Advertisement

Facies

, Volume 50, Issue 1, pp 77–105 | Cite as

Microfacies and depositional environment of an Upper Triassic intra-platform carbonate basin: the Fatric Unit of the West Carpathians (Slovakia)

  • Adam TomašovýchEmail author
Original Article

Abstract

Facies associations of the Rhaetian Fatra Formation from the Veľká Fatra Mts. (West Carpathians) were deposited in a storm-dominated, shallow, intra-platform basin with dominant carbonate deposition and variable onshore peritidal and subtidal deposits, with 21 microfacies types supported by a cluster analysis. The deposits are formed by bivalves, gastropods, brachiopods, echinoderms, corals, foraminifers and red algae, ooids, intraclasts and peloids. A typical feature is the considerable variation in horizontal direction. The relative abundance and state of preservation of components as well as the fabric and geometric criteria of deposits can be correlated with depth/water energy-related environmental gradients. Four facies associations corresponding to four types of depositional settings were distinguished: a) peritidal, b) shoreface, above fair-weather wave base (FWWB), c) shallow subtidal, above normal storm wave base and d) above maximum storm wave base. The depositional environment can be characterized as a mosaic of low-relief peritidal flats and islands, shoreface banks and bars, and shallow subtidal depressions. The distribution and preservation of components were mainly controlled by the position of base level (FWWB), storm activity and differences in carbonate production between settings. Poorly or moderately diverse level-bottom macrobenthic assemblages are dominated by molluscs and brachiopods. The main site of patch-reef/biostrome carbonate production was located below the fair-weather wave base. Patch-reef/biostrome assemblages are poorly diverse and dominated by the branched scleractinian coral Retiophyllia, forming locally dm-scale autochthonous aggregations or more commonly parautochthonous assemblages with evidence of storm-reworking and substantial bioerosion by microborings and boring bivalves.

Facies types and assemblages are comparable in some aspects to those known from the Upper Triassic of the Eastern and Southern Alps (Hochalm member of the Kössen Formation or Calcare di Zu Formation), pointing to similar intra-platform depositional conditions. The absence of large-scale patch-reefs and poor diversity of level-bottom and patch-reef/biostrome assemblages with abundance of eurytopic taxa indicate high-stress/unstable ecological conditions and more restricted position of the Fatric intra-platform setting from the open ocean than the intra-platform habitats in the Eastern or Southern Alps.

Key words

Upper Triassic Rhaetian West Carpathians carbonate sedimentology facies analysis benthic assemblages  coral patch-reefs 

Notes

Acknowledgements

This project had started at the Department of Geology and Paleontology of the Comenius University (Bratislava) and Geological Institute of Slovak Academy of Sciences (Bratislava). I am very indebted to J. Michalík and R. Aubrecht for their supervising. I thank also M. Mišík, M. Kováč, M. Rakús, J. Schlögl (Bratislava), J. Soták, A. Bendík (Banská Bystrica) and J. Farkaš (Ottawa) for their help and encouragement. I am indebted to W. Kiessling (Berlin) and W. Piller (Graz) for critical reviews. I thank F. T. Fürsich and M. Wilmsen (Würzburg) for discussions and critical comments on the manuscript and E. Roniewicz (Warszawa) for help with determination of corals. This study has been funded by the AAPG Grant in Aid 2001 and is a contribution to the IGCP Project 458 - Triassic-Jurassic boundary events.

