Skip to main content
Log in

To be allochthonous or autochthonous? The late Paleocene–late Eocene slope sedimentary succession of the Latium–Abruzzi carbonate platform (Central Apennines, Italy)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Margins, slopes, and toe-of-slopes represent regions of sediment transfer and bypass from shallow-water settings to the basin. They are zones of sediment flux triggered by different types of physical process including sediment-gravity flows, storm-driven currents, unidirectional currents, and oscillatory flows. As a consequence, they are zones where sediment can be remobilized and strongly reworked from inner environments to offshore settings and deposited as a mixture of autochthonous/allochthonous sediments. In the Monte La Serra and Monte Torretta (Central Apennines) lower-to-upper Eocene reworked sedimentary succession, two main facies associations are differentiated on textural characteristics and tested for robustness by hierarchical cluster analysis: a grain-supported (packstone-to-grainstone) facies FA1 and a mud-supported (mudstone-to-wackestone) facies FA2. The outcrops allow investigation of the transition zone between the margin of the Latium–Abruzzi platform and the adjoining basin and especially the identification of the carbonate factories that supplied the sediment to the slope zone of the Latium–Abruzzi platform. During the Paleogene, this platform was a shaved isolated platform under the action of waves, with sediment deposition during the transgressive and highstand phases of sea level, and erosion of this material during a subsequent lowstand phase. During these phases, storm-driven currents acted on the carbonate platform, remobilizing, resuspending, and reworking sediments. The remobilized material was transferred from the inner platform on to the slope, generating a mixture of detrital shallow- and deep-water biotic assemblages and depositing autochthonous/allochthonous units mainly constituted by alveolinids, large rotaliids, hooked gypsinids, nummulitids, and orthophragmines (discocyclinids and orbitoclypeids) assemblages. This mixture of shallow- and deep-water biotic assemblages demonstrates that a systematic study of the provenance of carbonate-producing biota, even if they are not preserved in their original context, can be useful in palaeoenvironmental reconstruction of the original carbonate factory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Accordi G, Carbone F (1988) Lithofacies map of Latium–Abruzzi and neighbouring areas. Scale 1:250,000. Quaderni de ‘La Ricerca Scientifica’ 114:11–89

    Google Scholar 

  • Accordi B, Devoto G, La Monica GB, Praturlon A, Sirna G, Zalaffi M (1967) Il Neogene nell'Appennino laziale-abruzzese. Commitee Mediterranean Neogene Stratigraphy, Proc. IV Session, Bologna. Giorn Geol 35:235–268

  • Aigner T (1983) Facies and origin of nummulitic build-ups: an example from the Giza Pyramids Plateau (Middle Eocene, Egypt). Neues Jahrbuch Geol Paläontol Abh 166:347–368

    Google Scholar 

  • Aigner T (1985) Biofabrics as dynamic indicators in nummulite accumulations. J Sediment Petrol 55:131–134

    Google Scholar 

  • Anania MG, Bottino C, Matteucci R, Pignatti J (2000) A late BArtonian-early Priabonian benthonic foraminiferal assemblage from Tornimparte near L’Aquila (Central Italy). Geol Rom 36:147–161

    Google Scholar 

  • Basilone L (2009) Sequence stratigraphy of a Mesozoic carbonate platform-to-basin system in western Sicily. Cent Eur J Geosci 1:251–273. https://doi.org/10.2478/v10085-009-0021-8

    Article  Google Scholar 

  • Basilone L, Di Maggio C (2016) Geology of Monte Gallo (Palermo Mts, NW Sicily). J Maps 12(5):1072–1083. https://doi.org/10.1080/17445647.2015.1124716

    Article  Google Scholar 

  • Bassi D (2005) Larger foraminiferal and coralline algal facies in an Upper Eocene storm influenced, shallow water carbonate platform (Colli Berici, north-eastern Italy). Palaeogeogr Palaeoclimatol Palaeoecol 226:17–35

    Google Scholar 

  • Bassi D, Nebelsick J (2010) Components, facies and ramps: redefining Upper Oligocene shallow water carbonates using coralline red algae and larger foraminifera (Venetian area, northeast Italy). Palaeogeogr Palaeoclimatol Palaeoecol 295:258–280. https://doi.org/10.1016/j.palaeo.2010.06.003

    Article  Google Scholar 

  • Bassi D, Nebelsick JH, Puga-Bernabéu Á, Luciani V (2013) Middle Eocene Nummulites and their offshore re-deposition: a case study from the Middle Eocene of the Venetian area, northeastern Italy. Sedim Geol 297:1–15

    Google Scholar 

  • Beavington-Penney SJ (2004) Analysis of the effects of abrasion on the test of Paleonummulites venosus: implications for the origin of nummulithoclastic sediments. Palaios 19:143–155

    Google Scholar 

  • Beavington-Penney SJ, Wright VP, Woelkerling WJ (2004) Recognising macrophyte vegetated environments in the rock record: a new criterion using ‘hooked’ forms of crustose coralline red algae. Sedim Geol 166:1–9

