Skip to main content

Advertisement

Log in

Microfacies and depositional environment of an Upper Triassic intra-platform carbonate basin: the Fatric Unit of the West Carpathians (Slovakia)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Facies associations of the Rhaetian Fatra Formation from the Veľká Fatra Mts. (West Carpathians) were deposited in a storm-dominated, shallow, intra-platform basin with dominant carbonate deposition and variable onshore peritidal and subtidal deposits, with 21 microfacies types supported by a cluster analysis. The deposits are formed by bivalves, gastropods, brachiopods, echinoderms, corals, foraminifers and red algae, ooids, intraclasts and peloids. A typical feature is the considerable variation in horizontal direction. The relative abundance and state of preservation of components as well as the fabric and geometric criteria of deposits can be correlated with depth/water energy-related environmental gradients. Four facies associations corresponding to four types of depositional settings were distinguished: a) peritidal, b) shoreface, above fair-weather wave base (FWWB), c) shallow subtidal, above normal storm wave base and d) above maximum storm wave base. The depositional environment can be characterized as a mosaic of low-relief peritidal flats and islands, shoreface banks and bars, and shallow subtidal depressions. The distribution and preservation of components were mainly controlled by the position of base level (FWWB), storm activity and differences in carbonate production between settings. Poorly or moderately diverse level-bottom macrobenthic assemblages are dominated by molluscs and brachiopods. The main site of patch-reef/biostrome carbonate production was located below the fair-weather wave base. Patch-reef/biostrome assemblages are poorly diverse and dominated by the branched scleractinian coral Retiophyllia, forming locally dm-scale autochthonous aggregations or more commonly parautochthonous assemblages with evidence of storm-reworking and substantial bioerosion by microborings and boring bivalves.

Facies types and assemblages are comparable in some aspects to those known from the Upper Triassic of the Eastern and Southern Alps (Hochalm member of the Kössen Formation or Calcare di Zu Formation), pointing to similar intra-platform depositional conditions. The absence of large-scale patch-reefs and poor diversity of level-bottom and patch-reef/biostrome assemblages with abundance of eurytopic taxa indicate high-stress/unstable ecological conditions and more restricted position of the Fatric intra-platform setting from the open ocean than the intra-platform habitats in the Eastern or Southern Alps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15 A
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aigner T (1982) Calcareous tempestites: storm-dominated stratification in Upper Muschelkalk limestones (Middle Trias, SW-Germany). In: Einsele G, Seilacher A (eds) Cyclic and event stratification. Berlin-Heidelberg-New York, pp 180–198

  • Aigner T (1985) Storm depositional systems. Dynamic stratigraphy in modern and ancient shallow marine sequences. Lecture Notes Earth Sc 3: 1-174

    Google Scholar 

  • Aigner T, Hagdorn H, Mundlos R (1978) Biohermal, biostromal and storm-generated coquinas in the Upper Muschelkalk. N Jahrb Geol Paläont, Abh 157:42–52

    Google Scholar 

  • Bacelle L, Bosellini A (1965) Diagrammi per la stime visiva della composizione percentuale nelle rocce sedimentaire. Ann Univ Ferrara, Sci Geol Paleont 1:59–62

    Google Scholar 

  • Ball MM (1967) Carbonate sand bodies of Florida and the Bahamas. J Sedim Petrol 37: 556–591

    CAS  Google Scholar 

  • Bernecker M, Weidlich O, Flügel E (1999) Response of Triassic reef coral communities to sea-level fluctuations, storms and sedimentation: evidence from a spectacular outcrop. Facies 40:229–280

    Google Scholar 

  • Borza K (1975) Mikroproblematika aus der oberen Trias der Westkarpaten. Geol Zb Geol Carpath 26: 199–236

    Google Scholar 

  • Burchette TP, Wright VP (1992) Carbonate ramp depositional systems. Sedim Geol 79:3-57

    Article  Google Scholar 

  • Cram JM (1979) The influence of continental shelf width on tidal range: paleoceanographic implications. J Geol 87:441–447

    Google Scholar 

  • Duffin CJ, Gadzicki A (1977) Rhaetian fish remains from the Tatra Mountains. Acta Geol Polon 27: 333–348