References

  1. Aigner T (1982) Calcareous tempestites: storm-dominated stratification in Upper Muschelkalk limestones (Middle Trias, SW-Germany). In: Einsele G, Seilacher A (eds) Cyclic and event stratification. Berlin-Heidelberg-New York, pp 180–198Google Scholar
  2. Aigner T (1985) Storm depositional systems. Dynamic stratigraphy in modern and ancient shallow marine sequences. Lecture Notes Earth Sc 3: 1-174Google Scholar
  3. Aigner T, Hagdorn H, Mundlos R (1978) Biohermal, biostromal and storm-generated coquinas in the Upper Muschelkalk. N Jahrb Geol Paläont, Abh 157:42–52Google Scholar
  4. Bacelle L, Bosellini A (1965) Diagrammi per la stime visiva della composizione percentuale nelle rocce sedimentaire. Ann Univ Ferrara, Sci Geol Paleont 1:59–62Google Scholar
  5. Ball MM (1967) Carbonate sand bodies of Florida and the Bahamas. J Sedim Petrol 37: 556–591Google Scholar
  6. Bernecker M, Weidlich O, Flügel E (1999) Response of Triassic reef coral communities to sea-level fluctuations, storms and sedimentation: evidence from a spectacular outcrop. Facies 40:229–280Google Scholar
  7. Borza K (1975) Mikroproblematika aus der oberen Trias der Westkarpaten. Geol Zb Geol Carpath 26: 199–236Google Scholar
  8. Burchette TP, Wright VP (1992) Carbonate ramp depositional systems. Sedim Geol 79:3-57CrossRefGoogle Scholar
  9. Cram JM (1979) The influence of continental shelf width on tidal range: paleoceanographic implications. J Geol 87:441–447Google Scholar
  10. Duffin CJ, Gadzicki A (1977) Rhaetian fish remains from the Tatra Mountains. Acta Geol Polon 27: 333–348Google Scholar
  11. Dullo WC (1980) Paläontologie, Facies und Geochemie der Dachsteinkalke (Obertrias) im südwestlichen Gesäuse, Steiermark, Österreich. Facies 2:55–122Google Scholar
  12. Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. Mem AAPG 1:108–121Google Scholar
  13. Ehses HH, Leinfelder RR (1988) Laterale und vertikale Faziesentwicklung der Rhät/Unterlias-Sedimentation im Wallberg-Blankenstein-Gebiet (Tegernsee, Nrdliche Kalkalpen). Mainz Geowiss Mitt 17: 53–94Google Scholar
  14. Enos P, Samankassou E (1998) Lofer cyclothems revisited (Late Triassic, Northern Alps, Austria). Facies 38: 207–228Google Scholar
  15. Embry AF, Klovan JE (1972) Absolute water depth limits of Late Devonian paleoecological zones. Geol Rund 61:672–686Google Scholar
  16. Fischer AG (1964) The Lofer cyclothems of the alpine Triassic. Kansas Geol Surv Bull 169: 107–149Google Scholar
  17. Flügel E (1972) Mikroproblematika in Dünnschliffen von Trias-Kalken. Mitt Ges Geol Bergbaustud 21:957–988Google Scholar
  18. Flügel E (1981) Paleoecology and facies of Upper Triassic reefs in the Northern Calcareous Alps. In: Toomey DF (ed) European fossil reef models. SEPM Spec Publ 30: 291–359Google Scholar
  19. Flügel E (2002) Triassic reef patterns. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns. SEPM Spec Publ 72:391–463Google Scholar
  20. Flügel E, Kiessling W (2002) Patterns of Phanerozoic reef crises. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns. SEPM Spec Publ 72:691–733Google Scholar
  21. Gaffey SJ (1983) Formation and infilling of pits of marine ooid surfaces. J Sedim Petrol 53: 193–208Google Scholar
  22. Garrett P (1970) Phanerozoic stromatolites – non-competitive ecologic restriction by grazing and burrowing animals. Science 169:171–173PubMedGoogle Scholar
  23. Gawlick, HJ (2000) Paläogeographie der Ober-Trias Karbonattplatform in den Nordlichen Kalkalpen. Mitt Ges Geol Bergbaustud Österr 44: 45–95Google Scholar
