Skip to main content

Advertisement

Log in

Guaiacol/β-cyclodextrin for rapid healing of dry socket: antibacterial activity, cytotoxicity, and bone repair—an animal study

  • Original Article
  • Published:
Oral and Maxillofacial Surgery Aims and scope Submit manuscript

Abstract

Purpose

Dry socket (DS) is one the most common and symptomatic post-extraction complications; however, no consensus on its treatment has been reached. This study aimed to develop a novel dressing material for DS containing the phenolic agent guaiacol and evaluate its biological properties.

Methods

An inclusion complex of guaiacol and β-cyclodextrin (Gu/βcd) was prepared by freeze-drying. Its antibacterial activity over six oral bacteria was analyzed using the microdilution method, and its cytotoxicity in osteoblasts was assessed with the MTT assay. The alveolar healing process induced by Gu/βcd was evaluated histologically after the treatment of DS in rats.

Results

βcd complexation potentiated Gu’s antibacterial effect and reduced its cytotoxicity in osteoblasts. Bone trabeculae were formed in the alveolar apices of rats treated with Gu/βcd by day 7. On day 14, woven bone occupied the apical and middle thirds of the sockets; on day 21, the entire alveolus was filled by newly formed bone, which was in a more advanced stage of repair than the positive control (Alvogyl™).

Conclusion

The improvement in Gu’s biological properties in vitro and the rapid alveolar repair in comparison with Alvogyl™ in vivo demonstrated the benefits of the Gu/βcd complex as a future alternative for the treatment of DS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Faizel S, Thomas S, Yuvaraj V, Prabhu S, Tripathi G (2015) Comparision between neocone, alvogyl and zinc oxide eugenol packing for the treatment of dry socket: a double blind randomised control trial. J Maxillofac Oral Surg 14:312–320

    Article  PubMed  Google Scholar 

  2. Gbotolorun OM, Dipo-Fagbemi IM, Olojede AO, Ebigwei S, Adetoye JO (2016) Are systemic antibiotics necessary in the prevention of wound healing complications after intra-alveolar dental extraction? Int J Oral Maxillofac Surg 45:1658–1664

    Article  CAS  PubMed  Google Scholar 

  3. Taberner-Vallverdu M, Nazir M, Sanchez-Garces MA, Gay-Escoda C (2015) Efficacy of different methods used for dry socket management: a systematic review. Med Oral Patol Oral Cir Bucal 20:e633–e639

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kaya GS, Yapici G, Savas Z, Gungormus M (2011) Comparison of alvogyl, SaliCept patch, and low-level laser therapy in the management of alveolar osteitis. J Oral Maxillofac Surg 69:1571–1577

    Article  PubMed  Google Scholar 

  5. Alexander RE (2000) Dental extraction wound management: a case against medicating postextraction sockets. J Oral Maxillofac Surg 58:538–551

    Article  CAS  PubMed  Google Scholar 

  6. Kato T, Shirayama K, Tsutsui TW, Tsutsui T (2010) Induction of mRNA expression of osteogenesis-related genes by guaiacol in human dental pulp cells. Odontology 98:165–169

    Article  CAS  PubMed  Google Scholar 

  7. Mimura T, Yazaki K, Sawaki K, Ozawa T, Kawaguchi M (2005) Hydroxyl radical scavenging effects of guaiacol used in traditional dental pulp sedation: reaction kinetic study. Biomed Res 26:139–145

    Article  CAS  Google Scholar 

  8. Ouwehand A, Tiihonen K, Kettunen H, Peuranen S, Schulze H, Rautonen N (2010) In vitro effects of essential oils on potential pathogens and beneficial members of the normal microbiota. Vet Med 55:71–78

    Article  CAS  Google Scholar 

  9. Fitzgerald DJ, Stratford M, Gasson MJ, Narbad A (2005) Structure-function analysis of the vanillin molecule and its antifungal properties. J Agric Food Chem 53:1769–1775

    Article  CAS  PubMed  Google Scholar 

  10. Kobayashi M, Tsutsui TW, Kobayashi T, Ohno M, Higo Y, Inaba T, Tsutsui T (2013) Sensitivity of human dental pulp cells to eighteen chemical agents used for endodontic treatments in dentistry. Odontology 101:43–51