    Google Scholar 

  • Dullo WC (1980) Paläontologie, Facies und Geochemie der Dachsteinkalke (Obertrias) im südwestlichen Gesäuse, Steiermark, Österreich. Facies 2:55–122

    Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. Mem AAPG 1:108–121

    Google Scholar 

  • Ehses HH, Leinfelder RR (1988) Laterale und vertikale Faziesentwicklung der Rhät/Unterlias-Sedimentation im Wallberg-Blankenstein-Gebiet (Tegernsee, Nrdliche Kalkalpen). Mainz Geowiss Mitt 17: 53–94

    Google Scholar 

  • Enos P, Samankassou E (1998) Lofer cyclothems revisited (Late Triassic, Northern Alps, Austria). Facies 38: 207–228

    Google Scholar 

  • Embry AF, Klovan JE (1972) Absolute water depth limits of Late Devonian paleoecological zones. Geol Rund 61:672–686

    Google Scholar 

  • Fischer AG (1964) The Lofer cyclothems of the alpine Triassic. Kansas Geol Surv Bull 169: 107–149

    Google Scholar 

  • Flügel E (1972) Mikroproblematika in Dünnschliffen von Trias-Kalken. Mitt Ges Geol Bergbaustud 21:957–988

    Google Scholar 

  • Flügel E (1981) Paleoecology and facies of Upper Triassic reefs in the Northern Calcareous Alps. In: Toomey DF (ed) European fossil reef models. SEPM Spec Publ 30: 291–359

    Google Scholar 

  • Flügel E (2002) Triassic reef patterns. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns. SEPM Spec Publ 72:391–463

    Google Scholar 

  • Flügel E, Kiessling W (2002) Patterns of Phanerozoic reef crises. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns. SEPM Spec Publ 72:691–733

    Google Scholar 

  • Gaffey SJ (1983) Formation and infilling of pits of marine ooid surfaces. J Sedim Petrol 53: 193–208

    Google Scholar 

  • Garrett P (1970) Phanerozoic stromatolites – non-competitive ecologic restriction by grazing and burrowing animals. Science 169:171–173

    CAS  PubMed  Google Scholar 

  • Gawlick, HJ (2000) Paläogeographie der Ober-Trias Karbonattplatform in den Nordlichen Kalkalpen. Mitt Ges Geol Bergbaustud Österr 44: 45–95

    Google Scholar 

  • Gadzicki A (1971) Megalodon limestones in the subtatric Rhaetian of the Tatra Mts. Acta Geol Polon 21:387–398

    Google Scholar 

  • Gadzicki A (1974) Rhaetian microfacies, stratigraphy and facial development in the Tatra Mts. Acta Geol Polon 24: 17–96

    Google Scholar 

  • Gadzicki A (1983) Foraminifers and biostratigraphy of Upper Triassic and Lower Jurassic of the Slovakian and Polish Carpathians. Palaeont Polon 44: 109–169

    Google Scholar 

  • Gadzicki A, Michalík J, Planderová E, Sýkora M (1979) An Upper Triassic—Lower Jurassic sequence in the Krížna nappe (West Tatra Mountains, West Carpathians, Czechoslovakia). Záp Karp, Geol 5: 119–148

  • Golebiowski R (1991) Becken und Riffe der alpinen Obertrias—Lithostratigraphie und Biofazies der Kossener Formation. Exkursionen Jungpaläozoikum und Mesozoikum, Österr, Österr Paläont Gesell, pp 79–119

  • Haas J, Kovács S, Krystyn L, Lein R (1995) Significance of Late Permian-Triassic facies zones in terrane reconstructions in the Alpine-North Pannonian domain. Tectonophysics 242:19–40

    Article  Google Scholar 

  • Hallam A (1996) Recovery of the marine fauna in Europe after the end-Triassic and early Toarcian mass extinctions. In: Hart MB (ed) Biotic recovery from mass extinction events. Geol Soc Lond Spec Publ 102: 231–236

    Google Scholar 

  • Hallam A (2002) How catastrophic was the end-Triassic mass extinction? Lethaia 35:147–157

    Article  Google Scholar 

  • Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford Univ Press, Oxford, 320 pp

