20, 161–166.

    Article  CAS  Google Scholar 

  • Vahabi, K., Mansoori, G. A., & Karimi, S. (2011). Biosynthesis of silver nanoparticles by fungus Trichoderma reesei. Insciences Journal, 1, 65–79.

    Article  CAS  Google Scholar 

  • Vasil’kov, A. Y., Olenin, A. Y., Titova, E. F., & Sergeev, V. A. (1995). Peculiarities of cobalt nanometer scale particle nucleation on an alumina surface. Journal of Colloid and Interface Science, 169, 356–360.

    Article  Google Scholar 

  • Vasil’kov, A. Y., Naumkin, A. V., Volkov, I. O., Podshibikhin, V. L., Lisichkin, G. V., & Khokhlov, A. R. (2010). Antibacterial and antifungal effect of cotton bandaging material modified with gold nanoparticles. Surface and Interface Analysis, 42, 559–563.

    Article  Google Scholar 

  • Wöll, C. C. (2007). The chemistry and physics of zinc oxide surfaces. Progress in Surf Science, 82, 55–120.

    Article  Google Scholar 

  • Woodhall, J. W., Lees, A. K., Edwards, S. G., & Jenkinson, P. (2008). Infection of potato by Rhizoctonia solani: effect of anastomosis group. Plant Pathology, 57, 897–905.

    Article  Google Scholar 

  • Xie, Y., He, Y., Irwin, P. L., Jin, T., & Shi, X. (2011). Antibacterial activity and mode of action of ZnO. Applied and Environmental Microbiology, 77, 2325–2331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, J., Zhao, X., Han, X., & Du, Y. (2007a). Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pesticide Biochemistry and Physiology, 87, 220–228.

    Article  CAS  Google Scholar 

  • Xu, J., Zhao, X., Wang, X., Zhao, Z., & Du, Y. (2007b). Oligochitosan inhibits Phytophtora capsici by penetrating the cell membrane and putative binding to intracellular target. Pesticide Biochemistry and Physiology, 88, 167–175.

    Article  CAS  Google Scholar 

  • Xue, J., Luo, Z., Li, P., Ding, Y., Cui, Y., & Wu, Q. (2014). A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles. Scientific Reports, 4, 5408. https://doi.org/10.1038/srep05408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, M. Y., Cha, B., & Kim, J. C. (2013). Recent trends in studies on botanical fungicides in agriculture. Plant Pathology Journal, 29, 1–9.

  • Younes, I., Sellimi, S., Rinaudo, M., Jellouli, K., & Nasri, M. (2014). Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. International Journal of Food Microbiology, 185, 57–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The current work was supported by the Science and Technology Development Fund (STDF), Egypt (STDF- RFBR program) [grant no. 13791]. Also, this work was partially funded by Russian Foundation for Basic Research grant (RFBR-15-53-61030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel A. Abd-Elsalam.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

All the Authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Elsalam, K.A., Vasil’kov, A.Y., Said-Galiev, E.E. et al. Bimetallic blends and chitosan nanocomposites: novel antifungal agents against cotton seedling damping-off. Eur J Plant Pathol 151, 57–72 (2018). https://doi.org/10.1007/s10658-017-1349-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1349-8

Keywords

Navigation