    Google Scholar 

  • Beavington-Penney SJ, Wright VP, Racey A (2005) Sediment production and dispersal on foraminifera-dominated early Tertiary ramps: the Eocene El Garia Formation, Tunisia. Sedimentology 52:537–569

    Google Scholar 

  • Benedetti A (2010) Biostratigraphic remarks on the Caltavuturo Formation (Eocene-Oligocene) cropping out at Portella Colla (Madonie Mts., Sicily). Rev Paléobiol 29:197–216

    Google Scholar 

  • Benedetti A (2018) Eocene carbonate clasts in Oligocene siliciclastic sediments of the Trapani Basin (NW Sicily): depositional and stratigraphic significance. Facies 64:14

    Google Scholar 

  • Benedetti A (2019) Benthic foraminiferal assemblages from the late Eocene to the early Oligocene of the Caltavuturo Formation in the Madonie Mountains (Sivily): a tool for correlation. Ital J Geosci 138:43–55

    Google Scholar 

  • Benedetti A, D’Amico C (2012) Benthic foraminifers and gastropods from the Gratteri Formation cropping out near Isnello (Madonie Mts., Sicily). Ital J Geosci 131:47–65

    Google Scholar 

  • Benedetti A, Di Carlo M, Pignatti J (2011) New Late Ypresian (Cuisian) rotaliids (Foraminiferida) from Central and Southern Italy and their biostratigraphic potential. Turkish J Earth Sci 20:701–719

    Google Scholar 

  • Benedetti A, Marino M, Pichezzi RM (2018) Paleocene to Lower Eocene larger foraminiferal assemblages from Central Italy: new remarks on biostratigraphy. Riv Ital Paleont Strat 124:73–90

    Google Scholar 

  • Bengtson P (1988) Open nomenclature. Palaeontology 31(1):223–227

  • Bernoulli D (2001) Mesozoic-tertiary carbonate platforms, slopes and basino of the external Apennines and Sicily. In: Vai GB, Martini IP (eds) Anatomy of an Orogen: the Apennines and Adjacent Mediterranean Basins. Kluwer Acadamic Publishers, Dordrecht, pp 307–326

    Google Scholar 

  • Betzler C, Braga JC, Jaramillo-Vogel D, Römer M, Hübscher C, Schmiedl G, Lindhorst S (2011) Late Pleistocene and Holocene cool-water carbonates of the Western Mediterranean Sea. Sedimentology 58:643–669

    Google Scholar 

  • Braga JC, Martín JM, Betzler C, Aguirre J (2006) Models of temperate carbonate deposition in Neogene basins in SE Spain: a synthesis. In: Pedley HM, Carannante G (eds) Cool-water carbonates: depositional systems and palaeonvironmental controls, vol 255. Geological Society Special Publication, London, pp 121–135

    Google Scholar 

  • Brandano M (2017) Unravelling the origin of a Paleogene unconformity in the Latium–Abruzzi carbonate succession: a shaved platform. Palaeogeogr Palaeoclimatol Palaeoecol 485:687–696

    Google Scholar 

  • Brandano M, Corda L, Mariotti G (2005) Orbital forcing recorded in subtidal cycles from a Lower Miocene siliciclastic–carbonate ramp system (Central Italy). Terranova 17:434–441. https://doi.org/10.1111/j.1365-3121.2005.00630.x

    Article  Google Scholar 

  • Brandano M, Frezza V, Tomassetti L, Cuffaro M (2009a) Heterozoan carbonates in oligotrophic tropical waters: the Attard member of the lower coralline limestone formation (Upper Oligocene, Malta). Palaeogeogr Palaeoclimatol Palaeoecol 274:54–63

    Google Scholar 

  • Brandano M, Frezza V, Tomassetti L, Pedley M, Matteucci R (2009b) Facies analysis and palaeoenvironmental interpretation of the Late Oligocene Attard member (Lower Coralline Limestone Formation), Malta. Sedimentology 56:1138–1158

    Google Scholar 

  • Brandano M, Westphal H, Mateu-Vicens G (2010) The sensitivity of a tropical Foramolrhodalgal carbonate ramp to relative sea-level change: miocene of the central Apennines, Italy. Int Assoc Sedimentol Spec Publ 42:89–106

    Google Scholar 

  • Brandano M, Lustrino M, Cornacchia I, Sprovieri M (2015) Global and regional factors responsible for the drowning of the central Apennine Chattian carbonate platforms. Geol J 50(5):575–591

    Google Scholar 

  • Brandano M, Tomassetti L, Sardella R, Tinelli C (2016) Progressive deterioration of trophic conditions in a carbonate ramp environment: the Lithothamnion Limestone, Majella Mountain (Tortonian–Early Messinian, Central Apennines, Italy). Palaios 31:125–140. https://doi.org/10.2110/palo.2015.022