  24. Gadzicki A (1971) Megalodon limestones in the subtatric Rhaetian of the Tatra Mts. Acta Geol Polon 21:387–398Google Scholar
  25. Gadzicki A (1974) Rhaetian microfacies, stratigraphy and facial development in the Tatra Mts. Acta Geol Polon 24: 17–96Google Scholar
  26. Gadzicki A (1983) Foraminifers and biostratigraphy of Upper Triassic and Lower Jurassic of the Slovakian and Polish Carpathians. Palaeont Polon 44: 109–169Google Scholar
  27. Gadzicki A, Michalík J, Planderová E, Sýkora M (1979) An Upper Triassic—Lower Jurassic sequence in the Krížna nappe (West Tatra Mountains, West Carpathians, Czechoslovakia). Záp Karp, Geol 5: 119–148Google Scholar
  28. Golebiowski R (1991) Becken und Riffe der alpinen Obertrias—Lithostratigraphie und Biofazies der Kossener Formation. Exkursionen Jungpaläozoikum und Mesozoikum, Österr, Österr Paläont Gesell, pp 79–119Google Scholar
  29. Haas J, Kovács S, Krystyn L, Lein R (1995) Significance of Late Permian-Triassic facies zones in terrane reconstructions in the Alpine-North Pannonian domain. Tectonophysics 242:19–40CrossRefGoogle Scholar
  30. Hallam A (1996) Recovery of the marine fauna in Europe after the end-Triassic and early Toarcian mass extinctions. In: Hart MB (ed) Biotic recovery from mass extinction events. Geol Soc Lond Spec Publ 102: 231–236Google Scholar
  31. Hallam A (2002) How catastrophic was the end-Triassic mass extinction? Lethaia 35:147–157CrossRefGoogle Scholar
  32. Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford Univ Press, Oxford, 320 ppGoogle Scholar
  33. Hallock P (1988) The role of nutrient availability in bioerosion: consequences to carbonate buildups. Palaeogeogr, Palaeoclimatol, Palaeoecol 63:275–291Google Scholar
  34. Hallock P, Schlager W (1986) Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1:389–398Google Scholar
  35. Hardie LA (1996) Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology 24:279–283CrossRefGoogle Scholar
  36. Hill MO, Gauch HG Jr (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58Google Scholar
  37. Hine AC (1977) Lily Bank, Bahamas: history of an active oolite sand shoal. Journal Sedim Petrol 47:1-25Google Scholar
  38. Hine AC, Wilber RJ, Neumann AC (1981) Carbonate sand bodies along contrasting shallow bank margins facing open seaways in Northern Bahamas. AAPG Bull 65:261–290Google Scholar
  39. Inden RF, Moore CH (1983) Beaches. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments. AAPG Memoir 33:211–265Google Scholar
  40. Kazmierczak J, Colemn ML, Gruszczynski M, Kempe S (1996) Cyanobacterial key to the genesis of micritic and peloidal limestones in ancient sea. Acta Palaeont Polon 41:319–388Google Scholar
  41. Kenkel NC, Orlóci L (1986) Applying metric and nonmetric multidimensional scaling to ecologic studies. Some new results. Ecology 67:919–928Google Scholar
  42. Kidwell SM, Bosence DWJ (1991) Taphonomy and time-averaging of marine shelly faunas. In: Allison PA, Briggs DEG (eds) Taphonomy: Releasing the data locked in the fossil record. Plenum Press, New York, pp 115–129Google Scholar
  43. Klein G De V, Ryer TA (1978) Tidal circulation patterns in Precambrian, Paleozoic, and Cretaceous epeiric and mioclinal shelf seas. Geol Soc Am Bull 89:1050–1058Google Scholar
  44. Kobluk DR, Risk MJ (1977) Micritization and carbonate-grain binding by endolithic algae. AAPG Bull 61:1069–1082Google Scholar
  45. Kochanová M (1967) Zur Rhaet-Hettang-Grenze in den Westkarpaten. Sb Geol Vied, Záp Karpaty 7:7-102Google Scholar
  46. Kołodziej B (1997) Boring Foraminifera from exotics of the Štramberk-type limestones (Tithonian-Lower Berriasian, Polish Carpathians). Ann Soc Geol Polon 67:249–256Google Scholar