  • Hallock P (1988) The role of nutrient availability in bioerosion: consequences to carbonate buildups. Palaeogeogr, Palaeoclimatol, Palaeoecol 63:275–291

  • Hallock P, Schlager W (1986) Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1:389–398

    Google Scholar 

  • Hardie LA (1996) Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology 24:279–283

    Article  CAS  Google Scholar 

  • Hill MO, Gauch HG Jr (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58

    Google Scholar 

  • Hine AC (1977) Lily Bank, Bahamas: history of an active oolite sand shoal. Journal Sedim Petrol 47:1-25

    Google Scholar 

  • Hine AC, Wilber RJ, Neumann AC (1981) Carbonate sand bodies along contrasting shallow bank margins facing open seaways in Northern Bahamas. AAPG Bull 65:261–290

    Google Scholar 

  • Inden RF, Moore CH (1983) Beaches. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments. AAPG Memoir 33:211–265

    Google Scholar 

  • Kazmierczak J, Colemn ML, Gruszczynski M, Kempe S (1996) Cyanobacterial key to the genesis of micritic and peloidal limestones in ancient sea. Acta Palaeont Polon 41:319–388

    Google Scholar 

  • Kenkel NC, Orlóci L (1986) Applying metric and nonmetric multidimensional scaling to ecologic studies. Some new results. Ecology 67:919–928

    Google Scholar 

  • Kidwell SM, Bosence DWJ (1991) Taphonomy and time-averaging of marine shelly faunas. In: Allison PA, Briggs DEG (eds) Taphonomy: Releasing the data locked in the fossil record. Plenum Press, New York, pp 115–129

  • Klein G De V, Ryer TA (1978) Tidal circulation patterns in Precambrian, Paleozoic, and Cretaceous epeiric and mioclinal shelf seas. Geol Soc Am Bull 89:1050–1058

    Google Scholar 

  • Kobluk DR, Risk MJ (1977) Micritization and carbonate-grain binding by endolithic algae. AAPG Bull 61:1069–1082

    CAS  Google Scholar 

  • Kochanová M (1967) Zur Rhaet-Hettang-Grenze in den Westkarpaten. Sb Geol Vied, Záp Karpaty 7:7-102

  • Kołodziej B (1997) Boring Foraminifera from exotics of the Štramberk-type limestones (Tithonian-Lower Berriasian, Polish Carpathians). Ann Soc Geol Polon 67:249–256

    Google Scholar 

  • Kowalewski M, Gürs K, Nebelsick JH, Oschmann W, Piller WE, Hoffmeister AP (2002) Multivariate hierarchical analyses of Miocene mollusk assemblages of Europe: paleogeographic, paleoecological, and biostratigraphic implications. Geol Soc Am Bull 114: 239–256

    Article  Google Scholar 

  • Kuss J (1983) Faziesentwicklung in proximalen Intraplatform-Becken: Sedimentation, Palökologie und Geochemie der Kössener Schichten (Ober-Trias, Nördlichen Kalkalpen). Facies 9:61–172

    Google Scholar 

  • Lakew T (1990) Microfacies and cyclic sedimentation of the Upper Triassic (Rhaetian) Calcare di Zu (Southern Alps). Facies 22: 187–232

    Google Scholar 

  • Lescinsky HL (2001) Epibionts. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Sc, Oxford, pp 460–464

  • Michalík J (1973) Paläogeographische Studie des Räts der Krížna-Decke des Strážov-Gebirges und einiger anliegender Gebiete. Geol Zb Geol Carpath 24: 123–140

    Google Scholar 

  • Michalík J (1974) Zur Paläogeographie der Rhätische Stufe des weslichen Teiles der Krížna-Decke in der West-Karpaten. Geol Zb Geol Carpath 25: 257–285

    Google Scholar 

  • Michalík J (1975) Genus Rhaetina Waagen, 1882 (Brachiopoda) in the Uppermost Triassic of the West Carpathians. Geol Zb Geol Carpath 26: 47–76

    Google Scholar 

  • Michalík J (1977) Paläogeographische Untersuchungen der Fatra-Schichten (Kossen - Formation) des nordlichen Teiles des Fatrikums in der Westkarpaten. Geol Zb Geol Carpath 28:71-94