    Article  Google Scholar 

  • Brandano M, Cornacchia I, Raffi I, Tomassetti L, Agostini S (2017) The Monterey event within the Central Mediterranean area: the shallow-water record. Sedimentology 64:286–310. https://doi.org/10.1111/sed.12348

    Article  Google Scholar 

  • Brandano M, Tomassetti L, Cornacchia I (2019) The lower Rupelian cluster reefs of Majella platform, the shallow water record of Eocene to Oligocene transition. Sediment geol 380:21–30

    Google Scholar 

  • Brasier MD (1975) An outline history of seagrass communities. Palaeontology 18:681–702

  • Carannante G, Severi C, Simone L (1996) Off-shelf carbonate transport along Foramol (temperate-type) open shelf margins: an example from the Miocene of the central southern Apennines, Italy. Mém Soc Géol France 169:266–277

    Google Scholar 

  • Carannante G, Graziano R, Pappone G, Ruberti D, Simone L (1999) Depositional system and response to sea level oscillations of the Senonian rudist-bearing carbonate shelves. Examples from Central Mediterranean areas. Facies 40:1–24

    Google Scholar 

  • Carbone F (1993) Cretaceous depositional system of the evolving Mesozoic carbonate platform of central Apennine thrust belt, Italy. Geol Rom 29:31–53

    Google Scholar 

  • Carboni MG, Civitelli G, Corda L, Esu D, Matteucci R, Pallini G, Schiavinotto F, Ventura G (1982) Sedimenti spongolitici del Miocene inferiore dell’Appennino centrale: un inquadramento preliminare. Geol Rom 21:529–543

    Google Scholar 

  • Carminati E, Doglioni C (2004) Mediterranean geodynamics. In: Selley RC, Cocks LRM, Plimer IR (eds) Encyclopedia of geology. Elsevier, Amsterdam, pp 135–146

    Google Scholar 

  • Carminati E, Lustrino M, Cuffaro M, Doglioni C (2010) Tectonics, magmatism and geodynamics of Italy: what we know and what we imagine. In: Beltrando M, Peccerillo A, Mattei M, Conticelli S, Doglioni C (eds) The Geology of Italy: Tectonics and Life Along Plate Margins. Journal of the Virtual Explorer. Electronic Edition. 36, pp 1441–8142 4 ISSN. paper 9

  • Carminati E, Lustrino M, Doglioni C (2012) Geodynamic evolution of the central and western Mediterranean Tectonics vs. igneous petrology constraints. Tectonophysics 579:173–192

    Google Scholar 

  • Chiocchini M, Mancinelli A, Romano A (1989) The gaps in the Middle-Upper Cretaceous carbonate series of the southern Apennines (Abruzzi and Campania regions). Geobios 22:133–149

    Google Scholar 

  • Cipollari P, Cosentino D (1995) Miocene unconformities in the central Apennines: geodynamic significance and sedimentary basin evolution. Tectonophysics 252:375–389

    Google Scholar 

  • Civitelli G, Brandano M (2005) Atlante delle litofacies emodello deposizionale dei Calcari a Briozoi e Litotamni nella Piattaforma carbonatica laziale-abruzzese. Boll Soc Geol Ital 124:611–643

    Google Scholar 

  • Civitelli G, Corda L, Mariotti G (1986) Il bacino sabino: 2. sedimentologia della serie calcarea e marnoso spongolitica (Paleogene-Miocene). Mem Soc Geol Ital 35:33–47

    Google Scholar 

  • Colacicchi R (1966) Le caratteristiche della facies abruzzese alla luce delle moderne indagini geologiche. Mem Soc Geol Ital 5:1–18

    Google Scholar 

  • Cosentino D, Cipollari P, Marsili P, Scrocca D (2010) Geology of central Apennines: a regional review. J Virtual Explorer 36:1–37. https://doi.org/10.3809/jvirtex.2009.00223

    Article  Google Scholar 

  • Cósović V, Drobne K, Moro A (2004) Paleoenvironmental model for Eocene foraminiferal limestones of the Adriatic carbonate platform (Istrian Peninsula). Facies 50:61–75

    Google Scholar 

  • Costa E, Garcés M, López-Blanco M, Serra-Kiel J, Bernaola G, Cabrera L, Beamud E (2013) The Bartonian-Priabonian marine record of the eastern South Pyrenean foreland basin (NE Spain): a new calibration of the larger foraminifers and calcareous nannofossil biozonation. Geol Acta 11:177–193

    Google Scholar 

  • Damiani AV, Chiocchini M, Colacicchi R, Mariotti G, Parotto M, Passeri L, Praturlon A (1992) Elementi litostratigrafici per una sintesi delle facies carbonatiche mesocenozoiche dell’Appennino centrale. In: Studi Preliminari all’Acquisizione Dati del Profilo CROP 11 Civitavecchia-Vasto, Tozzi M, Cavinato GP, Parotto M (eds), Studi Geol Camerti Vol. Spec. 1991/2. University of Camerino, Camerino, Italy, pp 187–213