  47. Kowalewski M, Gürs K, Nebelsick JH, Oschmann W, Piller WE, Hoffmeister AP (2002) Multivariate hierarchical analyses of Miocene mollusk assemblages of Europe: paleogeographic, paleoecological, and biostratigraphic implications. Geol Soc Am Bull 114: 239–256CrossRefGoogle Scholar
  48. Kuss J (1983) Faziesentwicklung in proximalen Intraplatform-Becken: Sedimentation, Palökologie und Geochemie der Kössener Schichten (Ober-Trias, Nördlichen Kalkalpen). Facies 9:61–172Google Scholar
  49. Lakew T (1990) Microfacies and cyclic sedimentation of the Upper Triassic (Rhaetian) Calcare di Zu (Southern Alps). Facies 22: 187–232Google Scholar
  50. Lescinsky HL (2001) Epibionts. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Sc, Oxford, pp 460–464Google Scholar
  51. Michalík J (1973) Paläogeographische Studie des Räts der Krížna-Decke des Strážov-Gebirges und einiger anliegender Gebiete. Geol Zb Geol Carpath 24: 123–140Google Scholar
  52. Michalík J (1974) Zur Paläogeographie der Rhätische Stufe des weslichen Teiles der Krížna-Decke in der West-Karpaten. Geol Zb Geol Carpath 25: 257–285Google Scholar
  53. Michalík J (1975) Genus Rhaetina Waagen, 1882 (Brachiopoda) in the Uppermost Triassic of the West Carpathians. Geol Zb Geol Carpath 26: 47–76Google Scholar
  54. Michalík J (1977) Paläogeographische Untersuchungen der Fatra-Schichten (Kossen - Formation) des nordlichen Teiles des Fatrikums in der Westkarpaten. Geol Zb Geol Carpath 28:71-94Google Scholar
  55. Michalík J (1979) Paleobiogeography of the Fatra-Formation of the Uppermost Triassic of the West Carpathians. Paleont Konf 77, Charles University, Prague, pp 25–39Google Scholar
  56. Michalík J (1980) A paleoenvironmental and paleoecological analysis of the West Carpathian part of the Northern Tethyan nearshore region in the Latest Triassic time. Riv Ital Paleont 85: 1047–1064Google Scholar
  57. Michalík J (1982) Uppermost Triassic Short-Lived Bioherm Complexes in the Fatric, Western Carpathians. Facies 6: 129–146Google Scholar
  58. Michalík J (1985) Bystrý Potok. Litofaciálny vývoj rétskeho súvrstvia. In: Samuel O, Franko O (eds) Sprievodca k XXV. celoštátnej geologickej konferencii Slovenskej geologickej spoločnosti. Geol. Ústav. D. Štúra, pp 168–170Google Scholar
  59. Michalík J (1994) Notes on the paleogeography and paleotectonics of the Western Carpathian area during the Mesozoic. Mitt Österr Geol Gesell 86:101–110Google Scholar
  60. Michalík J, Gadzicki A (1983) Stratigraphic and environmental correlations in the Fatra- and Norovica Formation (Upper Triassic, Western Carpathians). Schrift Erdwiss Komm 5: 267–276Google Scholar
  61. Michalík J, Jendrejáková O (1978) Organism communities and biofacies of the Fatra Formation (Uppermost Triassic, Fatric) in the West Carpathians. Geol Zb Geol Carpath 29: 113–137Google Scholar
  62. Michalík J, Sýkora M (1979) Fatra- und Kopienec-Schichten in dem Profil Ráztoky des Nolčovo-Tales in der Grossen Fatra Gebirge (höchste Trias-untere Jura des Krížna-Decke, Westkarpaten). Kmetianum, 5:113–133Google Scholar
  63. Mišík M (1997) Stratigraphical and spatial distribution of limestones with calcite, chamosite, hematite and illite ooids in the Western Carpathians. Miner Slov 29: 83–112 (in Slovak with English summary)Google Scholar
  64. Perry CT (1998) Grain susceptibility to the effects of microboring: implications for the preservation of skeletal carbonates. Sedimentology 45:39–51CrossRefGoogle Scholar
  65. Perry CT (1999) Reef framework preservation in four contrasting modern reef environments, Discovery Bay, Jamaica. J Coast Res 15:796–812Google Scholar