    Article  CAS  PubMed  Google Scholar 

  11. Chang Y-C, Tai K-W, Huang F-M, Huang M-F (2000) Cytotoxic and nongenotoxic effects of phenolic compounds in human pulp cell cultures. J Endod 26:440–443

    Article  CAS  PubMed  Google Scholar 

  12. Kayaci F, Ertas Y, Uyar T (2013) Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers. J Agric Food Chem 61:8156–8165

    Article  CAS  PubMed  Google Scholar 

  13. National Center for Biotechnology Information. PubChem Compound Database; CID=460, https://pubchem.ncbi.nlm.nih.gov/compound/460. Accessed 13 April 2017

  14. Teixeira KI, Denadai AM, Sinisterra RD, Cortes ME (2015) Cyclodextrin modulates the cytotoxic effects of chlorhexidine on microrganisms and cells in vitro. Drug Deliv 22:444–453

    Article  CAS  PubMed  Google Scholar 

  15. Bilia AR, Guccione C, Isacchi B, Righeschi C, Firenzuoli F, Bergonzi MC (2014) Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evid Based Complement Alternat Med 2014:651593

    PubMed  PubMed Central  Google Scholar 

  16. Divakar S, Maheswaran M (1997) Structural studies on inclusion compounds of β-cyclodextrin with some substituted phenols. J Incl Phenom 27:113–126

    Article  CAS  Google Scholar 

  17. Song LX, Wang HM, Yang Y, Xu P (2007) Preparation and characterization of two solid supramolecular inclusion complexes of guaiacol with β- and γ-cyclodextrin. Bull Chem Soc Jpn 80:2185–2195

    Article  CAS  Google Scholar 

  18. Suarez DF, Consuegra J, Trajano VC, Gontijo SM, Guimaraes PP, Cortes ME, Denadai AL, Sinisterra RD (2014) Structural and thermodynamic characterization of doxycycline/beta-cyclodextrin supramolecular complex and its bacterial membrane interactions. Colloids Surf B: Biointerfaces 118:194–201

    Article  CAS  PubMed  Google Scholar 

  19. Schneider HJ, Hacket F, Rüdiger V, Ikeda H (1998) NMR studies of cyclodextrins and cyclodextrin complexes. Chem Rev 98:1755–1785

    Article  CAS  PubMed  Google Scholar 

  20. Kong N, Jiang T, Zhou Z, Fu J (2009) Cytotoxicity of polymerized resin cements on human dental pulp cells in vitro. Dent Mater 25:1371–1375

    Article  CAS  PubMed  Google Scholar 

  21. Clinical Laboratory Standard Institute (2006) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. Seventh Edition. CLSI document M7-A7. 26:14–18

  22. Jullian C, Orosteguis T, Perez-Cruz F, Sanchez P, Mendizabal F, Olea-Azar C (2008) Complexation of morin with three kinds of cyclodextrin. A thermodynamic and reactivity study. Spectrochim Acta A Mol Biomol Spectrosc 71:269–275

    Article  CAS  PubMed  Google Scholar 

  23. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods--a review. Int J Food Microbiol 94:223–253

    Article  CAS  PubMed  Google Scholar 

  24. Cortés ME, Sinisterra RD, Avila-Campos MJ, Tortamano N, Rocha RG (2001) The chlorhexidine: beta;-cyclodextrin inclusion compound: preparation, characterization and microbiological evaluation. J Incl Phenom Macrocycl Chem 40:297–302

    Article  Google Scholar 

  25. Teixeira KI, Araujo PV, Neves BR, Mahecha GA, Sinisterra RD, Cortes ME (2013) Ultrastructural changes in bacterial membranes induced by nano-assemblies beta-cyclodextrin chlorhexidine: SEM, AFM, and TEM evaluation. Pharm Dev Technol 18:600–608

    Article  CAS  PubMed  Google Scholar 

  26. Hill LE, Gomes C, Taylor TM (2013) Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT Food Sci Technol 51:86–93

    Article  CAS  Google Scholar 

  27. Imperiale JC, Sosnik AD (2015) Cyclodextrin complexes for treatment improvement in infectious diseases. Nanomedicine (London) 10:1621–1641