  • Davies GR (1970) Carbonate bank sedimentation, eastern Shark Bay, Western Australia. Am Assoc Petrol Geol 13:85–168

    Google Scholar 

  • Denizot M (1968) Les algues floridées encroûtantes (à l’exclusion des Corallinacées). Thèse, Laboratoire de cryptogamie, Muséum national d’Histoire naturelle, Paris

  • Devoto G (1964) Zone ad Alveolinidae nel Cretaceo e Paleocene del Lazio ed Abruzzo centro-meridionale. Geol Rom 3:405–414

    Google Scholar 

  • Di Carlo M, Accordi G, Carbone F, Pignatti J (2010) Biostratigraphic analysis of Paleogene lowstand wedge conglomerates of a tectonically active platform margin (Zakynthos Islands, Greece). J Mediterr Earth Sci 2:31–92

    Google Scholar 

  • Doglioni C (1991) A proposal for the kinematic modelling of W-dipping subductions; possible applications to the Tyrrhenian-Apennines system. Terra Nova 3:423–434

    Google Scholar 

  • Eva AN (1980) Pre-Miocene seagrass communities in the Caribbean. Palaeontology 23:231–236

  • Evans D, Stoker MS, Cramp A (1998) Geological processes on continental margins: sedimentation, mass-wasting and stability: An introduction. In: Stoker MS, Evans D, Cramp A (eds) Geological processes on continental margins: sedimentation, mass-wasting and stability, vol 129. Spec. Publ. Geol. Soc, London, pp 1–4

    Google Scholar 

  • Ferràndez-Canadell C (1999) Morfoestructura i paleobiologia dels ortofragmÍnids de la Mesogea (Discocyclinidae i Orbitoclypeidae, Foraminifera). Institut d’Estudis Catalans, secció de Ciéncies I Tecnologia, Barcelona

  • Fornós JJ, Ahr WM (2006) Present-day temperate carbonate sedimentation on the Balearic Platform, western Mediterranean: compositional and textural variation along a low-energy isolated ramp. In: Pedley HM, Carannante G (eds) Cool-water carbonates: depositional systems and palaeonvironmental controls, vol 255. Geological Society, Special Publication, London, pp 71–84

    Google Scholar 

  • Geel T (2000) Recognition of stratigraphic sequence in carbonate platform and slope deposits: empirical models based on microfacies analysis of Palaeogene deposits in South Eastern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 155:211–238

    Google Scholar 

  • Gelabert B, Sabat F (2002) A new proposal for the late Cenozoic geodynamic evolution of the Western Mediterranean. Terra Nova 14:93–100

    Google Scholar 

  • Gueguen E, Doglioni C, Fernandez M (1998) On the post 25 Ma geodynamic evolution of the Western Mediterranean. Tectonophysics 298:259–269

    Google Scholar 

  • Hallock P (1985) Why are larger foraminifera large? Paleobiology 14:250–261

  • Hallock P, Schlager W (1986) Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1:389–398

    Google Scholar 

  • Handford CR, Loucks RG (1993) Carbonate depositional sequences and systems tracts—responses of carbonate platforms to relative sea level change. In: Loucks RG, Sarg JF (eds) Carbonate sequence stratigraphy, vol 57. Am. Assoc. Pet. Geol. Mem., pp 3–41

  • Harvey AS, Broadwater ST, Woelkerling WJ, Mitrovski PJ (2003) Choreonema (Corallinales, Rhodophyta): 18S rDNA phylogeny and resurrection of the Hapalidiaceae for the subfamily Choreonematoideae, Austrolithoideae, and Melobesioideae. J Phycol 39:988–998

    Google Scholar 

  • Hasson PF (1985) New observations on the biostratigraphy of the Saudi Arabian Umm er Radhuma Formation (Paleogene) and its correlation with neighboring regions. Micropaleontology 31(4):335–364

    Google Scholar 

  • Hernández-Molina FJ, Fernández-Salas LM, Lobo F, Somoza L, Díaz-del-Río V, Dias JA (2000) The infralittoral prograding wedge: a new large-scale progradational sedimentary body in shallow marine environments. Geo-Marine Lett 20:109–117

    Google Scholar 

  • Hohenegger J, Yordanova E (2001a) Displacement of larger foraminifera at the western slope of Motobu peninsula (Okinawa, Japan). Palaios 16:53–72

    Google Scholar 

  • Hohenegger J, Yordanova E (2001b) Depth–transport functions and erosion–deposition diagrams as indicators of slope inclination and time-averaged traction forces: applications in tropical reef environments. Sedimentology 48:1025–1046

    Google Scholar 

  • Hottinger L (2014) Paleogene larger rotaliid foraminifera from the western and central Neotethys. Springer International Publishing, Cham

    Google Scholar 

  • Hunt DP, Tucker ME (1992) Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall. Sediment Geol 81:1–9

    Google Scholar 

  • Ivany LC, Portell RW, Jones DS (1990) Animal–plant relationships and paleobiogeography of an Eocene seagrass community from Florida. Palaios 5:244–258