    Google Scholar 

  • Michalík J (1979) Paleobiogeography of the Fatra-Formation of the Uppermost Triassic of the West Carpathians. Paleont Konf 77, Charles University, Prague, pp 25–39

  • Michalík J (1980) A paleoenvironmental and paleoecological analysis of the West Carpathian part of the Northern Tethyan nearshore region in the Latest Triassic time. Riv Ital Paleont 85: 1047–1064

    Google Scholar 

  • Michalík J (1982) Uppermost Triassic Short-Lived Bioherm Complexes in the Fatric, Western Carpathians. Facies 6: 129–146

    Google Scholar 

  • Michalík J (1985) Bystrý Potok. Litofaciálny vývoj rétskeho súvrstvia. In: Samuel O, Franko O (eds) Sprievodca k XXV. celoštátnej geologickej konferencii Slovenskej geologickej spoločnosti. Geol. Ústav. D. Štúra, pp 168–170

  • Michalík J (1994) Notes on the paleogeography and paleotectonics of the Western Carpathian area during the Mesozoic. Mitt Österr Geol Gesell 86:101–110

    Google Scholar 

  • Michalík J, Gadzicki A (1983) Stratigraphic and environmental correlations in the Fatra- and Norovica Formation (Upper Triassic, Western Carpathians). Schrift Erdwiss Komm 5: 267–276

    Google Scholar 

  • Michalík J, Jendrejáková O (1978) Organism communities and biofacies of the Fatra Formation (Uppermost Triassic, Fatric) in the West Carpathians. Geol Zb Geol Carpath 29: 113–137

    Google Scholar 

  • Michalík J, Sýkora M (1979) Fatra- und Kopienec-Schichten in dem Profil Ráztoky des Nolčovo-Tales in der Grossen Fatra Gebirge (höchste Trias-untere Jura des Krížna-Decke, Westkarpaten). Kmetianum, 5:113–133

  • Mišík M (1997) Stratigraphical and spatial distribution of limestones with calcite, chamosite, hematite and illite ooids in the Western Carpathians. Miner Slov 29: 83–112 (in Slovak with English summary)

    Google Scholar 

  • Perry CT (1998) Grain susceptibility to the effects of microboring: implications for the preservation of skeletal carbonates. Sedimentology 45:39–51

    Article  Google Scholar 

  • Perry CT (1999) Reef framework preservation in four contrasting modern reef environments, Discovery Bay, Jamaica. J Coast Res 15:796–812

    Google Scholar 

  • Perry CT, Bertling M (2000) Spatial and temporal patterns of macroboring within Mesozoic and Cenozoic coral reef systems. In: Insalaco E, Skelton PW, Palmer TJ (eds) Carbonate platform systems: components and interactions. Geol Soc Lond Spec Publ 178:33–50

    Google Scholar 

  • Piller W (1981) The Steinplatte reef complex, part of an Upper Triassic carbonate platform near Salzburg, Austria. In: Toomey DF (ed) European fossil reef models. SEPM Spec Publ 30: 261–290

    Google Scholar 

  • Pratt BR, James NP (1986) The St George Group (Lower Ordovician) of western Newfoundland: tidal flat island model for carbonate sedimentation in shallow epeiric seas. Sedimentology 33: 313–343

    Google Scholar 

  • Rakús M (1993) Lias ammonites of the West Carpathians. Zap Karpaty Paleont 17:7-40

    Google Scholar 

  • Raup DM, Sepkoski JJ Jr (1982) Mass extinctions in the marine fossil record. Science 215:1501–1503

    Google Scholar 

  • Raup DM, Sepkoski JJ Jr (1986) Periodic extinction of families and genera. Science 231:833–836

    CAS  PubMed  Google Scholar 

  • Reyment RA, Savazzi E (1999) Aspects of multivariate statistical analysis in geology. Elsevier, Amsterdam, 285 pp

  • Roniewicz E, Michalík J (1991a) A new Triassic scleractinian coral from the High Tatra Mountains (Western Carpathians, Czecho-Slovakia). Geol Carpath 42: 157–162