  66. Perry CT, Bertling M (2000) Spatial and temporal patterns of macroboring within Mesozoic and Cenozoic coral reef systems. In: Insalaco E, Skelton PW, Palmer TJ (eds) Carbonate platform systems: components and interactions. Geol Soc Lond Spec Publ 178:33–50Google Scholar
  67. Piller W (1981) The Steinplatte reef complex, part of an Upper Triassic carbonate platform near Salzburg, Austria. In: Toomey DF (ed) European fossil reef models. SEPM Spec Publ 30: 261–290Google Scholar
  68. Pratt BR, James NP (1986) The St George Group (Lower Ordovician) of western Newfoundland: tidal flat island model for carbonate sedimentation in shallow epeiric seas. Sedimentology 33: 313–343Google Scholar
  69. Rakús M (1993) Lias ammonites of the West Carpathians. Zap Karpaty Paleont 17:7-40Google Scholar
  70. Raup DM, Sepkoski JJ Jr (1982) Mass extinctions in the marine fossil record. Science 215:1501–1503Google Scholar
  71. Raup DM, Sepkoski JJ Jr (1986) Periodic extinction of families and genera. Science 231:833–836PubMedGoogle Scholar
  72. Reyment RA, Savazzi E (1999) Aspects of multivariate statistical analysis in geology. Elsevier, Amsterdam, 285 ppGoogle Scholar
  73. Roniewicz E, Michalík J (1991a) A new Triassic scleractinian coral from the High Tatra Mountains (Western Carpathians, Czecho-Slovakia). Geol Carpath 42: 157–162Google Scholar
  74. Roniewicz E, Michalík J (1991b) Zardinophyllum (Scleractinia) from the Upper Triassic of the Central Western Carpathians (Czecho-Slovakia). Geol Carpath 42: 361–363Google Scholar
  75. Roniewicz E, Michalík J (1998) Rhaetian scleractinian corals in the Western Carpathians. Geol Carpath 49:391–399Google Scholar
  76. Roniewicz E, Stolarski J (1999) Evolutionary trends in the epithecate scleractinian corals in the Western Carpathians. Acta Palaeont Polon 44:131–166Google Scholar
  77. Sandberg PA (1983) An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy. Nature 305:19–22Google Scholar
  78. Schäfer K (1969) Vergleichs-Schaubilder zur Bestimmung des Allochemgehalts bioklastischer Karbonatgesteine. N Jahrb Geol Paläont, Monatshefte 1969: 173–184Google Scholar
  79. Schäfer P (1979) Fazielle Entwicklung und palökologische Zonierung zweier obertriadischer Riffstrukturen in den Nördlichen Kalkalpen (“Oberrhät”-Riffkalke, Salzburg). Facies 1: 3–45Google Scholar
  80. Schäfer P (1984) Development of ecological reefs during the latest Triassic (Rhaetian) of the Northern Limestone Alps. Palaeontogr Amer 54:210–218Google Scholar
  81. Schäfer P, Senowbari-Daryan B (1981) Facies development and paleoecologic zonation of four Upper Triassic patch-reefs, Northern Calcareous Alps near Salzburg, Austria. In: Toomey DF (ed) European fossil reef models. SEPM Spec Publ 30: 241–259Google Scholar
  82. Schwarzacher W (1948) Über sedimentäre Rhytmik des Dachsteinkalkes am Lofer. Verh Geol Bundes, 10–12: 176–188Google Scholar
  83. Seilacher A (1984) Constructional morphology of bivalves: evolutionary pathways in primary versus secondary soft-bottom dwellers. Palaeontology 27:207–237Google Scholar
  84. Shi GR (1993) Multivariate data analysis in palaeoecology and palaeobiogeography—a review. Palaeogeogr, Palaeoclimatol, Palaeoecol 105: 199–234Google Scholar
  85. Shinn EA (1968) Practical significance of birdseye structures in carbonate rocks. J Sedim Petrol 38: 215–223Google Scholar
  86. Shinn EA (1983) Birdseyes, fenestrae, shrinkage pores, and loferites: a reevaluation. J Sedim Petrol 53:619–628Google Scholar