    Google Scholar 

  • James NP, Bone Y (2011) Neritic carbonate sediments in a temperate realm: Southern Australia. Springer, Amsterdam

    Google Scholar 

  • James NP, Boreen TD, Bone Y, Feary DA (1994) Holocene carbonate sedimentation on the west Eucla shelf, great Australian bight: a shaved shelf. Sediment Geol 90:161–177

    Google Scholar 

  • Jorry SJ, Hasler CA, Davaud E (2006) Hydrodynamic behaviour of Nummulites: implications for depositional models. Facies 52:221–235

    Google Scholar 

  • Kennett JP, Stott LD (1991) Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 353:225–229. https://doi.org/10.1038/353225a0

    Article  Google Scholar 

  • Langer MR (1993) Epiphytic foraminifera. Mar Micropaleontol 20:235–265

    Google Scholar 

  • Less G, Özcan E (2008) The late Eocene evolution of nummulitid foraminifer Spiroclypeus in the Western Tethys. Acta Palaeont Pol 53:303–316

    Google Scholar 

  • Less G, Özcan E (2012) Bartonian-Priabonian larger benthic foraminiferal events in the Western Tethys. Austrian J Earth Sci 105:129–140

    Google Scholar 

  • Less G, Özcan E, Báldi-Beke M, Kollányi K (2007) Thanetian and early Ypresian orthophragmines (Foraminifera: Discocyclinidae and Orbitoclypeidae) from the central western Tethys (Turkey, Italy and Bulgaria) and their revised taxonomy and biostratigraphy. Riv Ital PaleontStrat 113:419–448

    Google Scholar 

  • Less G, Özcan E, Papazzoni CA, Stockar R (2008) The Middle to Late Eocene evolution of nummulitid foraminifer Heterostegina in the Western Tethys. Acta Palaeonta Pol 53:317–350

    Google Scholar 

  • Loucks RG, Moody RTJ, Bellis JK, Brown AA (1998) Regional depositional setting and pore network systems of the El Garia Formation (Metlaoui Group, Lower Eocene), offshore Tunisia. In MacGregor DS, Moody RTJ, Clark-Lowes DD (eds) Petroleum geology of North Africa, vol 132. Geological Society of London Special Publication, pp 355–374

  • Lustrino M, Morra V, Fedele L, Franciosi L (2009) Beginning of the Apennine subduction system in central western Mediterranean: constraints from Cenozoic “orogenic”magmatic activity of Sardinia. Italy. Tectonics 28:TC5016. https://doi.org/10.1029/2008TC002419

    Article  Google Scholar 

  • Matteucci R (1992) Stop n. 2 – M. La Serra. La successione del Paleogene-Miocene inf. A macroforaminiferi. Field trip guide book, 5th Symp. Ecology and Paleoecology of Benthic Communities, Roma, pp 55–58

  • Mateu-Vicens G, Pomar LL, Ferrandez-Canadell C (2012) Nummulitic banks in the upper Lutetian “Buil level”, Ainsa basin, South Central pyrenean zone: the impact of internal waves. Sedimentology 59:527–552. https://doi.org/10.1111/j.1365-3091.2011.01263.x

    Article  Google Scholar 

  • Middleton GV, Hampton MA (1973) Sediment gravity flows: mechanics of flow and deposition. In: Middleton GV, Bouma AH (eds) Turbidites and deep water sedimentation. SEPM Short Course Notes, pp 1–38

  • Middleton GV, Hampton MA (1976) Subaqueous sediment transport and deposition by sediment gravity flows. In: Stanley DJ, Swift DJP (eds) Marine sediment transport and environmental management. Wiley, Hoboken, pp 197–218

    Google Scholar 

  • Mochales T, Barnolas A, Pueyo EL, Casas AM, Serra-Kiel J, Samsó JM, Ramajo J (2012) Chronostratigraphy of the Boltaña anticline and the Ainsa Basin (Southern Pyrenees). Geol Soc Am Bull 124:1229–1250

    Google Scholar 

  • Moissette P, Koskeridou E, Cornée JJ, Guillocheau F, Lècuyer C (2007) Spectacular preservation of seagrasses and seagrass-associated communities from the Pliocene of Rhodes, Greece. Palaios 22:200–211

    Google Scholar 

  • Moody RTJ, Grant GG (1989) On the importance of bioclasts in the definition of a depositional model for the Metlaoui Carbonate Group. In: Actes des II eme Journees de Geologie Tunisienne Appliquee a la Recherche des Hydrocarbures: Memoires de l’Enterprise Tunisienne d’Activities Petrolieres, vol 3, pp 409–426

  • Nebelsick JH, Stingl V, Rasser M (2001) Autochthonous facies and allochthonous debris flows compared: early Oligocene carbonate facies patterns of the Lower Inn Valley (Tyrol, Austria). Facies 44:31–46