    Google Scholar 

  • Roniewicz E, Michalík J (1991b) Zardinophyllum (Scleractinia) from the Upper Triassic of the Central Western Carpathians (Czecho-Slovakia). Geol Carpath 42: 361–363

    Google Scholar 

  • Roniewicz E, Michalík J (1998) Rhaetian scleractinian corals in the Western Carpathians. Geol Carpath 49:391–399

    Google Scholar 

  • Roniewicz E, Stolarski J (1999) Evolutionary trends in the epithecate scleractinian corals in the Western Carpathians. Acta Palaeont Polon 44:131–166

    Google Scholar 

  • Sandberg PA (1983) An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy. Nature 305:19–22

    CAS  Google Scholar 

  • Schäfer K (1969) Vergleichs-Schaubilder zur Bestimmung des Allochemgehalts bioklastischer Karbonatgesteine. N Jahrb Geol Paläont, Monatshefte 1969: 173–184

  • Schäfer P (1979) Fazielle Entwicklung und palökologische Zonierung zweier obertriadischer Riffstrukturen in den Nördlichen Kalkalpen (“Oberrhät”-Riffkalke, Salzburg). Facies 1: 3–45

    Google Scholar 

  • Schäfer P (1984) Development of ecological reefs during the latest Triassic (Rhaetian) of the Northern Limestone Alps. Palaeontogr Amer 54:210–218

    Google Scholar 

  • Schäfer P, Senowbari-Daryan B (1981) Facies development and paleoecologic zonation of four Upper Triassic patch-reefs, Northern Calcareous Alps near Salzburg, Austria. In: Toomey DF (ed) European fossil reef models. SEPM Spec Publ 30: 241–259

    Google Scholar 

  • Schwarzacher W (1948) Über sedimentäre Rhytmik des Dachsteinkalkes am Lofer. Verh Geol Bundes, 10–12: 176–188

  • Seilacher A (1984) Constructional morphology of bivalves: evolutionary pathways in primary versus secondary soft-bottom dwellers. Palaeontology 27:207–237

    Google Scholar 

  • Shi GR (1993) Multivariate data analysis in palaeoecology and palaeobiogeography—a review. Palaeogeogr, Palaeoclimatol, Palaeoecol 105: 199–234

  • Shinn EA (1968) Practical significance of birdseye structures in carbonate rocks. J Sedim Petrol 38: 215–223

    Google Scholar 

  • Shinn EA (1983) Birdseyes, fenestrae, shrinkage pores, and loferites: a reevaluation. J Sedim Petrol 53:619–628

    Google Scholar 

  • Simone L (1981) Ooids: a review. Earth Sc Rev 16:319–355

    Article  CAS  Google Scholar 

  • Stanley GD (1979) Paleoecology, structure, and distribution of Triassic coral build-ups in Western North America. Univ Kansas Paleont Contr 65: 1–58

    Google Scholar 

  • Stanley GD Jr (1988) The history of Early Mesozoic reef communities: a three-step process. Palaios 3:170–183

    Google Scholar 

  • Stanley GD Jr, Swart PK (1995) Evolution of the coral-zooxanthellae symbiosis during the Triassic: a geochemical approach. Paleobiology 21:179–199

    Google Scholar 

  • Stanley MS, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr, Palaeoclimatol, Palaeoecol 144:3-19

  • Stanton RJ Jr, Flügel E (1987) Paleoecology of Upper Triassic reefs in the Northern Calcareous Alps: reef communities. Facies 16: 157–186

    Google Scholar 

  • Stanton RJ Jr, Flügel E (1989) Problems with reef models: The Late Triassic Steinplatte “reef” (Northern Alps, Salzburg/Tyrol, Austria). Facies 20: 1–138

    Google Scholar 

  • Stanton RJ Jr, Flügel E (1995) An accretionary distally steepened ramp at an intra-shelf basin margin: an alternative explanation for the Upper Triassic Steinplatte “reef” (Northern Calcareous Alps). Sedim Geol 95: 269–286

    Article  Google Scholar 

  • Strasser A (1986) Ooids in Purbeck limestones (lowermost Cretaceous) of the Swiss and French Jura. Sedimentology 33: 711–727