    Article  CAS  Google Scholar 

  28. Czekanska EM, Stoddart MJ, Richards RG, Hayes JS (2012) In search of an osteoblast cell model for in vitro research. Eur Cell Mater 24:1–17

    Article  CAS  PubMed  Google Scholar 

  29. Haghighat A, Bahri Najafi R, Bazvand M, Badrian H, Khalighinejad N, Goroohi H (2012) The effectiveness of GECB pastille in reducing complications of dry socket syndrome. Int J Dent 2012:587461

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rasheed A, Kumar CKA, Sravanthi VVNSS (2008) Cyclodextrins as drug carrier molecule: a review. Sci Pharm 76:567–598

    Article  CAS  Google Scholar 

  31. Sofian ZM, Shafee SS, Abdullah JM, Osman H, Razak SA (2014) Evaluation of the cytotoxicity of levodopa and its complex with hydroxypropyl-ss-cyclodextrin (HP-ss-CD) to an astrocyte cell line. Malays J Med Sci 21:6–11

    PubMed  PubMed Central  Google Scholar 

  32. Rajewski RA, Stella VJ (1996) Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J Pharm Sci 85:1142–1169

    Article  CAS  PubMed  Google Scholar 

  33. LaRocca TJ, Pathak P, Chiantia S, Toledo A, Silvius JR, Benach JL, London E (2013) Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts. PLoS Pathog 9:e1003353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de Melo Junior EJ, Raposo MJ, Lisboa Neto JA, Diniz MF, Marcelino Junior CA, Sant’Ana AE (2002) Medicinal plants in the healing of dry socket in rats: microbiological and microscopic analysis. Phytomedicine 9:109–116

    Article  PubMed  Google Scholar 

  35. Cardoso CL, Ferreira Junior O, Carvalho PS, Dionisio TJ, Cestari TM, Garlet GP (2011) Experimental dry socket: microscopic and molecular evaluation of two treatment modalities. Acta Cir Bras 26:365–372

    Article  PubMed  Google Scholar 

  36. Rodrigues MT, Cardoso CL, Carvalho PS, Cestari TM, Feres M, Garlet GP, Ferreira O Jr (2011) Experimental alveolitis in rats: microbiological, acute phase response and histometric characterization of delayed alveolar healing. J Appl Oral Sci 19:260–268

    Article  PubMed  PubMed Central  Google Scholar 

  37. Merzel J, Salmon CR (2008) Growth and the modeling/remodeling of the alveolar bone of the rat incisor. Anat Rec (Hoboken) 291:827–834

    Article  Google Scholar 

  38. Vieira AE, Repeke CE, Ferreira Junior Sde B, Colavite PM, Biguetti CC, Oliveira RC, Assis GF, Taga R, Trombone AP, Garlet GP (2015) Intramembranous bone healing process subsequent to tooth extraction in mice: micro-computed tomography, histomorphometric and molecular characterization. PLoS One 10:e0128021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wegenast S (2013) Observe the healing process. Br Dent J 214:217

    Article  CAS  PubMed  Google Scholar 

  40. T Ryalat S, H Al-Shayyab M, Marmash A, A Sawair F, H Baqain Z (2011) The effect of Alvogyl TM when used as a post extraction packing. Jordan J Pharm Sci 4:149–153

    Google Scholar 

Download references

Acknowledgements

We acknowledge the National Institute of Science and Technology in Nanobiopharmaceutical, Foundation for Supporting Research in the State of Minas Gerais (FAPEMIG), National Counsel of Technological and Scientific Development (CNPq), and Coordination for the Improvement of Higher Education Personnel (CAPES).

Funding

This work was supported by the Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil) in the form of a postgraduate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Aparecida Borsatti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aulestia-Viera, P.V., Gontijo, S.M.L., Gomes, A.D.M. et al. Guaiacol/β-cyclodextrin for rapid healing of dry socket: antibacterial activity, cytotoxicity, and bone repair—an animal study. Oral Maxillofac Surg 23, 53–61 (2019). https://doi.org/10.1007/s10006-019-00747-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10006-019-00747-4

Keywords

Navigation