    Google Scholar 

  • Nebelsick JH, Rasser M, Bassi D (2005) Facies dynamics in Eocene to Oligocene circumalpine carbonates. Facies 51:197–216

    Google Scholar 

  • Nebelsick JH, Bassi D, Lempp J (2013) Tracking paleoenvironmental changes in coralline algal-dominated carbonates of the Lower Oligocene Calcareniti di Castelgomberto formation (Monti Berici, Italy). Facies 59:133–148

    Google Scholar 

  • Nittrouer CA, Wright LD (1994) Transport of particles across continental shelves. Rev Geophys 32:85–113

    Google Scholar 

  • Özcan E, Less G, Jovane L, Catanzariti R, Frontalini F, Coccioni R, Giorgioni M, Rodelli D, Rego ES, Kayğılı S, Asgharian Rostami M (2019) Integrated biostratigraphy of the middle to upper Eocene Kırkgeçit Formation (Baskil section, Elazığ, eastern Turkey): larger benthic foraminiferal perspective. Mediterr Geosci Rev 1:55–90. https://doi.org/10.1007/s42990-019-00004-6

    Article  Google Scholar 

  • Papazzoni CA, Trevisani E (2006) Facies analysis, palaeoenvironmental reconstruction, and biostratigraphy of the “Pesciara di Bolca” (Verona, northern Italy): an early Eocene fossil-Lagerstätte. Palaeogeogr Palaeoclimatol Palaeoecol 242:21–35

  • Papazzoni CA, Cosovic V, Briguglio A, Drobne K (2016) Towards a calibrated larger foraminifera biostratigraphic zonation: celebrating 18 years of the application of shallow benthic zones. Palaios 32:1–5. https://doi.org/10.2110/palo.2016.043

    Article  Google Scholar 

  • Parotto M, Praturlon A (2004) The southern Apennine arc. In Crescenti V, D’Offizi S, Merlino S, Sacchi L (eds), Geology of Italy. Societe` Geologica Italiana, Roma, pp 33–58 (Italian Geology Society Special Volume for the IGC 32)

  • Patacca E, Scandone P, Bellatalla M, Perilli N, Santini U (1992) La zona di giunzione tra l’arco appenninico settentrionale e l’arco appenninico meridionale nell’Abruzzo e nel Molise. In: Tozzi M, Cavinato GP, Parotto M (eds), Studi Preliminari all’Acquisizione Dati del Profilo CROP 11 Civitavecchia-Vasto. 1991⁄2. University of Camerino, Camerino, pp 417–441 (Studi Geologici Camerti Vol. Spec.)

  • Payros A, Pualte V (2008) Calciclastic submarine fans: an integrated overview. Earth-Sci Rev 86:203–246

    Google Scholar 

  • Pignatti J, Frezza V, Benedetti A, Carbone F, Accordi G, Matteucci R (2012) Recent foraminiferal assemblages and mixed carbonate–siliciclastic sediments along the coast of southern Somalia and northern Kenya. Ital J Geosci 131(1):66–75

  • Pomar L (2001) Types of carbonate platforms: a genetic approach. Basin Res 13:313–334

    Google Scholar 

  • Pomar L, Mateu-Vicens G, Morsilli M, Brandano M (2014) Carbonate ramp evolution during the late Oligocene (Chattian), Salento Peninsula, southern Italy. Palaeogeogr Palaeoclimatol Palaeoecol 404:109–132

    Google Scholar 

  • Pomar L, Esteban M, Martinez W, Espino D, Castillo de Ott V, Benkovics L, Castro Leyva T (2015) Oligocene-Miocene carbonates of the Perla field, offshore Venezuela: depositional model and facies architecture, in Bartolini C and Mann P (eds) Petroleum geology and potential of the Colombian Caribbean Margin: AAPG Memoir vol 108, pp 647–674

  • Pomar L, Baceta JI, Hallock P, Mateu-Vicens G, Basso D (2017) Reef building and carbonate production modes in the west-central Tethys during the Cenozoic. Mar Petrol Geol 83:261–304

    Google Scholar 

  • Puga-Bernabéu A, Martín JM, Braga JC, Aguirre J (2014) Offshore remobilization processes and deposits in low-energy temperate-water carbonate-ramp systems: examples from the Neogene basins of the Betic Cordillera (SE Spain). Sediment Geol 304:11–27

    Google Scholar 

  • Puig P, Ogston AS, Mullenbach BL, Nittrouer CA, Sternberg RW (2003) Shelf-to-canyon sediment-transport processes on the Eel continental margin (northern California). Mar Geol 193:129–149

    Google Scholar 

  • Puig P, Ogston AS, Mullenbach BL, Nittrouer CA, Parsons JD, Sternberg RW (2004) Storm-induced sediment gravity flows at the head of the Eel submarine canyon, northern California margin. J Geophys Res 109:C03019. https://doi.org/10.1029/2003JC001918