    Google Scholar 

  • Stur D (1859) Über die Kössener Schichten in nord-westlichen Ungarn. Sitzungsber Akad Wiss, math-nat Kl 38:1006–1024

  • Tomašových A (2000) Lagoonal-peritidal sequences in the Fatra Formation (Rhaetian): an example from the Veľká Fatra Mountains (Western Carpathians). Slovak Geol Mag 6:256–259

    Google Scholar 

  • Tomašových A (2002) Benthic assemblages and depositional environment in the uppermost Triassic (Rhaetian) of the West Carpathians (Fatric Unit, Veľká Fatra Mts.). Master of Science Thesis, Comenius University, Bratislava, pp 1–136

  • Tomašových A, Michalík J (2000) Rhaetian/Hettangian passage beds in the carbonate development in the Krížna Nappe (central Western Carpathians). Slovak Geol Mag 6:241–249

    Google Scholar 

  • Török A (1993) Brachiopod beds as indicators of storm events: an example from the Muschelkalk of southern Hungary. In: Pálfy J, Vrs A (eds) Mesozoic brachiopods of Alpine Europe. Budapest, pp 161–172

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Sc Publ, Oxford London, 482 pp

  • Turnšek D, Dolenec T, Siblík M, Ogorelec B, Ebli O, Lobitzer H (1999) Contributions to the fauna (corals, brachiopods) and stable isotopes of the Late Triassic Steinplatte reef/basin complex, Northern Calcareous Alps, Austria. Abh Geol Bundesanstalt 56:121–140

    Google Scholar 

  • Wilkinson BH, Owen RM, Carroll AR (1985) Submarine hydrothermal weathering, global eustasy, and carbonate polymorphism in Phanerozoic marine oolites. J Sedim Petrol 55:171–183

    Google Scholar 

  • Wilson JL (1975) Carbonate facies in geologic history. Springer, Berlin, 471 pp

  • Wood R (1999) Reef evolution. Oxford Univ Press, 414 pp

  • Wurm D (1982) Mikrofazies, Paläontologie und Palökologie der Dachsteinriffkalke (Nor) des Gosaukammes, Österreich. Facies 6:203–296

    Google Scholar 

  • Zankl H (1969) Der Hohe Göll: Aufbau und Lebensbild eines Dachsteinkalk-Riffes in der Obertrias des Nördlichen Kalkalpen. Abh Senckenberg Naturforsch Ges 519:1–123

    Google Scholar 

Download references

Acknowledgements

This project had started at the Department of Geology and Paleontology of the Comenius University (Bratislava) and Geological Institute of Slovak Academy of Sciences (Bratislava). I am very indebted to J. Michalík and R. Aubrecht for their supervising. I thank also M. Mišík, M. Kováč, M. Rakús, J. Schlögl (Bratislava), J. Soták, A. Bendík (Banská Bystrica) and J. Farkaš (Ottawa) for their help and encouragement. I am indebted to W. Kiessling (Berlin) and W. Piller (Graz) for critical reviews. I thank F. T. Fürsich and M. Wilmsen (Würzburg) for discussions and critical comments on the manuscript and E. Roniewicz (Warszawa) for help with determination of corals. This study has been funded by the AAPG Grant in Aid 2001 and is a contribution to the IGCP Project 458 - Triassic-Jurassic boundary events.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Tomašových.

Appendix

Appendix

The appendix consists of Fig. 18.

Fig. 18
figure 18

Dendrogram of Q-mode cluster analysis including sample numbers and microfacies types. Microfacies types 2 (intraclastic breccia) and 11 (Bio-rudstones/grainstones with bimodal sorting) were recognized additionally according to fabric criteria. Explanations of the symbols: The capital letter designates the locality (D – Dedošova—Frčkov, S – Sviniarka – Malý Zvolen, B – Belianska – Borišov, BP – Bystrý potok – Ružomberok, R – Ráztoky – Nolčovo) and the number designated the bed number

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomašových, A. Microfacies and depositional environment of an Upper Triassic intra-platform carbonate basin: the Fatric Unit of the West Carpathians (Slovakia). Facies 50, 77–105 (2004). https://doi.org/10.1007/s10347-004-0004-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-004-0004-y

Key words

Navigation