  87. Simone L (1981) Ooids: a review. Earth Sc Rev 16:319–355CrossRefGoogle Scholar
  88. Stanley GD (1979) Paleoecology, structure, and distribution of Triassic coral build-ups in Western North America. Univ Kansas Paleont Contr 65: 1–58Google Scholar
  89. Stanley GD Jr (1988) The history of Early Mesozoic reef communities: a three-step process. Palaios 3:170–183Google Scholar
  90. Stanley GD Jr, Swart PK (1995) Evolution of the coral-zooxanthellae symbiosis during the Triassic: a geochemical approach. Paleobiology 21:179–199Google Scholar
  91. Stanley MS, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr, Palaeoclimatol, Palaeoecol 144:3-19Google Scholar
  92. Stanton RJ Jr, Flügel E (1987) Paleoecology of Upper Triassic reefs in the Northern Calcareous Alps: reef communities. Facies 16: 157–186Google Scholar
  93. Stanton RJ Jr, Flügel E (1989) Problems with reef models: The Late Triassic Steinplatte “reef” (Northern Alps, Salzburg/Tyrol, Austria). Facies 20: 1–138Google Scholar
  94. Stanton RJ Jr, Flügel E (1995) An accretionary distally steepened ramp at an intra-shelf basin margin: an alternative explanation for the Upper Triassic Steinplatte “reef” (Northern Calcareous Alps). Sedim Geol 95: 269–286CrossRefGoogle Scholar
  95. Strasser A (1986) Ooids in Purbeck limestones (lowermost Cretaceous) of the Swiss and French Jura. Sedimentology 33: 711–727Google Scholar
  96. Stur D (1859) Über die Kössener Schichten in nord-westlichen Ungarn. Sitzungsber Akad Wiss, math-nat Kl 38:1006–1024Google Scholar
  97. Tomašových A (2000) Lagoonal-peritidal sequences in the Fatra Formation (Rhaetian): an example from the Veľká Fatra Mountains (Western Carpathians). Slovak Geol Mag 6:256–259Google Scholar
  98. Tomašových A (2002) Benthic assemblages and depositional environment in the uppermost Triassic (Rhaetian) of the West Carpathians (Fatric Unit, Veľká Fatra Mts.). Master of Science Thesis, Comenius University, Bratislava, pp 1–136Google Scholar
  99. Tomašových A, Michalík J (2000) Rhaetian/Hettangian passage beds in the carbonate development in the Krížna Nappe (central Western Carpathians). Slovak Geol Mag 6:241–249Google Scholar
  100. Török A (1993) Brachiopod beds as indicators of storm events: an example from the Muschelkalk of southern Hungary. In: Pálfy J, Vrs A (eds) Mesozoic brachiopods of Alpine Europe. Budapest, pp 161–172Google Scholar
  101. Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Sc Publ, Oxford London, 482 ppGoogle Scholar
  102. Turnšek D, Dolenec T, Siblík M, Ogorelec B, Ebli O, Lobitzer H (1999) Contributions to the fauna (corals, brachiopods) and stable isotopes of the Late Triassic Steinplatte reef/basin complex, Northern Calcareous Alps, Austria. Abh Geol Bundesanstalt 56:121–140Google Scholar
  103. Wilkinson BH, Owen RM, Carroll AR (1985) Submarine hydrothermal weathering, global eustasy, and carbonate polymorphism in Phanerozoic marine oolites. J Sedim Petrol 55:171–183Google Scholar
  104. Wilson JL (1975) Carbonate facies in geologic history. Springer, Berlin, 471 ppGoogle Scholar
  105. Wood R (1999) Reef evolution. Oxford Univ Press, 414 ppGoogle Scholar
  106. Wurm D (1982) Mikrofazies, Paläontologie und Palökologie der Dachsteinriffkalke (Nor) des Gosaukammes, Österreich. Facies 6:203–296Google Scholar
  107. Zankl H (1969) Der Hohe Göll: Aufbau und Lebensbild eines Dachsteinkalk-Riffes in der Obertrias des Nördlichen Kalkalpen. Abh Senckenberg Naturforsch Ges 519:1–123Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Institut für PaläontologieWürzburg Universität WürzburgGermany

Personalised recommendations