    Article  Google Scholar 

  • Pujalte V, Robles S, Robador A, Baceta JI, Orue-Extebarria X (1993) Shelf-to-basin Palaeocene palaeogeography and depositional sequences, western Pyrenees, north Spain. International Association of Sedimentologists: Special Publication, vol 18, pp 369–395

  • Pujalte V, Baceta JI, Orue-Extebarria X, Payros A (1998) Paleocene strata of the Basque country, Western Pyrenees, Northern Spain: facies and sequence development in a deep-water starved basin. In: Hardenbol J, Graciansky P-CH, Jacquin TH, Farley M, Vail P (eds) Mesozoic and cenozoic sequence stratigraphy of european basins: society of economic paleontologists and mineralogists special publication 60, Tulsa, pp 311–325

  • Quaranta F, Tomassetti L, Vannucci G, Brandano M (2012) Coralline algae as environmental indicators: a case study from the Attard member (Chattian, Malta). Geodiversitas 34:151–166. https://doi.org/10.5252/g2012n1a9

    Article  Google Scholar 

  • Racey A (2001) A review of Eocene nummulite accumulations: structure, formation and reservoir potential. J Petrol Geol 24:79–100

    Google Scholar 

  • Racey A, Bailey H, Beckett D, Gallagher LT, Hampton MJ, McQuilken J (2001) The petroleum geology of the early Eocene El Garia Formation, Hasdrubal field, offshore Tunisia. J Petrol Geol 24:29–53

    Google Scholar 

  • Reali S, Ronchi P, Borromeo O (2003) Sedimentological Model of the El Garia Formation (NC41 Offshore Libya). In: Salem MJ, Oun KM (eds) The geology of northwest Libya, sedimentary basins of Libya, second symposium vol II, pp 69–97

  • Reich S, Di Martino E, Todd JA, Wesselingh FP, Renema W (2015) Indirect paleoseagrass indicators (IPSIs): a review. Earth-Sci Rev 143:161–186

    Google Scholar 

  • Renema W (2003) Larger foraminifera on reefs around Bali (Indonesia). Zool Verh Leiden 345:337–366

  • Renz O (1951) Ricerche stratigrafiche e micropaleontologiche sulla Scaglia (Cretaceo Superiore-Terziario) dell’Appennino centrale. Mem Descr Carta Geol d’It 29:1–173

    Google Scholar 

  • Reuter M, Piller WE, Harzhauser M, Kroh A, Rögl F, Ćorić S (2011) The Quilon Limestone, Kerala Basin, India: an archive for Miocene Indo-Pacific seagrass beds. Lethaia 44:76–86

    Google Scholar 

  • Romero J, Caus E, Rosell J (2002) A model for the palaeoenvironmental distribution of larger Foraminifera based on late–middle Eocene deposits on the margin of the South Pyrenean Basin (NE Spain). Palaeogeogr Palaeoclimatol Palaeoecol 179:43–56

    Google Scholar 

  • Rusk DC (2001) Libya: petroleum potential of the underexplored basin centers—a twenty-first-century challenge. In: Downey MW, Threet JC, Morgan WA (eds) Petroleum provinces of the twenty-first-century. AAPG Memoir, vol 74, pp 429–452

  • Scheibner C, Speijer RP, Marcouk AM (2005) Turnover of larger foraminifera during the Paleocene–Eocene Thermal Maximum and paleoclimatic control on the evolution of platform ecosystems. Geology 33:493–496

    Google Scholar 

  • Schiavinotto F (1979) Miogypsina e Lepidocyclina del Miocene di Monte La Serra (L’Aquila–Appennino Centrale). Geol Rom 28:253–293

    Google Scholar 

  • Schlager W, Reijmer JJG, Droxler A (1994) Highstand shedding of carbonate platforms. J Sediment Res 64(3b):270–281

    Google Scholar 

  • Serra-Kiel J, Hottinger L, Caus E, Drobne K, Ferrandez C, Jauhri AK, Less G, Pavlovec R, Pignatti J, Samso JM, Schaub H, Sirel E, Strougo A, Tambareau Y, Tosquella J, Zakrevskaya E (1998) Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bull Soc Géol France 169:281–299

    Google Scholar 

  • Serra-Kiel J, Gallardo-Garcia A, Razi P, Robinet J, Roger J, Grelaud C, Leroy S, Robin C (2016) Middle Eocene-Early Miocene larger foraminifera from Dhofar (Oman) and Socotra Island (Yemen). Arabian J Geosci 9(5):1–95

    Google Scholar 

  • Sirel E, Özgen-Erdem N, Kangal Ö (2013) Systematics and biostratigraphy of Oligocene (Rupelian-Early Chattian) foraminifera from lagoonal-very shallow water limestone in the eastern Sivas Basin (central Turkey). Geol Croatica 66:83–109

    Google Scholar 

  • Sola F, Braga JC, Aguirre J (2013) Hooked and tubular coralline algae indicate seagrass beds associated to Mediterranean Messinian reefs (Poniente Basin, Almería, SE Spain). Palaeogeogr Palaeoclimatol Palaeoecol 374:218–229

    Google Scholar 

  • Spence GH, Tucker ME (1997) Genesis of limestone megabreccias and their significance in carbonate sequence stratigraphic models: a review. Sediment Geol 112:163–193

    Google Scholar 

  • Speranza F, Villa IM, Sagnotti L, Florindo F, Cosentino D, Cipollari P, Mattei M (2002) Age of the Corsica-Sardinia rotation and Liguro-Provencal basin spreading: new paleomagnetic and Ar⁄Ar evidence. Tectonophysics 347:231–251

    Google Scholar 

  • Swei GH, Tucker ME (2012) Impact of diagenesis on reservoir quality in ramp carbonates: Gialo Formation (Middle Eocene), Sirt Basin, Libya. J Petrol Geol 35:25–48

    Google Scholar 

  • Tomassetti L, Benedetti A, Brandano M (2016) Middle Eocene seagrass facies from Apennine carbonate platforms (Italy). Sediment Geol 335:136–149

    Google Scholar 

  • Ungaro S (1996) Adaptive morphological strategy of Gypsina (encrusting foraminifer). In: Cherchi A (ed) Autecology of selected fossil organisms: achievements and problems. Bollettino della Società Paleontologica Italiana, Special Volume 3, pp 233–241

  • van Konijnenburg JH, Bernoulli D, Mutti M (1999) Stratigraphic architecture of a lower Cretaceous-lower tertiary carbonate base-of-slope succession: gran sasso d’Italia (central Apennines, Italy). In: Harris P, Saller A, Simo J, Handford CR (eds) Advances in carbonate sequence stratigraphy: application to reservoirs, outcrops and models, 63. SEPM, Spec. Publ., London, pp 291–315

    Google Scholar 

  • Vecsei A, Sanders D (1997) Sea-level highstand and lowstand shedding related to shelf margin aggradation and emersion, Upper Eocene-Oligocene of Maiella carbonate platform, Italy. Sed Geol 112:219–234

    Google Scholar 

  • Vélez-Juarbe J (2014) Ghost of seagrasses past: using sirenians as a proxy for historical distribution of seagrasses. Palaeogeogr Palaeoclimatol Palaeoecol 400:41–49

    Google Scholar 

  • Vennin E, van Buchem FZP, Joseph P, Gaumet F, Sonnenfeld M, Rebelle M, Fakhfakh-Ben Jemia H, Zijlstra H (2003) A 3D outcrop analogue model for Ypresian nummulitic carbonate reservoirs: Jebel Ousselat, northern Tunisia. Petrol Geosci 9:145–161

    Google Scholar 

  • Vezzani L, Festa A, Ghisetti FC (2010) Geology and tectonic evolution of the centralsouthern Apennines, Italy. Geol Soc Am Special Publ 469:1–58

    Google Scholar 

  • Woelkerling WJ, Irvine LM, Harvey AS (1993) Growth-forms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Aust Syst Bot 6:277–293

    Google Scholar 

  • Womersley HBS (1996) The Marine Benthic Flora of Southern Australia, Rhodophyta. Part III B. Gracilariales, Rhodymeniales, Corallinales and Bonnemaisoniales. Australian Biological Resources Study, Canberra

  • Wray JL (1977) Calcareous algae. Elsevier, Amsterdam, p 185

    Google Scholar 

  • Wright LD, Friedrichs CT, Kim SC, Scully ME (2001) Effects of ambient currents and waves on gravity-driven sediment transport on continental shelves. Mar Geol 175:25–45

    Google Scholar 

  • Yordanova EK, Hohenegger J (2002) Taphonomy of larger Foraminifera; relationships between living individuals and empty tests on flat reef slopes (Sesoko Island, Japan). Facies 46:29–34

    Google Scholar 

  • Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science 292:e686–e693. https://doi.org/10.1126/science.1059412

    Article  Google Scholar 

  • Zalaffi M (1963) Su alcune piccole strutture affioranti nella Piana di Cassino. Mem Soc Geol Ital 4:635–648

    Google Scholar 

Download references

Acknowledgements

Marco Brandano is thanked for his constructive comments and discussions and for help in the field. Irene Cornacchia is thanked for her assistance in the field. Domenico (Mimmo) Mannetta is thanked for preparation of thin sections. The editor Maurice Tucker is much thanked for his positive review, editing, and suggestions that greatly improve the quality of manuscript; Luca Basilone and one anonymous reviewer are thanked for their fruitful and constructive comments that contributed to improve the manuscript. LT was funded by Ateneo Sapienza Project 2018 (P.I. Prof. Michele Lustrino).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Tomassetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomassetti, L., Benedetti, A. To be allochthonous or autochthonous? The late Paleocene–late Eocene slope sedimentary succession of the Latium–Abruzzi carbonate platform (Central Apennines, Italy). Facies 66, 6 (2020). https://doi.org/10.1007/s10347-019-0590-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-019-0590-3

Keywords

Navigation